wangrongsheng
commited on
add model
Browse files- LMConfig.py +60 -0
- config.json +32 -0
- generation_config.json +4 -0
- model.py +530 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +23 -0
- tokenizer.json +0 -0
- tokenizer_config.json +44 -0
LMConfig.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import PretrainedConfig
|
2 |
+
from typing import List
|
3 |
+
|
4 |
+
|
5 |
+
class LMConfig(PretrainedConfig):
|
6 |
+
model_type = "Noah"
|
7 |
+
|
8 |
+
def __init__(
|
9 |
+
self,
|
10 |
+
dim: int = 640,
|
11 |
+
n_layers: int = 8,
|
12 |
+
n_heads: int = 16,
|
13 |
+
n_kv_heads: int = 8,
|
14 |
+
vocab_size: int = 6400,
|
15 |
+
hidden_dim: int = None,
|
16 |
+
multiple_of: int = 64,
|
17 |
+
norm_eps: float = 1e-5,
|
18 |
+
max_seq_len: int = 512,
|
19 |
+
dropout: float = 0.0,
|
20 |
+
flash_attn: bool = True,
|
21 |
+
save_steps: int = 1000,
|
22 |
+
####################################################
|
23 |
+
# Here are the specific configurations of MOE
|
24 |
+
# When use_moe is false, the following is invalid
|
25 |
+
####################################################
|
26 |
+
use_moe: bool = False,
|
27 |
+
num_experts_per_tok=2,
|
28 |
+
n_routed_experts=4,
|
29 |
+
n_shared_experts: bool = True,
|
30 |
+
scoring_func='softmax',
|
31 |
+
aux_loss_alpha=0.01,
|
32 |
+
seq_aux=True,
|
33 |
+
norm_topk_prob=True,
|
34 |
+
**kwargs,
|
35 |
+
):
|
36 |
+
self.dim = dim
|
37 |
+
self.n_layers = n_layers
|
38 |
+
self.n_heads = n_heads
|
39 |
+
self.n_kv_heads = n_kv_heads
|
40 |
+
self.vocab_size = vocab_size
|
41 |
+
self.hidden_dim = hidden_dim
|
42 |
+
self.multiple_of = multiple_of
|
43 |
+
self.norm_eps = norm_eps
|
44 |
+
self.max_seq_len = max_seq_len
|
45 |
+
self.dropout = dropout
|
46 |
+
self.flash_attn = flash_attn
|
47 |
+
self.save_steps = save_steps
|
48 |
+
####################################################
|
49 |
+
# Here are the specific configurations of MOE
|
50 |
+
# When use_moe is false, the following is invalid
|
51 |
+
####################################################
|
52 |
+
self.use_moe = use_moe
|
53 |
+
self.num_experts_per_tok = num_experts_per_tok # 每个token选择的专家数量
|
54 |
+
self.n_routed_experts = n_routed_experts # 总的专家数量
|
55 |
+
self.n_shared_experts = n_shared_experts # 共享专家
|
56 |
+
self.scoring_func = scoring_func # 评分函数,默认为'softmax'
|
57 |
+
self.aux_loss_alpha = aux_loss_alpha # 辅助损失的alpha参数
|
58 |
+
self.seq_aux = seq_aux # 是否在序列级别上计算辅助损失
|
59 |
+
self.norm_topk_prob = norm_topk_prob # 是否标准化top-k概率
|
60 |
+
super().__init__(**kwargs)
|
config.json
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"Transformer"
|
4 |
+
],
|
5 |
+
"auto_map": {
|
6 |
+
"AutoConfig": "LMConfig.LMConfig",
|
7 |
+
"AutoModelForCausalLM": "model.Transformer"
|
8 |
+
},
|
9 |
+
"aux_loss_alpha": 0.01,
|
10 |
+
"dim": 640,
|
11 |
+
"dropout": 0.0,
|
12 |
+
"flash_attn": true,
|
13 |
+
"hidden_dim": null,
|
14 |
+
"max_seq_len": 512,
|
15 |
+
"model_type": "Noah",
|
16 |
+
"multiple_of": 64,
|
17 |
+
"n_heads": 16,
|
18 |
+
"n_kv_heads": 8,
|
19 |
+
"n_layers": 8,
|
20 |
+
"n_routed_experts": 4,
|
21 |
+
"n_shared_experts": true,
|
22 |
+
"norm_eps": 1e-05,
|
23 |
+
"norm_topk_prob": true,
|
24 |
+
"num_experts_per_tok": 2,
|
25 |
+
"save_steps": 1000,
|
26 |
+
"scoring_func": "softmax",
|
27 |
+
"seq_aux": true,
|
28 |
+
"torch_dtype": "float32",
|
29 |
+
"transformers_version": "4.44.0",
|
30 |
+
"use_moe": false,
|
31 |
+
"vocab_size": 6400
|
32 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"transformers_version": "4.44.0"
|
4 |
+
}
|
model.py
ADDED
@@ -0,0 +1,530 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import struct
|
3 |
+
import inspect
|
4 |
+
from .LMConfig import LMConfig
|
5 |
+
from typing import Any, Optional, Tuple
|
6 |
+
import numpy as np
|
7 |
+
import torch
|
8 |
+
import torch.nn.functional as F
|
9 |
+
from torch import nn
|
10 |
+
from transformers import PreTrainedModel
|
11 |
+
from transformers.modeling_outputs import CausalLMOutputWithPast
|
12 |
+
|
13 |
+
|
14 |
+
class RMSNorm(torch.nn.Module):
|
15 |
+
def __init__(self, dim: int, eps: float):
|
16 |
+
super().__init__()
|
17 |
+
self.eps = eps
|
18 |
+
self.weight = nn.Parameter(torch.ones(dim))
|
19 |
+
|
20 |
+
def _norm(self, x):
|
21 |
+
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
|
22 |
+
|
23 |
+
def forward(self, x):
|
24 |
+
output = self._norm(x.float()).type_as(x)
|
25 |
+
return output * self.weight
|
26 |
+
|
27 |
+
|
28 |
+
def precompute_pos_cis(dim: int, end: int, theta: float = 10000.0):
|
29 |
+
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
|
30 |
+
t = torch.arange(end, device=freqs.device) # type: ignore
|
31 |
+
freqs = torch.outer(t, freqs).float() # type: ignore
|
32 |
+
pos_cis = torch.polar(torch.ones_like(freqs), freqs) # complex64
|
33 |
+
return pos_cis
|
34 |
+
|
35 |
+
|
36 |
+
def apply_rotary_emb(xq, xk, pos_cis):
|
37 |
+
def unite_shape(pos_cis, x):
|
38 |
+
ndim = x.ndim
|
39 |
+
assert 0 <= 1 < ndim
|
40 |
+
assert pos_cis.shape == (x.shape[1], x.shape[-1])
|
41 |
+
shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)]
|
42 |
+
return pos_cis.view(*shape)
|
43 |
+
|
44 |
+
xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2))
|
45 |
+
xk_ = torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2))
|
46 |
+
pos_cis = unite_shape(pos_cis, xq_)
|
47 |
+
xq_out = torch.view_as_real(xq_ * pos_cis).flatten(3)
|
48 |
+
xk_out = torch.view_as_real(xk_ * pos_cis).flatten(3)
|
49 |
+
return xq_out.type_as(xq), xk_out.type_as(xk)
|
50 |
+
|
51 |
+
|
52 |
+
def repeat_kv(x: torch.Tensor, n_rep: int) -> torch.Tensor:
|
53 |
+
"""torch.repeat_interleave(x, dim=2, repeats=n_rep)"""
|
54 |
+
bs, slen, n_kv_heads, head_dim = x.shape
|
55 |
+
if n_rep == 1:
|
56 |
+
return x
|
57 |
+
return (
|
58 |
+
x[:, :, :, None, :]
|
59 |
+
.expand(bs, slen, n_kv_heads, n_rep, head_dim)
|
60 |
+
.reshape(bs, slen, n_kv_heads * n_rep, head_dim)
|
61 |
+
)
|
62 |
+
|
63 |
+
|
64 |
+
class Attention(nn.Module):
|
65 |
+
def __init__(self, args: LMConfig):
|
66 |
+
super().__init__()
|
67 |
+
self.n_kv_heads = args.n_heads if args.n_kv_heads is None else args.n_kv_heads
|
68 |
+
assert args.n_heads % self.n_kv_heads == 0
|
69 |
+
model_parallel_size = 1
|
70 |
+
self.n_local_heads = args.n_heads // model_parallel_size
|
71 |
+
self.n_local_kv_heads = self.n_kv_heads // model_parallel_size
|
72 |
+
self.n_rep = self.n_local_heads // self.n_local_kv_heads
|
73 |
+
self.head_dim = args.dim // args.n_heads
|
74 |
+
self.wq = nn.Linear(args.dim, args.n_heads * self.head_dim, bias=False)
|
75 |
+
self.wk = nn.Linear(args.dim, self.n_kv_heads * self.head_dim, bias=False)
|
76 |
+
self.wv = nn.Linear(args.dim, self.n_kv_heads * self.head_dim, bias=False)
|
77 |
+
self.wo = nn.Linear(args.n_heads * self.head_dim, args.dim, bias=False)
|
78 |
+
self.attn_dropout = nn.Dropout(args.dropout)
|
79 |
+
self.resid_dropout = nn.Dropout(args.dropout)
|
80 |
+
self.dropout = args.dropout
|
81 |
+
|
82 |
+
# use flash attention or a manual implementation?
|
83 |
+
self.flash = hasattr(torch.nn.functional, 'scaled_dot_product_attention') and args.flash_attn
|
84 |
+
|
85 |
+
if not self.flash:
|
86 |
+
# print("WARNING: using slow attention. Flash Attention requires PyTorch >= 2.0")
|
87 |
+
mask = torch.full((1, 1, args.max_seq_len, args.max_seq_len), float("-inf"))
|
88 |
+
mask = torch.triu(mask, diagonal=1)
|
89 |
+
self.register_buffer("mask", mask)
|
90 |
+
|
91 |
+
def forward(
|
92 |
+
self,
|
93 |
+
x: torch.Tensor,
|
94 |
+
pos_cis: torch.Tensor,
|
95 |
+
use_kv_cache: bool = False,
|
96 |
+
past_kv: Tuple[torch.Tensor] = None
|
97 |
+
):
|
98 |
+
bsz, seqlen, _ = x.shape
|
99 |
+
# QKV
|
100 |
+
# inference
|
101 |
+
if use_kv_cache:
|
102 |
+
# 只计算最后一个token的Q
|
103 |
+
current_token = x[:, -1:, :]
|
104 |
+
|
105 |
+
if not past_kv:
|
106 |
+
xq = self.wq(x)
|
107 |
+
xk, xv = self.wk(x), self.wv(x)
|
108 |
+
else:
|
109 |
+
past_key, past_value = past_kv
|
110 |
+
xq = torch.cat((torch.zeros_like(x[:, :-1, :]), self.wq(current_token)), dim=1)
|
111 |
+
xk = torch.cat((past_key, self.wk(current_token)), dim=1)
|
112 |
+
xv = torch.cat((past_value, self.wv(current_token)), dim=1)
|
113 |
+
|
114 |
+
past_kv = (xk, xv)
|
115 |
+
else:
|
116 |
+
xq = self.wq(x)
|
117 |
+
xk, xv = self.wk(x), self.wv(x)
|
118 |
+
|
119 |
+
xq = xq.view(bsz, seqlen, self.n_local_heads, self.head_dim)
|
120 |
+
xk = xk.view(bsz, seqlen, self.n_local_kv_heads, self.head_dim)
|
121 |
+
xv = xv.view(bsz, seqlen, self.n_local_kv_heads, self.head_dim)
|
122 |
+
|
123 |
+
# RoPE relative positional embeddings
|
124 |
+
xq, xk = apply_rotary_emb(xq, xk, pos_cis)
|
125 |
+
|
126 |
+
# grouped multiquery attention: expand out keys and values
|
127 |
+
xk = repeat_kv(xk, self.n_rep) # (bs, seqlen, n_local_heads, head_dim)
|
128 |
+
xv = repeat_kv(xv, self.n_rep) # (bs, seqlen, n_local_heads, head_dim)
|
129 |
+
|
130 |
+
# make heads into a batch dimension
|
131 |
+
xq = xq.transpose(1, 2) # (bs, n_local_heads, seqlen, head_dim)
|
132 |
+
xk = xk.transpose(1, 2)
|
133 |
+
xv = xv.transpose(1, 2)
|
134 |
+
|
135 |
+
# flash implementation
|
136 |
+
if self.flash:
|
137 |
+
output = torch.nn.functional.scaled_dot_product_attention(xq, xk, xv, attn_mask=None,
|
138 |
+
dropout_p=self.dropout if self.training else 0.0,
|
139 |
+
is_causal=True)
|
140 |
+
else:
|
141 |
+
# manual implementation
|
142 |
+
scores = torch.matmul(xq, xk.transpose(2, 3)) / math.sqrt(self.head_dim)
|
143 |
+
assert hasattr(self, 'mask')
|
144 |
+
scores = scores + self.mask[:, :, :seqlen, :seqlen] # (bs, n_local_heads, seqlen, cache_len + seqlen)
|
145 |
+
scores = F.softmax(scores.float(), dim=-1).type_as(xq)
|
146 |
+
scores = self.attn_dropout(scores)
|
147 |
+
output = torch.matmul(scores, xv) # (bs, n_local_heads, seqlen, head_dim)
|
148 |
+
|
149 |
+
# restore time as batch dimension and concat heads
|
150 |
+
output = output.transpose(1, 2).contiguous().view(bsz, seqlen, -1)
|
151 |
+
|
152 |
+
# final projection into the residual stream
|
153 |
+
output = self.wo(output)
|
154 |
+
output = self.resid_dropout(output)
|
155 |
+
return output, past_kv
|
156 |
+
|
157 |
+
|
158 |
+
class FeedForward(nn.Module):
|
159 |
+
def __init__(self, dim: int, hidden_dim: int, multiple_of: int, dropout: float):
|
160 |
+
super().__init__()
|
161 |
+
if hidden_dim is None:
|
162 |
+
hidden_dim = 4 * dim
|
163 |
+
hidden_dim = int(2 * hidden_dim / 3)
|
164 |
+
hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
|
165 |
+
self.w1 = nn.Linear(dim, hidden_dim, bias=False)
|
166 |
+
self.w2 = nn.Linear(hidden_dim, dim, bias=False)
|
167 |
+
self.w3 = nn.Linear(dim, hidden_dim, bias=False)
|
168 |
+
self.dropout = nn.Dropout(dropout)
|
169 |
+
|
170 |
+
def forward(self, x):
|
171 |
+
return self.dropout(self.w2(F.silu(self.w1(x)) * self.w3(x)))
|
172 |
+
|
173 |
+
|
174 |
+
class MoEGate(nn.Module):
|
175 |
+
def __init__(self, config: LMConfig):
|
176 |
+
super().__init__()
|
177 |
+
self.config = config
|
178 |
+
self.top_k = config.num_experts_per_tok
|
179 |
+
self.n_routed_experts = config.n_routed_experts
|
180 |
+
|
181 |
+
self.scoring_func = config.scoring_func
|
182 |
+
self.alpha = config.aux_loss_alpha
|
183 |
+
self.seq_aux = config.seq_aux
|
184 |
+
|
185 |
+
# topk selection algorithm
|
186 |
+
self.norm_topk_prob = config.norm_topk_prob
|
187 |
+
self.gating_dim = config.dim
|
188 |
+
self.weight = nn.Parameter(torch.empty((self.n_routed_experts, self.gating_dim)))
|
189 |
+
self.reset_parameters()
|
190 |
+
|
191 |
+
def reset_parameters(self) -> None:
|
192 |
+
import torch.nn.init as init
|
193 |
+
init.kaiming_uniform_(self.weight, a=math.sqrt(5))
|
194 |
+
|
195 |
+
def forward(self, hidden_states):
|
196 |
+
bsz, seq_len, h = hidden_states.shape
|
197 |
+
### compute gating score
|
198 |
+
hidden_states = hidden_states.view(-1, h)
|
199 |
+
logits = F.linear(hidden_states, self.weight, None)
|
200 |
+
if self.scoring_func == 'softmax':
|
201 |
+
scores = logits.softmax(dim=-1)
|
202 |
+
else:
|
203 |
+
raise NotImplementedError(f'insupportable scoring function for MoE gating: {self.scoring_func}')
|
204 |
+
|
205 |
+
### select top-k experts
|
206 |
+
topk_weight, topk_idx = torch.topk(scores, k=self.top_k, dim=-1, sorted=False)
|
207 |
+
|
208 |
+
### norm gate to sum 1
|
209 |
+
if self.top_k > 1 and self.norm_topk_prob:
|
210 |
+
denominator = topk_weight.sum(dim=-1, keepdim=True) + 1e-20
|
211 |
+
topk_weight = topk_weight / denominator
|
212 |
+
|
213 |
+
### expert-level computation auxiliary loss
|
214 |
+
if self.training and self.alpha > 0.0:
|
215 |
+
scores_for_aux = scores
|
216 |
+
aux_topk = self.top_k
|
217 |
+
# always compute aux loss based on the naive greedy topk method
|
218 |
+
topk_idx_for_aux_loss = topk_idx.view(bsz, -1)
|
219 |
+
if self.seq_aux:
|
220 |
+
scores_for_seq_aux = scores_for_aux.view(bsz, seq_len, -1)
|
221 |
+
ce = torch.zeros(bsz, self.n_routed_experts, device=hidden_states.device)
|
222 |
+
ce.scatter_add_(1, topk_idx_for_aux_loss,
|
223 |
+
torch.ones(bsz, seq_len * aux_topk, device=hidden_states.device)).div_(
|
224 |
+
seq_len * aux_topk / self.n_routed_experts)
|
225 |
+
aux_loss = (ce * scores_for_seq_aux.mean(dim=1)).sum(dim=1).mean() * self.alpha
|
226 |
+
else:
|
227 |
+
mask_ce = F.one_hot(topk_idx_for_aux_loss.view(-1), num_classes=self.n_routed_experts)
|
228 |
+
ce = mask_ce.float().mean(0)
|
229 |
+
Pi = scores_for_aux.mean(0)
|
230 |
+
fi = ce * self.n_routed_experts
|
231 |
+
aux_loss = (Pi * fi).sum() * self.alpha
|
232 |
+
else:
|
233 |
+
aux_loss = None
|
234 |
+
return topk_idx, topk_weight, aux_loss
|
235 |
+
|
236 |
+
|
237 |
+
class MOEFeedForward(nn.Module):
|
238 |
+
def __init__(self, config: LMConfig):
|
239 |
+
super().__init__()
|
240 |
+
self.config = config
|
241 |
+
self.experts = nn.ModuleList([
|
242 |
+
FeedForward(
|
243 |
+
dim=config.dim,
|
244 |
+
hidden_dim=config.hidden_dim,
|
245 |
+
multiple_of=config.multiple_of,
|
246 |
+
dropout=config.dropout,
|
247 |
+
)
|
248 |
+
for _ in range(config.n_routed_experts)
|
249 |
+
])
|
250 |
+
|
251 |
+
self.gate = MoEGate(config)
|
252 |
+
if config.n_shared_experts is not None:
|
253 |
+
self.shared_experts = FeedForward(
|
254 |
+
dim=config.dim,
|
255 |
+
hidden_dim=config.hidden_dim,
|
256 |
+
multiple_of=config.multiple_of,
|
257 |
+
dropout=config.dropout,
|
258 |
+
)
|
259 |
+
|
260 |
+
def forward(self, x):
|
261 |
+
identity = x
|
262 |
+
orig_shape = x.shape
|
263 |
+
bsz, seq_len, _ = x.shape
|
264 |
+
|
265 |
+
# 使用门控机制选择专家
|
266 |
+
topk_idx, topk_weight, aux_loss = self.gate(x)
|
267 |
+
|
268 |
+
x = x.view(-1, x.shape[-1])
|
269 |
+
flat_topk_idx = topk_idx.view(-1)
|
270 |
+
|
271 |
+
if self.training:
|
272 |
+
# 训练模式下,重复输入数据
|
273 |
+
x = x.repeat_interleave(self.config.num_experts_per_tok, dim=0)
|
274 |
+
y = torch.empty_like(x, dtype=torch.float16)
|
275 |
+
for i, expert in enumerate(self.experts):
|
276 |
+
y[flat_topk_idx == i] = expert(x[flat_topk_idx == i])
|
277 |
+
y = (y.view(*topk_weight.shape, -1) * topk_weight.unsqueeze(-1)).sum(dim=1)
|
278 |
+
y = y.view(*orig_shape)
|
279 |
+
else:
|
280 |
+
# 推理模式下,只选择最优专家
|
281 |
+
y = self.moe_infer(x, flat_topk_idx, topk_weight.view(-1, 1)).view(*orig_shape)
|
282 |
+
|
283 |
+
if self.config.n_shared_experts is not None:
|
284 |
+
y = y + self.shared_experts(identity)
|
285 |
+
|
286 |
+
return y
|
287 |
+
|
288 |
+
@torch.no_grad()
|
289 |
+
def moe_infer(self, x, flat_expert_indices, flat_expert_weights):
|
290 |
+
expert_cache = torch.zeros_like(x)
|
291 |
+
idxs = flat_expert_indices.argsort()
|
292 |
+
tokens_per_expert = flat_expert_indices.bincount().cpu().numpy().cumsum(0)
|
293 |
+
token_idxs = idxs // self.config.num_experts_per_tok
|
294 |
+
# 例如当tokens_per_expert=[6, 15, 20, 26, 33, 38, 46, 52]
|
295 |
+
# 当token_idxs=[3, 7, 19, 21, 24, 25, 4, 5, 6, 10, 11, 12...]
|
296 |
+
# 意味着当token_idxs[:6] -> [3, 7, 19, 21, 24, 25, 4]位置的token都由专家0处理,token_idxs[6:15]位置的token都由专家1处理......
|
297 |
+
for i, end_idx in enumerate(tokens_per_expert):
|
298 |
+
start_idx = 0 if i == 0 else tokens_per_expert[i - 1]
|
299 |
+
if start_idx == end_idx:
|
300 |
+
continue
|
301 |
+
expert = self.experts[i]
|
302 |
+
exp_token_idx = token_idxs[start_idx:end_idx]
|
303 |
+
expert_tokens = x[exp_token_idx]
|
304 |
+
expert_out = expert(expert_tokens)
|
305 |
+
expert_out.mul_(flat_expert_weights[idxs[start_idx:end_idx]])
|
306 |
+
# 使用 scatter_add_ 进行 sum 操作
|
307 |
+
expert_cache.scatter_add_(0, exp_token_idx.view(-1, 1).repeat(1, x.shape[-1]), expert_out)
|
308 |
+
|
309 |
+
return expert_cache
|
310 |
+
|
311 |
+
|
312 |
+
class TransformerBlock(nn.Module):
|
313 |
+
def __init__(self, layer_id: int, args: LMConfig):
|
314 |
+
super().__init__()
|
315 |
+
self.n_heads = args.n_heads
|
316 |
+
self.dim = args.dim
|
317 |
+
self.head_dim = args.dim // args.n_heads
|
318 |
+
self.attention = Attention(args)
|
319 |
+
|
320 |
+
self.layer_id = layer_id
|
321 |
+
self.attention_norm = RMSNorm(args.dim, eps=args.norm_eps)
|
322 |
+
self.ffn_norm = RMSNorm(args.dim, eps=args.norm_eps)
|
323 |
+
|
324 |
+
if args.use_moe:
|
325 |
+
self.feed_forward = MOEFeedForward(args)
|
326 |
+
else:
|
327 |
+
self.feed_forward = FeedForward(
|
328 |
+
dim=args.dim,
|
329 |
+
hidden_dim=args.hidden_dim,
|
330 |
+
multiple_of=args.multiple_of,
|
331 |
+
dropout=args.dropout,
|
332 |
+
)
|
333 |
+
|
334 |
+
def forward(self, x, pos_cis, use_kv_cache=False, past_kv: Tuple[torch.Tensor] = None):
|
335 |
+
attn_res, past_kv = self.attention(self.attention_norm(x), pos_cis, use_kv_cache, past_kv)
|
336 |
+
h = x + attn_res
|
337 |
+
out = h + self.feed_forward(self.ffn_norm(h))
|
338 |
+
return out, past_kv
|
339 |
+
|
340 |
+
|
341 |
+
class Transformer(PreTrainedModel):
|
342 |
+
config_class = LMConfig
|
343 |
+
last_loss: Optional[torch.Tensor]
|
344 |
+
|
345 |
+
def __init__(self, params: LMConfig = None):
|
346 |
+
super().__init__(params)
|
347 |
+
if not params:
|
348 |
+
params = LMConfig()
|
349 |
+
self.params = params
|
350 |
+
self.vocab_size = params.vocab_size
|
351 |
+
self.n_layers = params.n_layers
|
352 |
+
|
353 |
+
self.tok_embeddings = nn.Embedding(params.vocab_size, params.dim)
|
354 |
+
self.dropout = nn.Dropout(params.dropout)
|
355 |
+
self.layers = torch.nn.ModuleList()
|
356 |
+
for layer_id in range(self.n_layers):
|
357 |
+
self.layers.append(TransformerBlock(layer_id, params))
|
358 |
+
self.norm = RMSNorm(params.dim, eps=params.norm_eps)
|
359 |
+
self.output = nn.Linear(params.dim, params.vocab_size, bias=False)
|
360 |
+
|
361 |
+
# share the unembedding parameters with the embedding parameters
|
362 |
+
self.tok_embeddings.weight = self.output.weight # https://paperswithcode.com/method/weight-tying
|
363 |
+
|
364 |
+
# some useful precompute for the RoPE relative positional embeddings
|
365 |
+
pos_cis = precompute_pos_cis(self.params.dim // self.params.n_heads, self.params.max_seq_len)
|
366 |
+
self.register_buffer("pos_cis", pos_cis, persistent=False)
|
367 |
+
|
368 |
+
# init all weights
|
369 |
+
self.apply(self._init_weights)
|
370 |
+
# apply special scaled init to the residual projections, per GPT-2 paper
|
371 |
+
for pn, p in self.named_parameters():
|
372 |
+
if pn.endswith('w3.weight') or pn.endswith('wo.weight'):
|
373 |
+
torch.nn.init.normal_(p, mean=0.0, std=0.02 / math.sqrt(2 * params.n_layers))
|
374 |
+
|
375 |
+
# Initialize attribute for the loss of the last forward call. This will be set if the forward is called with a targets tensor.
|
376 |
+
self.last_loss = None
|
377 |
+
self.OUT = CausalLMOutputWithPast()
|
378 |
+
|
379 |
+
def _init_weights(self, module):
|
380 |
+
if isinstance(module, nn.Linear):
|
381 |
+
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
|
382 |
+
if module.bias is not None:
|
383 |
+
torch.nn.init.zeros_(module.bias)
|
384 |
+
elif isinstance(module, nn.Embedding):
|
385 |
+
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
|
386 |
+
|
387 |
+
def forward(self, tokens: Optional[torch.Tensor] = None,
|
388 |
+
targets: Optional[torch.Tensor] = None,
|
389 |
+
use_kv_cache=False, past_kvs=None, **keyargs):
|
390 |
+
if past_kvs is None:
|
391 |
+
past_kvs = [None for _ in range(self.n_layers)]
|
392 |
+
if 'input_ids' in keyargs:
|
393 |
+
tokens = keyargs['input_ids']
|
394 |
+
if 'attention_mask' in keyargs:
|
395 |
+
targets = keyargs['attention_mask']
|
396 |
+
|
397 |
+
_bsz, seqlen = tokens.shape
|
398 |
+
h = self.tok_embeddings(tokens)
|
399 |
+
h = self.dropout(h)
|
400 |
+
pos_cis = self.pos_cis[:seqlen]
|
401 |
+
for idx, layer in enumerate(self.layers):
|
402 |
+
h, past_kvs[idx] = layer(h, pos_cis, use_kv_cache, past_kvs[idx])
|
403 |
+
|
404 |
+
h = self.norm(h)
|
405 |
+
|
406 |
+
if targets is not None:
|
407 |
+
# if we are given some desired targets also calculate the loss
|
408 |
+
logits = self.output(h)
|
409 |
+
self.last_loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1)
|
410 |
+
else:
|
411 |
+
# inference-time mini-optimization: only forward the output on the very last position
|
412 |
+
logits = self.output(h[:, [-1], :]) # note: using list [-1] to preserve the time dim
|
413 |
+
self.last_loss = None
|
414 |
+
|
415 |
+
self.OUT.__setitem__('logits', logits)
|
416 |
+
self.OUT.__setitem__('last_loss', self.last_loss)
|
417 |
+
|
418 |
+
if use_kv_cache:
|
419 |
+
return self.OUT, past_kvs
|
420 |
+
return self.OUT
|
421 |
+
|
422 |
+
|
423 |
+
@torch.inference_mode()
|
424 |
+
def generate(self, idx, eos, max_new_tokens, temperature=0.7, top_k=None, stream=True, repetition_penalty=1.):
|
425 |
+
index = idx.shape[1]
|
426 |
+
use_kv_cache = True
|
427 |
+
past_kvs = [None for _ in range(self.n_layers)]
|
428 |
+
while idx.shape[1] < max_new_tokens - 1:
|
429 |
+
# if the sequence context is growing too long we must crop it at block_size
|
430 |
+
idx_cond = idx # if idx.size(1) <= self.params.max_seq_len else idx[:, -self.params.max_seq_len:]
|
431 |
+
# forward the model to get the logits for the index in the sequence
|
432 |
+
inference_res = self(idx_cond, use_kv_cache=use_kv_cache, past_kvs=past_kvs)
|
433 |
+
if use_kv_cache:
|
434 |
+
logits, past_kvs = inference_res[0].logits, inference_res[1]
|
435 |
+
else:
|
436 |
+
logits = inference_res.logits
|
437 |
+
|
438 |
+
logits = logits[:, -1, :] # crop to just the final time step
|
439 |
+
|
440 |
+
# Apply repetition penalty
|
441 |
+
for token in set(idx.tolist()[0]):
|
442 |
+
logits[:, token] /= repetition_penalty
|
443 |
+
|
444 |
+
if temperature == 0.0:
|
445 |
+
# "sample" the single most likely index
|
446 |
+
__, idx_next = torch.topk(logits, k=1, dim=-1)
|
447 |
+
else:
|
448 |
+
# pluck the logits at the final step and scale by desired temperature
|
449 |
+
logits = logits / temperature
|
450 |
+
# optionally crop the logits to only the top k options
|
451 |
+
if top_k is not None:
|
452 |
+
v, __ = torch.topk(logits, min(top_k, logits.size(-1)))
|
453 |
+
logits[logits < v[:, [-1]]] = -float('Inf')
|
454 |
+
|
455 |
+
# apply softmax to convert logits to (normalized) probabilities
|
456 |
+
probs = F.softmax(logits, dim=-1)
|
457 |
+
idx_next = torch.multinomial(probs, num_samples=1, generator=None)
|
458 |
+
# append sampled index to the running sequence and continue
|
459 |
+
if idx_next == eos:
|
460 |
+
break
|
461 |
+
|
462 |
+
idx = torch.cat((idx, idx_next), dim=1)
|
463 |
+
if stream:
|
464 |
+
yield idx[:, index:]
|
465 |
+
|
466 |
+
if not stream:
|
467 |
+
yield idx[:, index:]
|
468 |
+
|
469 |
+
@torch.inference_mode()
|
470 |
+
def eval_answer(self, idx):
|
471 |
+
# if the sequence context is growing too long we must crop it at block_size
|
472 |
+
idx_cond = idx if idx.size(1) <= self.params.max_seq_len else idx[:, -self.params.max_seq_len:]
|
473 |
+
# forward the model to get the logits for the index in the sequence
|
474 |
+
past_kvs = [None for _ in range(self.n_layers)]
|
475 |
+
inference_res = self(idx_cond, use_kv_cache=False, past_kvs=past_kvs)
|
476 |
+
logits = inference_res.logits
|
477 |
+
logits = logits[:, -1, :]
|
478 |
+
return logits
|
479 |
+
|
480 |
+
def export(self, filepath='model.bin'):
|
481 |
+
"""export the model weights in fp32 into .bin file to be read from C"""
|
482 |
+
f = open(filepath, 'wb')
|
483 |
+
|
484 |
+
def serialize(t):
|
485 |
+
d = t.detach().cpu().view(-1).numpy().astype(np.float32)
|
486 |
+
b = struct.pack(f'{len(d)}f', *d)
|
487 |
+
f.write(b)
|
488 |
+
|
489 |
+
# first write out the header
|
490 |
+
hidden_dim = self.layers[0].feed_forward.w1.weight.shape[0]
|
491 |
+
p = self.params
|
492 |
+
n_kv_heads = p.n_heads if p.n_kv_heads is None else p.n_kv_heads
|
493 |
+
header = struct.pack('iiiiiii', p.dim, hidden_dim, p.n_layers, p.n_heads,
|
494 |
+
n_kv_heads, p.vocab_size, p.max_seq_len)
|
495 |
+
f.write(header)
|
496 |
+
|
497 |
+
# next write out the embedding weights
|
498 |
+
serialize(self.tok_embeddings.weight)
|
499 |
+
|
500 |
+
# now all the layers
|
501 |
+
# attention weights
|
502 |
+
for layer in self.layers:
|
503 |
+
serialize(layer.attention_norm.weight)
|
504 |
+
for layer in self.layers:
|
505 |
+
serialize(layer.attention.wq.weight)
|
506 |
+
for layer in self.layers:
|
507 |
+
serialize(layer.attention.wk.weight)
|
508 |
+
for layer in self.layers:
|
509 |
+
serialize(layer.attention.wv.weight)
|
510 |
+
for layer in self.layers:
|
511 |
+
serialize(layer.attention.wo.weight)
|
512 |
+
# ffn weights
|
513 |
+
for layer in self.layers:
|
514 |
+
serialize(layer.ffn_norm.weight)
|
515 |
+
for layer in self.layers:
|
516 |
+
serialize(layer.feed_forward.w1.weight)
|
517 |
+
for layer in self.layers:
|
518 |
+
serialize(layer.feed_forward.w2.weight)
|
519 |
+
for layer in self.layers:
|
520 |
+
serialize(layer.feed_forward.w3.weight)
|
521 |
+
# final rmsnorm
|
522 |
+
serialize(self.norm.weight)
|
523 |
+
# note: no need to write final classifier weights due to weight sharing
|
524 |
+
# pos_cis
|
525 |
+
serialize(self.freqs_cos[:p.max_seq_len])
|
526 |
+
serialize(self.freqs_sin[:p.max_seq_len])
|
527 |
+
|
528 |
+
# write to binary file
|
529 |
+
f.close()
|
530 |
+
print(f"wrote {filepath}")
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:28a743c2ca26b4d740b6657ac04162216a965eb6a1543bdb9b9101684323eeea
|
3 |
+
size 161940876
|
special_tokens_map.json
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "</s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"unk_token": {
|
17 |
+
"content": "<unk>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
}
|
23 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"add_prefix_space": true,
|
5 |
+
"added_tokens_decoder": {
|
6 |
+
"0": {
|
7 |
+
"content": "<unk>",
|
8 |
+
"lstrip": false,
|
9 |
+
"normalized": false,
|
10 |
+
"rstrip": false,
|
11 |
+
"single_word": false,
|
12 |
+
"special": true
|
13 |
+
},
|
14 |
+
"1": {
|
15 |
+
"content": "<s>",
|
16 |
+
"lstrip": false,
|
17 |
+
"normalized": false,
|
18 |
+
"rstrip": false,
|
19 |
+
"single_word": false,
|
20 |
+
"special": true
|
21 |
+
},
|
22 |
+
"2": {
|
23 |
+
"content": "</s>",
|
24 |
+
"lstrip": false,
|
25 |
+
"normalized": false,
|
26 |
+
"rstrip": false,
|
27 |
+
"single_word": false,
|
28 |
+
"special": true
|
29 |
+
}
|
30 |
+
},
|
31 |
+
"additional_special_tokens": [],
|
32 |
+
"bos_token": "<s>",
|
33 |
+
"chat_template": "{% if messages[0]['role'] == 'system' %}{% set system_message = messages[0]['content'] %}{% endif %}{% if system_message is defined %}{{ system_message }}{% endif %}{% for message in messages %}{% set content = message['content'] %}{% if message['role'] == 'user' %}{{ '<s>user\\n' + content + '</s>\\n<s>assistant\\n' }}{% elif message['role'] == 'assistant' %}{{ content + '</s>' + '\\n' }}{% endif %}{% endfor %}",
|
34 |
+
"clean_up_tokenization_spaces": false,
|
35 |
+
"eos_token": "</s>",
|
36 |
+
"legacy": true,
|
37 |
+
"model_max_length": 1000000000000000019884624838656,
|
38 |
+
"pad_token": null,
|
39 |
+
"sp_model_kwargs": {},
|
40 |
+
"spaces_between_special_tokens": false,
|
41 |
+
"tokenizer_class": "PreTrainedTokenizerFast",
|
42 |
+
"unk_token": "<unk>",
|
43 |
+
"use_default_system_prompt": false
|
44 |
+
}
|