wat_owsm_v1 / s2t.sh
wangpuupup's picture
Upload 12 files
60c3c32 verified
#!/usr/bin/env bash
# Set bash to 'debug' mode, it will exit on :
# -e 'error', -u 'undefined variable', -o ... 'error in pipeline', -x 'print commands',
set -e
set -u
set -o pipefail
log() {
local fname=${BASH_SOURCE[1]##*/}
echo -e "$(date '+%Y-%m-%dT%H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
}
min() {
local a b
a=$1
for b in "$@"; do
if [ "${b}" -le "${a}" ]; then
a="${b}"
fi
done
echo "${a}"
}
SECONDS=0
# General configuration
stage=1 # Processes starts from the specified stage.
stop_stage=10000 # Processes is stopped at the specified stage.
skip_stages= # Spicify the stage to be skipped
skip_data_prep=false # Skip data preparation stages.
skip_train=false # Skip training stages.
skip_eval=false # Skip decoding and evaluation stages.
skip_packing=true # Skip the packing stage.
skip_upload_hf=true # Skip uploading to huggingface stage.
eval_valid_set=false # Run decoding for the validation set
ngpu=1 # The number of gpus ("0" uses cpu, otherwise use gpu).
num_nodes=1 # The number of nodes.
nj=32 # The number of parallel jobs.
inference_nj=32 # The number of parallel jobs in decoding.
gpu_inference=false # Whether to perform gpu decoding.
dumpdir=dump # Directory to dump features.
expdir=exp # Directory to save experiments.
python=python3 # Specify python to execute espnet commands.
# Data preparation related
local_data_opts= # The options given to local/data.sh.
post_process_local_data_opts= # The options given to local/data.sh for additional processing in stage 4.
# Speed perturbation related
speed_perturb_factors= # perturbation factors, e.g. "0.9 1.0 1.1" (separated by space).
# Feature extraction related
feats_type=raw # Feature type (raw, raw_copy, fbank_pitch, or extracted).
audio_format=flac # Audio format: wav, flac, wav.ark, flac.ark (only in feats_type=raw).
multi_columns_input_wav_scp=false # Enable multi columns mode for input wav.scp for format_wav_scp.py
multi_columns_output_wav_scp=false # Enable multi columns mode for output wav.scp for format_wav_scp.py
fs=16k # Sampling rate.
min_wav_duration=0.1 # Minimum duration in second.
max_wav_duration=30.5 # Maximum duration in second.
# Tokenization related
token_type=bpe # Tokenization type (char or bpe).
nbpe=30 # The number of BPE vocabulary.
bpemode=unigram # Mode of BPE (unigram or bpe).
oov="<unk>" # Out of vocabulary symbol.
blank="<blank>" # CTC blank symbol
sos="<sos>" # Start of sentence symbol
eos="<eos>" # End of sentence symbol
sop="<sop>" # Start of prev/prompt symbol
bpe_input_sentence_size=100000000 # Size of input sentence for BPE.
bpe_nlsyms= # non-linguistic symbols list, separated by a comma or a file containing 1 symbol per line, for BPE
bpe_char_cover=1.0 # character coverage when modeling BPE
hugging_face_model_name_or_path="" # Hugging Face model or path for hugging_face tokenizer
# Ngram model related
use_ngram=false
ngram_exp=
ngram_num=3
# Language model related
use_lm=true # Use language model for decoding.
lm_tag= # Suffix to the result dir for language model training.
lm_exp= # Specify the directory path for LM experiment.
# If this option is specified, lm_tag is ignored.
lm_stats_dir= # Specify the directory path for LM statistics.
lm_config= # Config for language model training.
lm_args= # Arguments for language model training, e.g., "--max_epoch 10".
# Note that it will overwrite args in lm config.
use_word_lm=false # Whether to use word language model.
num_splits_lm=1 # Number of splitting for lm corpus.
# shellcheck disable=SC2034
word_vocab_size=10000 # Size of word vocabulary.
# S2T model related
s2t_task=s2t
s2t_tag= # Suffix to the result dir for s2t model training.
s2t_exp= # Specify the directory path for s2t experiment.
# If this option is specified, s2t_tag is ignored.
s2t_stats_dir= # Specify the directory path for s2t statistics.
s2t_config= # Config for s2t model training.
s2t_args= # Arguments for s2t model training, e.g., "--max_epoch 10".
# Note that it will overwrite args in s2t config.
feats_normalize=global_mvn # Normalizaton layer type.
num_splits_s2t=1 # Number of splitting for lm corpus.
num_ref=1 # Number of references for training.
# In supervised learning based speech enhancement / separation, it is equivalent to number of speakers.
num_inf= # Number of inferences output by the model
# Note that if it is not specified, it will be the same as num_ref. Otherwise, it will be overwritten.
# In MixIT, number of outputs is larger than that of references.
# Upload model related
hf_repo=
# Decoding related
use_streaming=false # Whether to use streaming decoding
batch_size=1
inference_tag= # Suffix to the result dir for decoding.
inference_config= # Config for decoding.
inference_args= # Arguments for decoding, e.g., "--lm_weight 0.1".
# Note that it will overwrite args in inference config.
inference_lm=valid.loss.ave.pth # Language model path for decoding.
inference_ngram=${ngram_num}gram.bin
inference_s2t_model=valid.acc.ave.pth # S2T model path for decoding.
# e.g.
# inference_s2t_model=train.loss.best.pth
# inference_s2t_model=3epoch.pth
# inference_s2t_model=valid.acc.best.pth
# inference_s2t_model=valid.loss.ave.pth
download_model= # Download a model from Model Zoo and use it for decoding.
# [Task dependent] Set the datadir name created by local/data.sh
train_set= # Name of training set.
valid_set= # Name of validation set used for monitoring/tuning network training.
test_sets= # Names of test sets. Multiple items (e.g., both dev and eval sets) can be specified.
bpe_train_text= # Text file path of bpe training set.
lm_train_text= # Text file path of language model training set.
lm_dev_text= # Text file path of language model development set.
lm_test_text= # Text file path of language model evaluation set.
nlsyms_txt=none # Non-linguistic symbol list if existing.
cleaner=none # Text cleaner.
hyp_cleaner=none # Text cleaner for hypotheses (may be used with external tokenizers)
g2p=none # g2p method (needed if token_type=phn).
lang=noinfo # The language type of corpus.
score_opts= # The options given to sclite scoring
local_score_opts= # The options given to local/score.sh.
s2t_speech_fold_length=800 # fold_length for speech data during S2T training.
s2t_text_fold_length=150 # fold_length for text data during S2T training.
lm_fold_length=150 # fold_length for LM training.
help_message=$(cat << EOF
Usage: $0 --train_set "<train_set_name>" --valid_set "<valid_set_name>" --test_sets "<test_set_names>"
Options:
# General configuration
--stage # Processes starts from the specified stage (default="${stage}").
--stop_stage # Processes is stopped at the specified stage (default="${stop_stage}").
--skip_stages # Spicify the stage to be skipped (default="${skip_stages}").
--skip_data_prep # Skip data preparation stages (default="${skip_data_prep}").
--skip_train # Skip training stages (default="${skip_train}").
--skip_eval # Skip decoding and evaluation stages (default="${skip_eval}").
--skip_packing # Skip the packing stage (default="${skip_packing}").
--skip_upload_hf # Skip uploading to huggingface stage (default="${skip_upload_hf}").
--eval_valid_set # Run decoding for the validation set (default="${eval_valid_set}").
--ngpu # The number of gpus ("0" uses cpu, otherwise use gpu, default="${ngpu}").
--num_nodes # The number of nodes (default="${num_nodes}").
--nj # The number of parallel jobs (default="${nj}").
--inference_nj # The number of parallel jobs in decoding (default="${inference_nj}").
--gpu_inference # Whether to perform gpu decoding (default="${gpu_inference}").
--dumpdir # Directory to dump features (default="${dumpdir}").
--expdir # Directory to save experiments (default="${expdir}").
--python # Specify python to execute espnet commands (default="${python}").
# Data preparation related
--local_data_opts # The options given to local/data.sh (default="${local_data_opts}").
# Speed perturbation related
--speed_perturb_factors # speed perturbation factors, e.g. "0.9 1.0 1.1" (separated by space, default="${speed_perturb_factors}").
# Feature extraction related
--feats_type # Feature type (raw, raw_copy, fbank_pitch or extracted, default="${feats_type}").
--audio_format # Audio format: wav, flac, wav.ark, flac.ark (only in feats_type=raw or raw_copy, default="${audio_format}").
--fs # Sampling rate (default="${fs}").
--min_wav_duration # Minimum duration in second (default="${min_wav_duration}").
--max_wav_duration # Maximum duration in second (default="${max_wav_duration}").
# Tokenization related
--token_type # Tokenization type (char or bpe, default="${token_type}").
--nbpe # The number of BPE vocabulary (default="${nbpe}").
--bpemode # Mode of BPE (unigram or bpe, default="${bpemode}").
--oov # Out of vocabulary symbol (default="${oov}").
--blank # CTC blank symbol (default="${blank}").
--sos # sos symbol (default="${sos}").
--eos # eos symbol (default="${eos}").
--sop # sop symbol (default="${sop}").
--bpe_input_sentence_size # Size of input sentence for BPE (default="${bpe_input_sentence_size}").
--bpe_nlsyms # Non-linguistic symbol list for sentencepiece, separated by a comma or a file containing 1 symbol per line . (default="${bpe_nlsyms}").
--bpe_char_cover # Character coverage when modeling BPE (default="${bpe_char_cover}").
# Language model related
--lm_tag # Suffix to the result dir for language model training (default="${lm_tag}").
--lm_exp # Specify the directory path for LM experiment.
# If this option is specified, lm_tag is ignored (default="${lm_exp}").
--lm_stats_dir # Specify the directory path for LM statistics (default="${lm_stats_dir}").
--lm_config # Config for language model training (default="${lm_config}").
--lm_args # Arguments for language model training (default="${lm_args}").
# e.g., --lm_args "--max_epoch 10"
# Note that it will overwrite args in lm config.
--use_word_lm # Whether to use word language model (default="${use_word_lm}").
--word_vocab_size # Size of word vocabulary (default="${word_vocab_size}").
--num_splits_lm # Number of splitting for lm corpus (default="${num_splits_lm}").
# S2T model related
--s2t_tag # Suffix to the result dir for s2t model training (default="${s2t_tag}").
--s2t_exp # Specify the directory path for S2T experiment.
# If this option is specified, s2t_tag is ignored (default="${s2t_exp}").
--s2t_stats_dir # Specify the directory path for S2T statistics (default="${s2t_stats_dir}").
--s2t_config # Config for S2T model training (default="${s2t_config}").
--s2t_args # Arguments for S2T model training (default="${s2t_args}").
# e.g., --s2t_args "--max_epoch 10"
# Note that it will overwrite args in s2t config.
--feats_normalize # Normalizaton layer type (default="${feats_normalize}").
--num_splits_s2t # Number of splitting for lm corpus (default="${num_splits_s2t}").
--num_ref # Number of references for training (default="${num_ref}").
# In supervised learning based speech recognition, it is equivalent to number of speakers.
--num_inf # Number of inference audio generated by the model (default="${num_inf}")
# Note that if it is not specified, it will be the same as num_ref. Otherwise, it will be overwritten.
# Decoding related
--inference_tag # Suffix to the result dir for decoding (default="${inference_tag}").
--inference_config # Config for decoding (default="${inference_config}").
--inference_args # Arguments for decoding (default="${inference_args}").
# e.g., --inference_args "--lm_weight 0.1"
# Note that it will overwrite args in inference config.
--inference_lm # Language model path for decoding (default="${inference_lm}").
--inference_s2t_model # S2T model path for decoding (default="${inference_s2t_model}").
--download_model # Download a model from Model Zoo and use it for decoding (default="${download_model}").
--use_streaming # Whether to use streaming decoding (default="${use_streaming}").
# [Task dependent] Set the datadir name created by local/data.sh
--train_set # Name of training set (required).
--valid_set # Name of validation set used for monitoring/tuning network training (required).
--test_sets # Names of test sets.
# Multiple items (e.g., both dev and eval sets) can be specified (required).
--bpe_train_text # Text file path of bpe training set.
--lm_train_text # Text file path of language model training set.
--lm_dev_text # Text file path of language model development set (default="${lm_dev_text}").
--lm_test_text # Text file path of language model evaluation set (default="${lm_test_text}").
--nlsyms_txt # Non-linguistic symbol list if existing (default="${nlsyms_txt}").
--cleaner # Text cleaner (default="${cleaner}").
--g2p # g2p method (default="${g2p}").
--lang # The language type of corpus (default=${lang}).
--score_opts # The options given to sclite scoring (default="{score_opts}").
--local_score_opts # The options given to local/score.sh (default="{local_score_opts}").
--s2t_speech_fold_length # fold_length for speech data during S2T training (default="${s2t_speech_fold_length}").
--s2t_text_fold_length # fold_length for text data during S2T training (default="${s2t_text_fold_length}").
--lm_fold_length # fold_length for LM training (default="${lm_fold_length}").
EOF
)
log "$0 $*"
# Save command line args for logging (they will be lost after utils/parse_options.sh)
run_args=$(scripts/utils/print_args.sh $0 "$@")
. utils/parse_options.sh
if [ $# -ne 0 ]; then
log "${help_message}"
log "Error: No positional arguments are required."
exit 2
fi
. ./path.sh
. ./cmd.sh
# Check required arguments
if ! "${skip_train}"; then
[ -z "${train_set}" ] && { log "${help_message}"; log "Error: --train_set is required"; exit 2; };
[ -z "${valid_set}" ] && { log "${help_message}"; log "Error: --valid_set is required"; exit 2; };
fi
if ! "${eval_valid_set}"; then
[ -z "${test_sets}" ] && { log "${help_message}"; log "Error: --test_sets is required"; exit 2; };
else
[ -z "${valid_set}" ] && { log "${help_message}"; log "Error: --valid_set is required"; exit 2; };
fi
if [ -n "${train_set}" ] && [ "${train_set}" = "${valid_set}" ]; then
log "Error: train_set and valid_set must be different. --train_set ${train_set} --valid_set ${valid_set}"
exit 1
fi
_test_sets=
for dset in ${test_sets}; do
if [ "${dset}" = "${train_set}" ]; then
log "Error: train_set and test_sets must be different. --train_set ${train_set} --test_sets ${test_sets}"
exit 1
fi
if [ "${dset}" = "${valid_set}" ]; then
log "Info: The valid_set '${valid_set}' is included in the test_sets. '--eval_valid_set true' is set and '${valid_set}' is removed from the test_sets"
eval_valid_set=true
elif [[ " ${_test_sets} " =~ [[:space:]]${dset}[[:space:]] ]]; then
log "Info: ${dset} is duplicated in the test_sets. One is removed"
else
_test_sets+="${dset} "
fi
done
test_sets=${_test_sets}
# Check feature type
if [ "${feats_type}" = raw ]; then
data_feats=${dumpdir}/raw
elif [ "${feats_type}" = raw_copy ]; then
# raw_copy is as same as raw except for skipping the format_wav stage
data_feats=${dumpdir}/raw_copy
elif [ "${feats_type}" = fbank_pitch ]; then
data_feats=${dumpdir}/fbank_pitch
elif [ "${feats_type}" = fbank ]; then
data_feats=${dumpdir}/fbank
elif [ "${feats_type}" == extracted ]; then
data_feats=${dumpdir}/extracted
else
log "${help_message}"
log "Error: not supported: --feats_type ${feats_type}"
exit 2
fi
# Extra files for prev/prompt and ASR CTC
utt_extra_files="text.prev text.ctc"
num_inf=${num_inf:=${num_ref}}
# Preprocessor related
if [ ${num_ref} -eq 1 ]; then
# For single speaker, text file path and name are text
ref_text_files_str="text "
ref_text_names_str="text "
else
# For multiple speakers, text file path and name are text_spk[1-N] and [text, text_spk2, ...]
#TODO(simpleoier): later to support flexibly defined text prefix
ref_text_files_str="text_spk1 "
ref_text_names_str="text "
for n in $(seq 2 ${num_ref}); do
ref_text_files_str+="text_spk${n} "
ref_text_names_str+="text_spk${n} "
done
fi
# shellcheck disable=SC2206
ref_text_files=(${ref_text_files_str// / })
# shellcheck disable=SC2206
ref_text_names=(${ref_text_names_str// / })
[ -z "${bpe_train_text}" ] && bpe_train_text="${data_feats}/org/${train_set}/${ref_text_files[0]}"
# Use the same text as S2T for lm training if not specified.
[ -z "${lm_train_text}" ] && lm_train_text="${data_feats}/org/${train_set}/${ref_text_files[0]}"
# Use the same text as S2T for lm training if not specified.
[ -z "${lm_dev_text}" ] && lm_dev_text="${data_feats}/org/${valid_set}/${ref_text_files[0]}"
if [ -z "${lm_test_text}" ]; then
if [ -z "${test_sets}" ]; then
lm_test_text="${data_feats}/org/${valid_set}/${ref_text_files[0]}"
else
# Use the text of the 1st evaldir if lm_test is not specified
lm_test_text="${data_feats}/${test_sets%% *}/${ref_text_files[0]}"
fi
fi
# Check tokenization type
if [ "${lang}" != noinfo ]; then
token_listdir=data/${lang}_token_list
else
token_listdir=data/token_list
fi
bpedir="${token_listdir}/bpe_${bpemode}${nbpe}"
bpeprefix="${bpedir}"/bpe
bpemodel="${bpeprefix}".model
bpetoken_list="${bpedir}"/tokens.txt
chartoken_list="${token_listdir}"/char/tokens.txt
hugging_face_token_list="${token_listdir}/hugging_face_"${hugging_face_model_name_or_path/\//-}/tokens.txt
# NOTE: keep for future development.
# shellcheck disable=SC2034
wordtoken_list="${token_listdir}"/word/tokens.txt
if [ "${token_type}" = bpe ]; then
token_list="${bpetoken_list}"
elif [ "${token_type}" = char ]; then
token_list="${chartoken_list}"
bpemodel=none
elif [ "${token_type}" = word ]; then
token_list="${wordtoken_list}"
bpemodel=none
elif [ "${token_type}" = whisper_en ]; then # should make token_list an output filepath here
token_list="${token_listdir}"/whisper_en/tokens.txt
bpemodel=whisper_en
hyp_cleaner=${cleaner}
elif [ "${token_type}" = whisper_multilingual ]; then
token_list="${token_listdir}"/whisper_multilingual/tokens.txt
bpemodel=whisper_multilingual
hyp_cleaner=${cleaner}
elif [ "${token_type}" = hugging_face ]; then
token_list="${hugging_face_token_list}"
bpemodel=${hugging_face_model_name_or_path}
else
log "Error: not supported --token_type '${token_type}'"
exit 2
fi
if ${use_word_lm}; then
log "Error: Word LM is not supported yet"
exit 2
else
lm_token_list="${token_list}"
lm_token_type="${token_type}"
fi
# Set tag for naming of model directory
if [ -z "${s2t_tag}" ]; then
if [ -n "${s2t_config}" ]; then
s2t_tag="$(basename "${s2t_config}" .yaml)_${feats_type}"
else
s2t_tag="train_${feats_type}"
fi
if [ "${lang}" != noinfo ]; then
s2t_tag+="_${lang}_${token_type}"
else
s2t_tag+="_${token_type}"
fi
if [ "${token_type}" = bpe ]; then
s2t_tag+="${nbpe}"
fi
if [ "${token_type}" = hugging_face ]; then
s2t_tag+="_"${hugging_face_model_name_or_path/\//-}
fi
# Add overwritten arg's info
if [ -n "${s2t_args}" ]; then
s2t_tag+="$(echo "${s2t_args}" | sed -e "s/--/\_/g" -e "s/[ |=/]//g")"
fi
if [ -n "${speed_perturb_factors}" ]; then
s2t_tag+="_sp"
fi
fi
if [ -z "${lm_tag}" ]; then
if [ -n "${lm_config}" ]; then
lm_tag="$(basename "${lm_config}" .yaml)"
else
lm_tag="train"
fi
if [ "${lang}" != noinfo ]; then
lm_tag+="_${lang}_${lm_token_type}"
else
lm_tag+="_${lm_token_type}"
fi
if [ "${lm_token_type}" = bpe ]; then
lm_tag+="${nbpe}"
fi
# Add overwritten arg's info
if [ -n "${lm_args}" ]; then
lm_tag+="$(echo "${lm_args}" | sed -e "s/--/\_/g" -e "s/[ |=/]//g")"
fi
fi
# The directory used for collect-stats mode
if [ -z "${s2t_stats_dir}" ]; then
if [ "${lang}" != noinfo ]; then
s2t_stats_dir="${expdir}/s2t_stats_${feats_type}_${lang}_${token_type}"
else
s2t_stats_dir="${expdir}/s2t_stats_${feats_type}_${token_type}"
fi
if [ "${token_type}" = bpe ]; then
s2t_stats_dir+="${nbpe}"
fi
if [ "${token_type}" = hugging_face ]; then
s2t_stats_dir+="_"${hugging_face_model_name_or_path/\//-}
fi
if [ -n "${speed_perturb_factors}" ]; then
s2t_stats_dir+="_sp"
fi
fi
if [ -z "${lm_stats_dir}" ]; then
if [ "${lang}" != noinfo ]; then
lm_stats_dir="${expdir}/lm_stats_${lang}_${lm_token_type}"
else
lm_stats_dir="${expdir}/lm_stats_${lm_token_type}"
fi
if [ "${lm_token_type}" = bpe ]; then
lm_stats_dir+="${nbpe}"
fi
fi
# The directory used for training commands
if [ -z "${s2t_exp}" ]; then
s2t_exp="${expdir}/s2t_${s2t_tag}"
fi
if [ -z "${lm_exp}" ]; then
lm_exp="${expdir}/lm_${lm_tag}"
fi
if [ -z "${ngram_exp}" ]; then
ngram_exp="${expdir}/ngram"
fi
if [ -z "${inference_tag}" ]; then
if [ -n "${inference_config}" ]; then
inference_tag="$(basename "${inference_config}" .yaml)"
else
inference_tag=inference
fi
# Add overwritten arg's info
if [ -n "${inference_args}" ]; then
inference_tag+="$(echo "${inference_args}" | sed -e "s/--/\_/g" -e "s/[ |=]//g")"
fi
if "${use_lm}"; then
inference_tag+="_lm_$(basename "${lm_exp}")_$(echo "${inference_lm}" | sed -e "s/\//_/g" -e "s/\.[^.]*$//g")"
fi
if "${use_ngram}"; then
inference_tag+="_ngram_$(basename "${ngram_exp}")_$(echo "${inference_ngram}" | sed -e "s/\//_/g" -e "s/\.[^.]*$//g")"
fi
inference_tag+="_s2t_model_$(echo "${inference_s2t_model}" | sed -e "s/\//_/g" -e "s/\.[^.]*$//g")"
fi
if "${skip_data_prep}"; then
skip_stages+="1 2 3 4 5 "
fi
if "${skip_train}"; then
skip_stages+="2 4 5 6 7 8 9 10 11 "
elif ! "${use_lm}"; then
skip_stages+="6 7 8 "
fi
if ! "${use_ngram}"; then
skip_stages+="9 "
fi
if "${skip_eval}"; then
skip_stages+="12 13 "
fi
if [ "${skip_packing}" = "true" ] || [ -n "${download_model}" ]; then
skip_stages+="14 "
fi
if "${skip_upload_hf}"; then
skip_stages+="15 "
fi
skip_stages=$(echo "${skip_stages}" | tr ' ' '\n' | sort -nu | tr '\n' ' ')
log "Skipped stages: ${skip_stages}"
# ========================== Main stages start from here. ==========================
if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ] && ! [[ " ${skip_stages} " =~ [[:space:]]1[[:space:]] ]]; then
log "Stage 1: Data preparation for data/${train_set}, data/${valid_set}, etc."
# [Task dependent] Need to create data.sh for new corpus
local/data.sh ${local_data_opts}
fi
if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ] && ! [[ " ${skip_stages} " =~ [[:space:]]2[[:space:]] ]]; then
if [ -n "${speed_perturb_factors}" ]; then
log "Stage 2: Speed perturbation: data/${train_set} -> data/${train_set}_sp"
for factor in ${speed_perturb_factors}; do
if python3 -c "assert ${factor} != 1.0" 2>/dev/null; then
scripts/utils/perturb_data_dir_speed.sh \
--utt_extra_files "${utt_extra_files} ${ref_text_files_str}" \
"${factor}" "data/${train_set}" "data/${train_set}_sp${factor}"
_dirs+="data/${train_set}_sp${factor} "
else
# If speed factor is 1, same as the original
_dirs+="data/${train_set} "
fi
done
utils/combine_data.sh \
--extra_files "${utt_extra_files} ${ref_text_files_str}" \
"data/${train_set}_sp" ${_dirs}
else
log "Skip stage 2: Speed perturbation"
fi
fi
if [ -n "${speed_perturb_factors}" ]; then
train_set="${train_set}_sp"
fi
if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ] && ! [[ " ${skip_stages} " =~ [[:space:]]3[[:space:]] ]]; then
if "${skip_train}"; then
if "${eval_valid_set}"; then
_dsets="${valid_set} ${test_sets}"
else
_dsets="${test_sets}"
fi
else
_dsets="${train_set} ${valid_set} ${test_sets}"
fi
if [ "${feats_type}" = raw ]; then
log "Stage 3: Format wav.scp: data/ -> ${data_feats}"
# ====== Recreating "wav.scp" ======
# Kaldi-wav.scp, which can describe the file path with unix-pipe, like "cat /some/path |",
# shouldn't be used in training process.
# "format_wav_scp.sh" dumps such pipe-style-wav to real audio file
# and it can also change the audio-format and sampling rate.
# If nothing is need, then format_wav_scp.sh does nothing:
# i.e. the input file format and rate is same as the output.
for dset in ${_dsets}; do
if [ "${dset}" = "${train_set}" ] || [ "${dset}" = "${valid_set}" ]; then
_suf="/org"
else
_suf=""
fi
utils/copy_data_dir.sh --validate_opts --non-print data/"${dset}" "${data_feats}${_suf}/${dset}"
rm -f ${data_feats}${_suf}/${dset}/{segments,wav.scp,reco2file_and_channel,reco2dur}
# Copy extra text files
for extra_txt in ${utt_extra_files}; do
[ -f data/${dset}/${extra_txt} ] && cp data/${dset}/${extra_txt} ${data_feats}${_suf}/${dset}
done
# Copy reference text files if there is more than 1 reference
if [ ${#ref_text_files[@]} -gt 1 ]; then
# shellcheck disable=SC2068
for ref_txt in ${ref_text_files[@]}; do
[ -f data/${dset}/${ref_txt} ] && cp data/${dset}/${ref_txt} ${data_feats}${_suf}/${dset}
done
fi
_opts=
if [ -e data/"${dset}"/segments ]; then
# "segments" is used for splitting wav files which are written in "wav".scp
# into utterances. The file format of segments:
# <segment_id> <record_id> <start_time> <end_time>
# "e.g. call-861225-A-0050-0065 call-861225-A 5.0 6.5"
# Where the time is written in seconds.
_opts+="--segments data/${dset}/segments "
fi
# shellcheck disable=SC2086
scripts/audio/format_wav_scp.sh --nj "${nj}" --cmd "${train_cmd}" \
--audio-format "${audio_format}" --fs "${fs}" ${_opts} \
--multi-columns-input "${multi_columns_input_wav_scp}" \
--multi-columns-output "${multi_columns_output_wav_scp}" \
"data/${dset}/wav.scp" "${data_feats}${_suf}/${dset}"
echo "${feats_type}" > "${data_feats}${_suf}/${dset}/feats_type"
if "${multi_columns_output_wav_scp}"; then
echo "multi_${audio_format}" > "${data_feats}${_suf}/${dset}/audio_format"
else
echo "${audio_format}" > "${data_feats}${_suf}/${dset}/audio_format"
fi
done
elif [ "${feats_type}" = raw_copy ]; then
# If you guaranteed that the data already satisfy the raw format, you can skip format_wav_scp.py for reduce the overhead
for dset in ${_dsets}; do
if [ -e "data/${dset}/segments" ]; then
log "Error: data/${dset}/segments is existing. Please use --feats_type raw"
exit 1
fi
if [ "${dset}" = "${train_set}" ] || [ "${dset}" = "${valid_set}" ]; then
_suf="/org"
else
_suf=""
fi
utils/copy_data_dir.sh --validate_opts --non-print data/"${dset}" "${data_feats}${_suf}/${dset}"
if [ "${dset}" = "${train_set}" ] || [ "${dset}" = "${valid_set}" ]; then
_suf="/org"
if [ -e "data/${dset}/utt2dur" ]; then
_fs=$(python3 -c "import humanfriendly as h;print(h.parse_size('${fs}'))")
<data/${dset}/utt2dur awk '{ print $1, int($2*'${_fs}'); }' > "${data_feats}${_suf}/${dset}"/utt2num_samples
elif [ -e "data/${dset}/utt2num_samples" ]; then
cp "data/${dset}/utt2num_samples" "${data_feats}${_suf}/${dset}"/utt2num_samples
else
log "Error: data/${dset}/utt2dur or data/${dset}/utt2num_samples must be existing for train_set and valid_set. Please use --feats_type raw. If you'd like to perform this script for evaluation, please give --skip_train true"
exit 1
fi
fi
# Copy extra text files
for extra_txt in ${utt_extra_files}; do
[ -f data/${dset}/${extra_txt} ] && cp data/${dset}/${extra_txt} ${data_feats}${_suf}/${dset}
done
# Copy reference text files if there is more than 1 reference
if [ ${#ref_text_files[@]} -gt 1 ]; then
# shellcheck disable=SC2068
for ref_txt in ${ref_text_files[@]}; do
[ -f data/${dset}/${ref_txt} ] && cp data/${dset}/${ref_txt} ${data_feats}${_suf}/${dset}
done
fi
echo "raw" > "${data_feats}${_suf}/${dset}/feats_type"
if "${multi_columns_input_wav_scp}"; then
echo "multi_${audio_format}" > "${data_feats}${_suf}/${dset}/audio_format"
else
echo "${audio_format}" > "${data_feats}${_suf}/${dset}/audio_format"
fi
done
elif [ "${feats_type}" = fbank_pitch ]; then
log "[Require Kaldi] Stage 3: ${feats_type} extract: data/ -> ${data_feats}"
for dset in ${_dsets}; do
if [ "${dset}" = "${train_set}" ] || [ "${dset}" = "${valid_set}" ]; then
_suf="/org"
else
_suf=""
fi
# 1. Copy datadir
utils/copy_data_dir.sh --validate_opts --non-print data/"${dset}" "${data_feats}${_suf}/${dset}"
# Copy extra text files
for extra_txt in ${utt_extra_files}; do
[ -f data/${dset}/${extra_txt} ] && cp data/${dset}/${extra_txt} ${data_feats}${_suf}/${dset}
done
# Copy reference text files if there is more than 1 reference
if [ ${#ref_text_files[@]} -gt 1 ]; then
# shellcheck disable=SC2068
for ref_txt in ${ref_text_files[@]}; do
[ -f data/${dset}/${ref_txt} ] && cp data/${dset}/${ref_txt} ${data_feats}${_suf}/${dset}
done
fi
# 2. Feature extract
_nj=$(min "${nj}" "$(<"${data_feats}${_suf}/${dset}/utt2spk" wc -l)")
steps/make_fbank_pitch.sh --nj "${_nj}" --cmd "${train_cmd}" "${data_feats}${_suf}/${dset}"
utils/fix_data_dir.sh "${data_feats}${_suf}/${dset}"
# 3. Derive the the frame length and feature dimension
scripts/feats/feat_to_shape.sh --nj "${_nj}" --cmd "${train_cmd}" \
"${data_feats}${_suf}/${dset}/feats.scp" "${data_feats}${_suf}/${dset}/feats_shape"
# 4. Write feats_dim
head -n 1 "${data_feats}${_suf}/${dset}/feats_shape" | awk '{ print $2 }' \
| cut -d, -f2 > ${data_feats}${_suf}/${dset}/feats_dim
# 5. Write feats_type
echo "${feats_type}" > "${data_feats}${_suf}/${dset}/feats_type"
done
elif [ "${feats_type}" = fbank ]; then
log "Stage 3: ${feats_type} extract: data/ -> ${data_feats}"
log "${feats_type} is not supported yet."
exit 1
elif [ "${feats_type}" = extracted ]; then
log "Stage 3: ${feats_type} extract: data/ -> ${data_feats}"
# Assumming you don't have wav.scp, but feats.scp is created by local/data.sh instead.
for dset in ${_dsets}; do
if [ "${dset}" = "${train_set}" ] || [ "${dset}" = "${valid_set}" ]; then
_suf="/org"
else
_suf=""
fi
# Generate dummy wav.scp to avoid error by copy_data_dir.sh
if [ ! -f data/"${dset}"/wav.scp ]; then
if [ ! -f data/"${dset}"/segments ]; then
<data/"${dset}"/feats.scp awk ' { print($1,"<DUMMY>") }' > data/"${dset}"/wav.scp
else
<data/"${dset}"/segments awk ' { print($2,"<DUMMY>") }' > data/"${dset}"/wav.scp
fi
fi
utils/copy_data_dir.sh --validate_opts --non-print data/"${dset}" "${data_feats}${_suf}/${dset}"
# Copy extra text files
for extra_txt in ${utt_extra_files}; do
[ -f data/${dset}/${extra_txt} ] && cp data/${dset}/${extra_txt} ${data_feats}${_suf}/${dset}
done
# Copy reference text files if there is more than 1 reference
# shellcheck disable=SC2068
if [ ${#ref_text_files[@]} -gt 1 ]; then
for ref_txt in ${ref_text_files[@]}; do
[ -f data/${dset}/${ref_txt} ] && cp data/${dset}/${ref_txt} ${data_feats}${_suf}/${dset}
done
fi
# Derive the the frame length and feature dimension
_nj=$(min "${nj}" "$(<"${data_feats}${_suf}/${dset}/utt2spk" wc -l)")
scripts/feats/feat_to_shape.sh --nj "${_nj}" --cmd "${train_cmd}" \
"${data_feats}${_suf}/${dset}/feats.scp" "${data_feats}${_suf}/${dset}/feats_shape"
pyscripts/feats/feat-to-shape.py "scp:head -n 1 ${data_feats}${_suf}/${dset}/feats.scp |" - | \
awk '{ print $2 }' | cut -d, -f2 > "${data_feats}${_suf}/${dset}/feats_dim"
echo "${feats_type}" > "${data_feats}${_suf}/${dset}/feats_type"
done
else
log "Error: not supported: --feats_type ${feats_type}"
exit 2
fi
fi
if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ] && ! [[ " ${skip_stages} " =~ [[:space:]]4[[:space:]] ]]; then
log "Stage 4: Remove long/short data: ${data_feats}/org -> ${data_feats}"
# NOTE(kamo): Not applying to test_sets to keep original data
for dset in "${train_set}" "${valid_set}"; do
# Copy data dir
utils/copy_data_dir.sh --validate_opts --non-print "${data_feats}/org/${dset}" "${data_feats}/${dset}"
cp "${data_feats}/org/${dset}/feats_type" "${data_feats}/${dset}/feats_type"
# Remove short utterances
_feats_type="$(<${data_feats}/${dset}/feats_type)"
if [ "${_feats_type}" = raw ]; then
_fs=$(python3 -c "import humanfriendly as h;print(h.parse_size('${fs}'))")
_min_length=$(python3 -c "print(int(${min_wav_duration} * ${_fs}))")
_max_length=$(python3 -c "print(int(${max_wav_duration} * ${_fs}))")
# utt2num_samples is created by format_wav_scp.sh
<"${data_feats}/org/${dset}/utt2num_samples" \
awk -v min_length="${_min_length}" -v max_length="${_max_length}" \
'{ if ($2 > min_length && $2 < max_length ) print $0; }' \
>"${data_feats}/${dset}/utt2num_samples"
<"${data_feats}/org/${dset}/wav.scp" \
utils/filter_scp.pl "${data_feats}/${dset}/utt2num_samples" \
>"${data_feats}/${dset}/wav.scp"
else
# Get frame shift in ms from conf/fbank.conf
_frame_shift=
if [ -f conf/fbank.conf ] && [ "$(<conf/fbank.conf grep -c frame-shift)" -gt 0 ]; then
# Assume using conf/fbank.conf for feature extraction
_frame_shift="$(<conf/fbank.conf grep frame-shift | sed -e 's/[-a-z =]*\([0-9]*\)/\1/g')"
fi
if [ -z "${_frame_shift}" ]; then
# If not existing, use the default number in Kaldi (=10ms).
# If you are using different number, you have to change the following value manually.
_frame_shift=10
fi
_min_length=$(python3 -c "print(int(${min_wav_duration} / ${_frame_shift} * 1000))")
_max_length=$(python3 -c "print(int(${max_wav_duration} / ${_frame_shift} * 1000))")
cp "${data_feats}/org/${dset}/feats_dim" "${data_feats}/${dset}/feats_dim"
<"${data_feats}/org/${dset}/feats_shape" awk -F, ' { print $1 } ' \
| awk -v min_length="${_min_length}" -v max_length="${_max_length}" \
'{ if ($2 > min_length && $2 < max_length) print $0; }' \
>"${data_feats}/${dset}/feats_shape"
<"${data_feats}/org/${dset}/feats.scp" \
utils/filter_scp.pl "${data_feats}/${dset}/feats_shape" \
>"${data_feats}/${dset}/feats.scp"
fi
# Remove empty text
# shellcheck disable=SC2068
for extra_txt in ${utt_extra_files}; do
<"${data_feats}/org/${dset}/${extra_txt}" \
awk ' { if( NF != 1 ) print $0; } ' >"${data_feats}/${dset}/${extra_txt}"
done
for ref_txt in ${ref_text_files[@]}; do
<"${data_feats}/org/${dset}/${ref_txt}" \
awk ' { if( NF != 1 ) print $0; } ' >"${data_feats}/${dset}/${ref_txt}"
done
# fix_data_dir.sh leaves only utts which exist in all files
utils/fix_data_dir.sh \
--utt_extra_files "${utt_extra_files} ${ref_text_files_str}" \
"${data_feats}/${dset}"
done
if [ -n "${post_process_local_data_opts}" ]; then
# Do any additional local data post-processing here
local/data.sh ${post_process_local_data_opts} --s2t_data_dir "${data_feats}/${train_set}"
fi
# shellcheck disable=SC2002,SC2068,SC2005
for lm_txt in ${lm_train_text[@]}; do
suffix=$(echo "$(basename ${lm_txt})" | sed 's/text//')
<${lm_txt} awk -v suffix=${suffix} ' { if( NF != 1 ) {$1=$1 suffix; print $0; }} '
done > "${data_feats}/lm_train.txt"
fi
if [ ${stage} -le 5 ] && [ ${stop_stage} -ge 5 ] && ! [[ " ${skip_stages} " =~ [[:space:]]5[[:space:]] ]]; then
if [ "${token_type}" = bpe ]; then
log "Stage 5: Generate token_list from ${bpe_train_text} using BPE"
mkdir -p "${bpedir}"
# shellcheck disable=SC2002
cat ${bpe_train_text} | cut -f 2- -d" " > "${bpedir}"/train.txt
if [ -n "${bpe_nlsyms}" ]; then
if test -f "${bpe_nlsyms}"; then
bpe_nlsyms_list=$(awk '{print $1}' ${bpe_nlsyms} | paste -s -d, -)
_opts_spm="--user_defined_symbols=${bpe_nlsyms_list}"
else
_opts_spm="--user_defined_symbols=${bpe_nlsyms}"
fi
else
_opts_spm=""
fi
spm_train \
--input="${bpedir}"/train.txt \
--vocab_size="${nbpe}" \
--model_type="${bpemode}" \
--model_prefix="${bpeprefix}" \
--character_coverage=${bpe_char_cover} \
--input_sentence_size="${bpe_input_sentence_size}" \
${_opts_spm}
{
echo "${blank}"
echo "${oov}"
# Remove <unk>, <s>, </s> from the vocabulary
<"${bpeprefix}".vocab awk '{ if( NR != 1 && NR != 2 && NR != 3 ){ print $1; } }'
echo "${sos}"
echo "${eos}"
echo "${sop}"
} > "${token_list}"
elif [ "${token_type}" = char ] || [ "${token_type}" = word ]; then
log "Stage 5: Generate character level token_list from ${lm_train_text}"
_opts="--non_linguistic_symbols ${nlsyms_txt}"
# The first symbol in token_list must be "<blank>" and the last must be also sos/eos:
# 0 is reserved for CTC-blank for ASR and also used as ignore-index in the other task
${python} -m espnet2.bin.tokenize_text \
--token_type "${token_type}" \
--input "${data_feats}/lm_train.txt" --output "${token_list}" ${_opts} \
--field 2- \
--cleaner "${cleaner}" \
--g2p "${g2p}" \
--write_vocabulary true \
--add_symbol "${blank}:0" \
--add_symbol "${oov}:1" \
--add_symbol "${sop}:-1" \
--add_symbol "${eos}:-2" \
--add_symbol "${sos}:-3"
elif grep -q "whisper" <<< ${token_type}; then
log "Stage 5: Generate whisper token_list from ${token_type} tokenizer"
# The first symbol in token_list must be "<blank>" and the last must be also sos/eos:
# 0 is reserved for CTC-blank for ASR and also used as ignore-index in the other task
echo ${token_list}
${python} -m espnet2.bin.whisper_export_vocabulary \
--whisper_model "${token_type}" \
--output "${token_list}"
elif [ "${token_type}" = hugging_face ]; then
log "Stage 5: Generate hugging_face token_list from ${hugging_face_model_name_or_path}"
# The first symbol in token_list must be "<blank>" and the last must be also sos/eos:
# 0 is reserved for CTC-blank for ASR and also used as ignore-index in the other task
${python} -m espnet2.bin.hugging_face_export_vocabulary \
--model_name_or_path "${hugging_face_model_name_or_path}" \
--output "${token_list}"
else
log "Error: not supported --token_type '${token_type}'"
exit 2
fi
# Create word-list for word-LM training
if ${use_word_lm} && [ "${token_type}" != word ]; then
log "Generate word level token_list from ${data_feats}/lm_train.txt"
${python} -m espnet2.bin.tokenize_text \
--token_type word \
--input "${data_feats}/lm_train.txt" --output "${lm_token_list}" \
--field 2- \
--cleaner "${cleaner}" \
--g2p "${g2p}" \
--write_vocabulary true \
--vocabulary_size "${word_vocab_size}" \
--add_symbol "${blank}:0" \
--add_symbol "${oov}:1" \
--add_symbol "${sop}:-1" \
--add_symbol "${eos}:-2" \
--add_symbol "${sos}:-3"
fi
fi
# ========================== Data preparation is done here. ==========================
if [ ${stage} -le 6 ] && [ ${stop_stage} -ge 6 ] && ! [[ " ${skip_stages} " =~ [[:space:]]6[[:space:]] ]]; then
log "Stage 6: LM collect stats: train_set=${data_feats}/lm_train.txt, dev_set=${lm_dev_text}"
_opts=
if [ -n "${lm_config}" ]; then
# To generate the config file: e.g.
# % python3 -m espnet2.bin.lm_train --print_config --optim adam
_opts+="--config ${lm_config} "
fi
# 1. Split the key file
_logdir="${lm_stats_dir}/logdir"
mkdir -p "${_logdir}"
# Get the minimum number among ${nj} and the number lines of input files
_nj=$(min "${nj}" "$(<${data_feats}/lm_train.txt wc -l)" "$(<${lm_dev_text} wc -l)")
key_file="${data_feats}/lm_train.txt"
split_scps=""
for n in $(seq ${_nj}); do
split_scps+=" ${_logdir}/train.${n}.scp"
done
# shellcheck disable=SC2086
utils/split_scp.pl "${key_file}" ${split_scps}
key_file="${lm_dev_text}"
split_scps=""
for n in $(seq ${_nj}); do
split_scps+=" ${_logdir}/dev.${n}.scp"
done
# shellcheck disable=SC2086
utils/split_scp.pl "${key_file}" ${split_scps}
# 2. Generate run.sh
log "Generate '${lm_stats_dir}/run.sh'. You can resume the process from stage 6 using this script"
mkdir -p "${lm_stats_dir}"; echo "${run_args} --stage 6 \"\$@\"; exit \$?" > "${lm_stats_dir}/run.sh"; chmod +x "${lm_stats_dir}/run.sh"
# 3. Submit jobs
log "LM collect-stats started... log: '${_logdir}/stats.*.log'"
# NOTE: --*_shape_file doesn't require length information if --batch_type=unsorted,
# but it's used only for deciding the sample ids.
# shellcheck disable=SC2046,SC2086
${train_cmd} JOB=1:"${_nj}" "${_logdir}"/stats.JOB.log \
${python} -m espnet2.bin.lm_train \
--collect_stats true \
--use_preprocessor true \
--bpemodel "${bpemodel}" \
--token_type "${lm_token_type}"\
--token_list "${lm_token_list}" \
--non_linguistic_symbols "${nlsyms_txt}" \
--cleaner "${cleaner}" \
--g2p "${g2p}" \
--train_data_path_and_name_and_type "${data_feats}/lm_train.txt,text,text" \
--valid_data_path_and_name_and_type "${lm_dev_text},text,text" \
--train_shape_file "${_logdir}/train.JOB.scp" \
--valid_shape_file "${_logdir}/dev.JOB.scp" \
--output_dir "${_logdir}/stats.JOB" \
${_opts} ${lm_args} || { cat $(grep -l -i error "${_logdir}"/stats.*.log) ; exit 1; }
# 4. Aggregate shape files
_opts=
for i in $(seq "${_nj}"); do
_opts+="--input_dir ${_logdir}/stats.${i} "
done
# shellcheck disable=SC2086
${python} -m espnet2.bin.aggregate_stats_dirs ${_opts} --output_dir "${lm_stats_dir}"
# Append the num-tokens at the last dimensions. This is used for batch-bins count
<"${lm_stats_dir}/train/text_shape" \
awk -v N="$(<${lm_token_list} wc -l)" '{ print $0 "," N }' \
>"${lm_stats_dir}/train/text_shape.${lm_token_type}"
<"${lm_stats_dir}/valid/text_shape" \
awk -v N="$(<${lm_token_list} wc -l)" '{ print $0 "," N }' \
>"${lm_stats_dir}/valid/text_shape.${lm_token_type}"
fi
if [ ${stage} -le 7 ] && [ ${stop_stage} -ge 7 ] && ! [[ " ${skip_stages} " =~ [[:space:]]7[[:space:]] ]]; then
log "Stage 7: LM Training: train_set=${data_feats}/lm_train.txt, dev_set=${lm_dev_text}"
_opts=
if [ -n "${lm_config}" ]; then
# To generate the config file: e.g.
# % python3 -m espnet2.bin.lm_train --print_config --optim adam
_opts+="--config ${lm_config} "
fi
if [ "${num_splits_lm}" -gt 1 ]; then
# If you met a memory error when parsing text files, this option may help you.
# The corpus is split into subsets and each subset is used for training one by one in order,
# so the memory footprint can be limited to the memory required for each dataset.
_split_dir="${lm_stats_dir}/splits${num_splits_lm}"
if [ ! -f "${_split_dir}/.done" ]; then
rm -f "${_split_dir}/.done"
${python} -m espnet2.bin.split_scps \
--scps "${data_feats}/lm_train.txt" "${lm_stats_dir}/train/text_shape.${lm_token_type}" \
--num_splits "${num_splits_lm}" \
--output_dir "${_split_dir}"
touch "${_split_dir}/.done"
else
log "${_split_dir}/.done exists. Spliting is skipped"
fi
_opts+="--train_data_path_and_name_and_type ${_split_dir}/lm_train.txt,text,text "
_opts+="--train_shape_file ${_split_dir}/text_shape.${lm_token_type} "
_opts+="--multiple_iterator true "
else
_opts+="--train_data_path_and_name_and_type ${data_feats}/lm_train.txt,text,text "
_opts+="--train_shape_file ${lm_stats_dir}/train/text_shape.${lm_token_type} "
fi
# NOTE(kamo): --fold_length is used only if --batch_type=folded and it's ignored in the other case
log "Generate '${lm_exp}/run.sh'. You can resume the process from stage 7 using this script"
mkdir -p "${lm_exp}"; echo "${run_args} --stage 7 \"\$@\"; exit \$?" > "${lm_exp}/run.sh"; chmod +x "${lm_exp}/run.sh"
log "LM training started... log: '${lm_exp}/train.log'"
if echo "${cuda_cmd}" | grep -e queue.pl -e queue-freegpu.pl &> /dev/null; then
# SGE can't include "/" in a job name
jobname="$(basename ${lm_exp})"
else
jobname="${lm_exp}/train.log"
fi
# shellcheck disable=SC2086
${python} -m espnet2.bin.launch \
--cmd "${cuda_cmd} --name ${jobname}" \
--log "${lm_exp}"/train.log \
--ngpu "${ngpu}" \
--num_nodes "${num_nodes}" \
--init_file_prefix "${lm_exp}"/.dist_init_ \
--multiprocessing_distributed true -- \
${python} -m espnet2.bin.lm_train \
--ngpu "${ngpu}" \
--use_preprocessor true \
--bpemodel "${bpemodel}" \
--token_type "${lm_token_type}"\
--token_list "${lm_token_list}" \
--non_linguistic_symbols "${nlsyms_txt}" \
--cleaner "${cleaner}" \
--g2p "${g2p}" \
--valid_data_path_and_name_and_type "${lm_dev_text},text,text" \
--valid_shape_file "${lm_stats_dir}/valid/text_shape.${lm_token_type}" \
--fold_length "${lm_fold_length}" \
--resume true \
--output_dir "${lm_exp}" \
${_opts} ${lm_args}
fi
if [ ${stage} -le 8 ] && [ ${stop_stage} -ge 8 ] && ! [[ " ${skip_stages} " =~ [[:space:]]8[[:space:]] ]]; then
log "Stage 8: Calc perplexity: ${lm_test_text}"
_opts=
# TODO(kamo): Parallelize?
log "Perplexity calculation started... log: '${lm_exp}/perplexity_test/lm_calc_perplexity.log'"
# shellcheck disable=SC2086
${cuda_cmd} --gpu "${ngpu}" "${lm_exp}"/perplexity_test/lm_calc_perplexity.log \
${python} -m espnet2.bin.lm_calc_perplexity \
--ngpu "${ngpu}" \
--data_path_and_name_and_type "${lm_test_text},text,text" \
--train_config "${lm_exp}"/config.yaml \
--model_file "${lm_exp}/${inference_lm}" \
--output_dir "${lm_exp}/perplexity_test" \
${_opts}
log "PPL: ${lm_test_text}: $(cat ${lm_exp}/perplexity_test/ppl)"
fi
if [ ${stage} -le 9 ] && [ ${stop_stage} -ge 9 ] && ! [[ " ${skip_stages} " =~ [[:space:]]9[[:space:]] ]]; then
log "Stage 9: Ngram Training: train_set=${data_feats}/lm_train.txt"
mkdir -p ${ngram_exp}
cut -f 2- -d " " ${data_feats}/lm_train.txt | lmplz -S "20%" --discount_fallback -o ${ngram_num} - >${ngram_exp}/${ngram_num}gram.arpa
build_binary -s ${ngram_exp}/${ngram_num}gram.arpa ${ngram_exp}/${ngram_num}gram.bin
fi
if [ ${stage} -le 10 ] && [ ${stop_stage} -ge 10 ] && ! [[ " ${skip_stages} " =~ [[:space:]]10[[:space:]] ]]; then
_s2t_train_dir="${data_feats}/${train_set}"
_s2t_valid_dir="${data_feats}/${valid_set}"
log "Stage 10: S2T collect stats: train_set=${_s2t_train_dir}, valid_set=${_s2t_valid_dir}"
_opts=
if [ -n "${s2t_config}" ]; then
# To generate the config file: e.g.
# % python3 -m espnet2.bin.s2t_train --print_config --optim adam
_opts+="--config ${s2t_config} "
fi
_feats_type="$(<${_s2t_train_dir}/feats_type)"
_audio_format="$(cat ${_s2t_train_dir}/audio_format 2>/dev/null || echo ${audio_format})"
if [ "${_feats_type}" = raw ]; then
_scp=wav.scp
if [[ "${_audio_format}" == *ark* ]]; then
_type=kaldi_ark
else
# "sound" supports "wav", "flac", etc.
_type=sound
fi
_opts+="--frontend_conf fs=${fs} "
else
_scp=feats.scp
_type=kaldi_ark
_input_size="$(<${_s2t_train_dir}/feats_dim)"
_opts+="--input_size=${_input_size} "
fi
# 1. Split the key file
_logdir="${s2t_stats_dir}/logdir"
mkdir -p "${_logdir}"
# Get the minimum number among ${nj} and the number lines of input files
_nj=$(min "${nj}" "$(<${_s2t_train_dir}/${_scp} wc -l)" "$(<${_s2t_valid_dir}/${_scp} wc -l)")
key_file="${_s2t_train_dir}/${_scp}"
split_scps=""
for n in $(seq "${_nj}"); do
split_scps+=" ${_logdir}/train.${n}.scp"
done
# shellcheck disable=SC2086
utils/split_scp.pl "${key_file}" ${split_scps}
key_file="${_s2t_valid_dir}/${_scp}"
split_scps=""
for n in $(seq "${_nj}"); do
split_scps+=" ${_logdir}/valid.${n}.scp"
done
# shellcheck disable=SC2086
utils/split_scp.pl "${key_file}" ${split_scps}
# 2. Generate run.sh
log "Generate '${s2t_stats_dir}/run.sh'. You can resume the process from stage 10 using this script"
mkdir -p "${s2t_stats_dir}"; echo "${run_args} --stage 10 \"\$@\"; exit \$?" > "${s2t_stats_dir}/run.sh"; chmod +x "${s2t_stats_dir}/run.sh"
# 3. Submit jobs
log "S2T collect-stats started... log: '${_logdir}/stats.*.log'"
# NOTE: --*_shape_file doesn't require length information if --batch_type=unsorted,
# but it's used only for deciding the sample ids.
_opts+="--train_data_path_and_name_and_type ${_s2t_train_dir}/${_scp},speech,${_type} "
_opts+="--valid_data_path_and_name_and_type ${_s2t_valid_dir}/${_scp},speech,${_type} "
# shellcheck disable=SC2068
for extra_txt in ${utt_extra_files}; do
_opts+="--train_data_path_and_name_and_type ${_s2t_train_dir}/${extra_txt},${extra_txt//./_},text "
_opts+="--valid_data_path_and_name_and_type ${_s2t_valid_dir}/${extra_txt},${extra_txt//./_},text "
done
for i in ${!ref_text_files[@]}; do
_opts+="--train_data_path_and_name_and_type ${_s2t_train_dir}/${ref_text_files[$i]},${ref_text_names[$i]},text "
_opts+="--valid_data_path_and_name_and_type ${_s2t_valid_dir}/${ref_text_files[$i]},${ref_text_names[$i]},text "
done
# shellcheck disable=SC2046,SC2086
${train_cmd} JOB=1:"${_nj}" "${_logdir}"/stats.JOB.log \
${python} -m espnet2.bin.s2t_train \
--collect_stats true \
--use_preprocessor true \
--bpemodel "${bpemodel}" \
--token_type "${token_type}" \
--token_list "${token_list}" \
--non_linguistic_symbols "${nlsyms_txt}" \
--cleaner "${cleaner}" \
--g2p "${g2p}" \
--train_shape_file "${_logdir}/train.JOB.scp" \
--valid_shape_file "${_logdir}/valid.JOB.scp" \
--output_dir "${_logdir}/stats.JOB" \
${_opts} ${s2t_args} || { cat $(grep -l -i error "${_logdir}"/stats.*.log) ; exit 1; }
# 4. Aggregate shape files
_opts=
for i in $(seq "${_nj}"); do
_opts+="--input_dir ${_logdir}/stats.${i} "
done
if [ "${feats_normalize}" != global_mvn ]; then
# Skip summerizaing stats if not using global MVN
_opts+="--skip_sum_stats"
fi
# shellcheck disable=SC2086
${python} -m espnet2.bin.aggregate_stats_dirs ${_opts} --output_dir "${s2t_stats_dir}"
# Append the num-tokens at the last dimensions. This is used for batch-bins count
# shellcheck disable=SC2068
for extra_txt in ${utt_extra_files}; do
_extra_txt=${extra_txt//./_}
<"${s2t_stats_dir}/train/${_extra_txt}_shape" \
awk -v N="$(<${token_list} wc -l)" '{ print $0 "," N }' \
>"${s2t_stats_dir}/train/${_extra_txt}_shape.${token_type}"
<"${s2t_stats_dir}/valid/${_extra_txt}_shape" \
awk -v N="$(<${token_list} wc -l)" '{ print $0 "," N }' \
>"${s2t_stats_dir}/valid/${_extra_txt}_shape.${token_type}"
done
for ref_txt in ${ref_text_names[@]}; do
<"${s2t_stats_dir}/train/${ref_txt}_shape" \
awk -v N="$(<${token_list} wc -l)" '{ print $0 "," N }' \
>"${s2t_stats_dir}/train/${ref_txt}_shape.${token_type}"
<"${s2t_stats_dir}/valid/${ref_txt}_shape" \
awk -v N="$(<${token_list} wc -l)" '{ print $0 "," N }' \
>"${s2t_stats_dir}/valid/${ref_txt}_shape.${token_type}"
done
fi
if [ ${stage} -le 11 ] && [ ${stop_stage} -ge 11 ] && ! [[ " ${skip_stages} " =~ [[:space:]]11[[:space:]] ]]; then
_s2t_train_dir="${data_feats}/${train_set}"
_s2t_valid_dir="${data_feats}/${valid_set}"
log "Stage 11: S2T Training: train_set=${_s2t_train_dir}, valid_set=${_s2t_valid_dir}"
_opts=
if [ -n "${s2t_config}" ]; then
# To generate the config file: e.g.
# % python3 -m espnet2.bin.s2t_train --print_config --optim adam
_opts+="--config ${s2t_config} "
fi
_feats_type="$(<${_s2t_train_dir}/feats_type)"
_audio_format="$(cat ${_s2t_train_dir}/audio_format 2>/dev/null || echo ${audio_format})"
if [ "${_feats_type}" = raw ]; then
_scp=wav.scp
# "sound" supports "wav", "flac", etc.
if [[ "${_audio_format}" == *ark* ]]; then
_type=kaldi_ark
elif [[ "${_audio_format}" == *multi* ]]; then
_type=multi_columns_sound
else
_type=sound
fi
_fold_length="$((s2t_speech_fold_length * 100))"
_opts+="--frontend_conf fs=${fs} "
else
_scp=feats.scp
_type=kaldi_ark
_fold_length="${s2t_speech_fold_length}"
_input_size="$(<${_s2t_train_dir}/feats_dim)"
_opts+="--input_size=${_input_size} "
fi
if [ "${feats_normalize}" = global_mvn ]; then
# Default normalization is utterance_mvn and changes to global_mvn
_opts+="--normalize=global_mvn --normalize_conf stats_file=${s2t_stats_dir}/train/feats_stats.npz "
fi
if [ "${num_splits_s2t}" -gt 1 ]; then
# If you met a memory error when parsing text files, this option may help you.
# The corpus is split into subsets and each subset is used for training one by one in order,
# so the memory footprint can be limited to the memory required for each dataset.
_split_dir="${s2t_stats_dir}/splits${num_splits_s2t}"
_all_scps="${_s2t_train_dir}/${_scp} ${_s2t_train_dir}/text ${s2t_stats_dir}/train/speech_shape ${s2t_stats_dir}/train/text_shape.${token_type} "
for extra_txt in ${utt_extra_files}; do
_all_scps+="${_s2t_train_dir}/${extra_txt} ${s2t_stats_dir}/train/${extra_txt//./_}_shape.${token_type} "
done
if [ ! -f "${_split_dir}/.done" ]; then
rm -f "${_split_dir}/.done"
${python} -m espnet2.bin.split_scps \
--scps ${_all_scps} \
--num_splits "${num_splits_s2t}" \
--output_dir "${_split_dir}"
touch "${_split_dir}/.done"
else
log "${_split_dir}/.done exists. Spliting is skipped"
fi
_opts+="--train_data_path_and_name_and_type ${_split_dir}/${_scp},speech,${_type} "
_opts+="--train_shape_file ${_split_dir}/speech_shape "
# shellcheck disable=SC2068
for extra_txt in ${utt_extra_files}; do
_opts+="--fold_length ${s2t_text_fold_length} "
_opts+="--train_data_path_and_name_and_type ${_split_dir}/${extra_txt},${extra_txt//./_},text "
_opts+="--train_shape_file ${_split_dir}/${extra_txt//./_}_shape.${token_type} "
done
for i in ${!ref_text_names[@]}; do
_opts+="--fold_length ${s2t_text_fold_length} "
_opts+="--train_data_path_and_name_and_type ${_split_dir}/${ref_text_files[$i]},${ref_text_names[$i]},text "
_opts+="--train_shape_file ${_split_dir}/${ref_text_names[$i]}_shape.${token_type} "
done
_opts+="--multiple_iterator true "
else
_opts+="--train_data_path_and_name_and_type ${_s2t_train_dir}/${_scp},speech,${_type} "
_opts+="--train_shape_file ${s2t_stats_dir}/train/speech_shape "
# shellcheck disable=SC2068
for extra_txt in ${utt_extra_files}; do
_opts+="--fold_length ${s2t_text_fold_length} "
_opts+="--train_data_path_and_name_and_type ${_s2t_train_dir}/${extra_txt},${extra_txt//./_},text "
_opts+="--train_shape_file ${s2t_stats_dir}/train/${extra_txt//./_}_shape.${token_type} "
done
for i in ${!ref_text_names[@]}; do
_opts+="--fold_length ${s2t_text_fold_length} "
_opts+="--train_data_path_and_name_and_type ${_s2t_train_dir}/${ref_text_files[$i]},${ref_text_names[$i]},text "
_opts+="--train_shape_file ${s2t_stats_dir}/train/${ref_text_names[$i]}_shape.${token_type} "
done
fi
# shellcheck disable=SC2068
for extra_txt in ${utt_extra_files}; do
_opts+="--valid_data_path_and_name_and_type ${_s2t_valid_dir}/${extra_txt},${extra_txt//./_},text "
_opts+="--valid_shape_file ${s2t_stats_dir}/valid/${extra_txt//./_}_shape.${token_type} "
done
for i in ${!ref_text_names[@]}; do
_opts+="--valid_data_path_and_name_and_type ${_s2t_valid_dir}/${ref_text_files[$i]},${ref_text_names[$i]},text "
_opts+="--valid_shape_file ${s2t_stats_dir}/valid/${ref_text_names[$i]}_shape.${token_type} "
done
log "Generate '${s2t_exp}/run.sh'. You can resume the process from stage 11 using this script"
mkdir -p "${s2t_exp}"; echo "${run_args} --stage 11 \"\$@\"; exit \$?" > "${s2t_exp}/run.sh"; chmod +x "${s2t_exp}/run.sh"
# NOTE(kamo): --fold_length is used only if --batch_type=folded and it's ignored in the other case
log "S2T training started... log: '${s2t_exp}/train.log'"
if echo "${cuda_cmd}" | grep -e queue.pl -e queue-freegpu.pl &> /dev/null; then
# SGE can't include "/" in a job name
jobname="$(basename ${s2t_exp})"
else
jobname="${s2t_exp}/train.log"
fi
# shellcheck disable=SC2086
${python} -m espnet2.bin.launch \
--cmd "${cuda_cmd} --name ${jobname}" \
--log "${s2t_exp}"/train.log \
--ngpu "${ngpu}" \
--num_nodes "${num_nodes}" \
--init_file_prefix "${s2t_exp}"/.dist_init_ \
--multiprocessing_distributed true -- \
${python} -m espnet2.bin.${s2t_task}_train \
--use_preprocessor true \
--bpemodel "${bpemodel}" \
--token_type "${token_type}" \
--token_list "${token_list}" \
--non_linguistic_symbols "${nlsyms_txt}" \
--cleaner "${cleaner}" \
--g2p "${g2p}" \
--valid_data_path_and_name_and_type "${_s2t_valid_dir}/${_scp},speech,${_type}" \
--valid_shape_file "${s2t_stats_dir}/valid/speech_shape" \
--resume true \
--fold_length "${_fold_length}" \
--output_dir "${s2t_exp}" \
${_opts} ${s2t_args}
fi
if [ -n "${download_model}" ]; then
log "Use ${download_model} for decoding and evaluation"
s2t_exp="${expdir}/${download_model}"
mkdir -p "${s2t_exp}"
# If the model already exists, you can skip downloading
espnet_model_zoo_download --unpack true "${download_model}" > "${s2t_exp}/config.txt"
# Get the path of each file
_s2t_model_file=$(<"${s2t_exp}/config.txt" sed -e "s/.*'s2t_model_file': '\([^']*\)'.*$/\1/")
_s2t_train_config=$(<"${s2t_exp}/config.txt" sed -e "s/.*'s2t_train_config': '\([^']*\)'.*$/\1/")
# Create symbolic links
ln -sf "${_s2t_model_file}" "${s2t_exp}"
ln -sf "${_s2t_train_config}" "${s2t_exp}"
inference_s2t_model=$(basename "${_s2t_model_file}")
if [ "$(<${s2t_exp}/config.txt grep -c lm_file)" -gt 0 ]; then
_lm_file=$(<"${s2t_exp}/config.txt" sed -e "s/.*'lm_file': '\([^']*\)'.*$/\1/")
_lm_train_config=$(<"${s2t_exp}/config.txt" sed -e "s/.*'lm_train_config': '\([^']*\)'.*$/\1/")
lm_exp="${expdir}/${download_model}/lm"
mkdir -p "${lm_exp}"
ln -sf "${_lm_file}" "${lm_exp}"
ln -sf "${_lm_train_config}" "${lm_exp}"
inference_lm=$(basename "${_lm_file}")
fi
fi
if [ ${stage} -le 12 ] && [ ${stop_stage} -ge 12 ] && ! [[ " ${skip_stages} " =~ [[:space:]]12[[:space:]] ]]; then
log "Stage 12: Decoding: training_dir=${s2t_exp}"
if ${gpu_inference}; then
_cmd="${cuda_cmd}"
_ngpu=1
else
_cmd="${decode_cmd}"
_ngpu=0
fi
_opts=
if [ -n "${inference_config}" ]; then
_opts+="--config ${inference_config} "
fi
if "${use_lm}"; then
if "${use_word_lm}"; then
_opts+="--word_lm_train_config ${lm_exp}/config.yaml "
_opts+="--word_lm_file ${lm_exp}/${inference_lm} "
else
_opts+="--lm_train_config ${lm_exp}/config.yaml "
_opts+="--lm_file ${lm_exp}/${inference_lm} "
fi
fi
if "${use_ngram}"; then
_opts+="--ngram_file ${ngram_exp}/${inference_ngram}"
fi
# 2. Generate run.sh
log "Generate '${s2t_exp}/${inference_tag}/run.sh'. You can resume the process from stage 12 using this script"
mkdir -p "${s2t_exp}/${inference_tag}"; echo "${run_args} --stage 12 \"\$@\"; exit \$?" > "${s2t_exp}/${inference_tag}/run.sh"; chmod +x "${s2t_exp}/${inference_tag}/run.sh"
inference_bin_tag=""
if "${use_streaming}"; then
inference_bin_tag="_streaming"
fi
if "${eval_valid_set}"; then
_dsets="org/${valid_set} ${test_sets}"
else
_dsets="${test_sets}"
fi
for dset in ${_dsets}; do
_data="${data_feats}/${dset}"
_dir="${s2t_exp}/${inference_tag}/${dset}"
_logdir="${_dir}/logdir"
mkdir -p "${_logdir}"
_feats_type="$(<${_data}/feats_type)"
_audio_format="$(cat ${_data}/audio_format 2>/dev/null || echo ${audio_format})"
if [ "${_feats_type}" = raw ]; then
_scp=wav.scp
if [[ "${audio_format}" == *ark* ]]; then
_type=kaldi_ark
elif [[ "${_audio_format}" == *multi* ]]; then
_type=multi_columns_sound
else
_type=sound
fi
else
_scp=feats.scp
_type=kaldi_ark
fi
# 1. Split the key file
key_file=${_data}/${_scp}
split_scps=""
_nj=$(min "${inference_nj}" "$(<${key_file} wc -l)")
for n in $(seq "${_nj}"); do
split_scps+=" ${_logdir}/keys.${n}.scp"
done
# shellcheck disable=SC2086
utils/split_scp.pl "${key_file}" ${split_scps}
# 2. Submit decoding jobs
log "Decoding started... log: '${_logdir}/s2t_inference.*.log'"
rm -f "${_logdir}/*.log"
# shellcheck disable=SC2046,SC2086
${_cmd} --gpu "${_ngpu}" JOB=1:"${_nj}" "${_logdir}"/s2t_inference.JOB.log \
${python} -m espnet2.bin.${s2t_task}_inference${inference_bin_tag} \
--batch_size ${batch_size} \
--ngpu "${_ngpu}" \
--data_path_and_name_and_type "${_data}/${_scp},speech,${_type}" \
--key_file "${_logdir}"/keys.JOB.scp \
--s2t_train_config "${s2t_exp}"/config.yaml \
--s2t_model_file "${s2t_exp}"/"${inference_s2t_model}" \
--output_dir "${_logdir}"/output.JOB \
${_opts} ${inference_args} || { cat $(grep -l -i error "${_logdir}"/s2t_inference.*.log) ; exit 1; }
# 3. Concatenates the output files from each jobs
# shellcheck disable=SC2068
for ref_txt in ${ref_text_files[@]}; do
suffix=$(echo ${ref_txt} | sed 's/text//')
for f in token token_int score text text_nospecial; do
if [ -f "${_logdir}/output.1/1best_recog/${f}${suffix}" ]; then
for i in $(seq "${_nj}"); do
cat "${_logdir}/output.${i}/1best_recog/${f}${suffix}"
done | sort -k1 >"${_dir}/${f}${suffix}"
fi
done
done
done
fi
if [ ${stage} -le 13 ] && [ ${stop_stage} -ge 13 ] && ! [[ " ${skip_stages} " =~ [[:space:]]13[[:space:]] ]]; then
log "Stage 13: Scoring"
if [ "${token_type}" = phn ]; then
log "Error: Not implemented for token_type=phn"
exit 1
fi
if "${eval_valid_set}"; then
_dsets="org/${valid_set} ${test_sets}"
else
_dsets="${test_sets}"
fi
for dset in ${_dsets}; do
_data="${data_feats}/${dset}"
_dir="${s2t_exp}/${inference_tag}/${dset}"
for _tok_type in "char" "word" "bpe"; do
[ "${_tok_type}" = bpe ] && [ ! -f "${bpemodel}" ] && continue
_opts="--token_type ${_tok_type} "
if [ "${_tok_type}" = "char" ] || [ "${_tok_type}" = "word" ]; then
_type="${_tok_type:0:1}er"
_opts+="--non_linguistic_symbols ${nlsyms_txt} "
_opts+="--remove_non_linguistic_symbols true "
elif [ "${_tok_type}" = "bpe" ]; then
_type="ter"
_opts+="--bpemodel ${bpemodel} "
else
log "Error: unsupported token type ${_tok_type}"
fi
_scoredir="${_dir}/score_${_type}"
mkdir -p "${_scoredir}"
# shellcheck disable=SC2068
for ref_txt in ${ref_text_files[@]}; do
# Note(simpleoier): to get the suffix after text, e.g. "text_spk1" -> "_spk1"
suffix=$(echo ${ref_txt} | sed 's/text//')
# Tokenize text to ${_tok_type} level
paste \
<(<"${_data}/${ref_txt}" \
${python} -m espnet2.bin.tokenize_text \
-f 2- --input - --output - \
--cleaner "${cleaner}" \
${_opts} \
) \
<(<"${_data}/utt2spk" awk '{ print "(" $2 "-" $1 ")" }') \
>"${_scoredir}/ref${suffix:-${suffix}}.trn"
paste \
<(<"${_dir}/${ref_txt}_nospecial" \
${python} -m espnet2.bin.tokenize_text \
-f 2- --input - --output - \
${_opts} \
--cleaner "${hyp_cleaner}" \
) \
<(<"${_data}/utt2spk" awk '{ print "(" $2 "-" $1 ")" }') \
>"${_scoredir}/hyp${suffix:-${suffix}}.trn"
done
#sclite \
#${score_opts} \
#-r "${_scoredir}/ref.trn" trn \
#-h "${_scoredir}/hyp.trn" trn \
#-i rm -o all stdout > "${_scoredir}/result.txt"
#log "Write ${_type} result in ${_scoredir}/result.txt"
#grep -e Avg -e SPKR -m 2 "${_scoredir}/result.txt"
done
done
[ -f local/score.sh ] && local/score.sh ${local_score_opts} "${s2t_exp}"
# Show results in Markdown syntax
scripts/utils/show_asr_result.sh "${s2t_exp}" > "${s2t_exp}"/RESULTS.md
cat "${s2t_exp}"/RESULTS.md
fi
packed_model="${s2t_exp}/${s2t_exp##*/}_${inference_s2t_model%.*}.zip"
if [ ${stage} -le 14 ] && [ ${stop_stage} -ge 14 ] && ! [[ " ${skip_stages} " =~ [[:space:]]14[[:space:]] ]]; then
log "Stage 14: Pack model: ${packed_model}"
_opts=
if "${use_lm}"; then
_opts+="--lm_train_config ${lm_exp}/config.yaml "
_opts+="--lm_file ${lm_exp}/${inference_lm} "
_opts+="--option ${lm_exp}/perplexity_test/ppl "
_opts+="--option ${lm_exp}/images "
fi
if [ "${feats_normalize}" = global_mvn ]; then
_opts+="--option ${s2t_stats_dir}/train/feats_stats.npz "
fi
if [ "${token_type}" = bpe ]; then
_opts+="--option ${bpemodel} "
fi
if [ "${nlsyms_txt}" != none ]; then
_opts+="--option ${nlsyms_txt} "
fi
# shellcheck disable=SC2086
${python} -m espnet2.bin.pack s2t \
--s2t_train_config "${s2t_exp}"/config.yaml \
--s2t_model_file "${s2t_exp}"/"${inference_s2t_model}" \
${_opts} \
--option "${s2t_exp}"/RESULTS.md \
--option "${s2t_exp}"/images \
--outpath "${packed_model}"
fi
if [ ${stage} -le 15 ] && [ ${stop_stage} -ge 15 ] && ! [[ " ${skip_stages} " =~ [[:space:]]15[[:space:]] ]]; then
[ -z "${hf_repo}" ] && \
log "ERROR: You need to setup the variable hf_repo with the name of the repository located at HuggingFace, follow the following steps described here https://github.com/espnet/espnet/blob/master/CONTRIBUTING.md#132-espnet2-recipes" && \
exit 1
log "Stage 15: Upload model to HuggingFace: ${hf_repo}"
if [ ! -f "${packed_model}" ]; then
log "ERROR: ${packed_model} does not exist. Please run stage 14 first."
exit 1
fi
gitlfs=$(git lfs --version 2> /dev/null || true)
[ -z "${gitlfs}" ] && \
log "ERROR: You need to install git-lfs first" && \
exit 1
dir_repo=${expdir}/hf_${hf_repo//"/"/"_"}
[ ! -d "${dir_repo}" ] && git clone https://huggingface.co/${hf_repo} ${dir_repo}
if command -v git &> /dev/null; then
_creator_name="$(git config user.name)"
_checkout="git checkout $(git show -s --format=%H)"
else
_creator_name="$(whoami)"
_checkout=""
fi
# /some/where/espnet/egs2/foo/s2t1/ -> foo/s2t1
_task="$(pwd | rev | cut -d/ -f2 | rev)"
# foo/s2t1 -> foo
_corpus="${_task%/*}"
_model_name="${_creator_name}/${_corpus}_$(basename ${packed_model} .zip)"
# copy files in ${dir_repo}
unzip -o ${packed_model} -d ${dir_repo}
# Generate description file
# shellcheck disable=SC2034
hf_task=automatic-speech-recognition
# shellcheck disable=SC2034
espnet_task=S2T
# shellcheck disable=SC2034
task_exp=${s2t_exp}
eval "echo \"$(cat scripts/utils/TEMPLATE_HF_Readme.md)\"" > "${dir_repo}"/README.md
this_folder=${PWD}
cd ${dir_repo}
if [ -n "$(git status --porcelain)" ]; then
git add .
git commit -m "Update model"
fi
git push
cd ${this_folder}
fi
log "Successfully finished. [elapsed=${SECONDS}s]"