diff --git "a/trainer_log.jsonl" "b/trainer_log.jsonl" new file mode 100644--- /dev/null +++ "b/trainer_log.jsonl" @@ -0,0 +1,5477 @@ +{"current_steps": 1, "total_steps": 5472, "loss": 0.6931, "accuracy": 0.0, "learning_rate": 9.124087591240875e-10, "epoch": 0.0007305936073059361, "percentage": 0.02, "elapsed_time": "0:00:13", "remaining_time": "20:54:14"} +{"current_steps": 2, "total_steps": 5472, "loss": 0.6931, "accuracy": 0.0, "learning_rate": 1.824817518248175e-09, "epoch": 0.0014611872146118722, "percentage": 0.04, "elapsed_time": "0:00:22", "remaining_time": "17:09:42"} +{"current_steps": 3, "total_steps": 5472, "loss": 0.693, "accuracy": 0.25, "learning_rate": 2.7372262773722627e-09, "epoch": 0.002191780821917808, "percentage": 0.05, "elapsed_time": "0:00:33", "remaining_time": "16:58:56"} +{"current_steps": 4, "total_steps": 5472, "loss": 0.7077, "accuracy": 0.625, "learning_rate": 3.64963503649635e-09, "epoch": 0.0029223744292237444, "percentage": 0.07, "elapsed_time": "0:00:46", "remaining_time": "17:50:19"} +{"current_steps": 5, "total_steps": 5472, "loss": 0.7091, "accuracy": 0.25, "learning_rate": 4.562043795620437e-09, "epoch": 0.0036529680365296802, "percentage": 0.09, "elapsed_time": "0:00:56", "remaining_time": "17:03:38"} +{"current_steps": 6, "total_steps": 5472, "loss": 0.6753, "accuracy": 0.375, "learning_rate": 5.4744525547445254e-09, "epoch": 0.004383561643835616, "percentage": 0.11, "elapsed_time": "0:01:08", "remaining_time": "17:19:25"} +{"current_steps": 7, "total_steps": 5472, "loss": 0.6872, "accuracy": 0.375, "learning_rate": 6.386861313868613e-09, "epoch": 0.0051141552511415524, "percentage": 0.13, "elapsed_time": "0:01:18", "remaining_time": "17:00:38"} +{"current_steps": 8, "total_steps": 5472, "loss": 0.702, "accuracy": 0.5, "learning_rate": 7.2992700729927e-09, "epoch": 0.005844748858447489, "percentage": 0.15, "elapsed_time": "0:01:28", "remaining_time": "16:48:16"} +{"current_steps": 9, "total_steps": 5472, "loss": 0.6917, "accuracy": 0.75, "learning_rate": 8.211678832116789e-09, "epoch": 0.006575342465753425, "percentage": 0.16, "elapsed_time": "0:01:37", "remaining_time": "16:26:52"} +{"current_steps": 10, "total_steps": 5472, "loss": 0.7141, "accuracy": 0.25, "learning_rate": 9.124087591240875e-09, "epoch": 0.0073059360730593605, "percentage": 0.18, "elapsed_time": "0:01:51", "remaining_time": "16:52:44"} +{"current_steps": 11, "total_steps": 5472, "loss": 0.6844, "accuracy": 0.375, "learning_rate": 1.0036496350364964e-08, "epoch": 0.008036529680365296, "percentage": 0.2, "elapsed_time": "0:02:01", "remaining_time": "16:48:02"} +{"current_steps": 12, "total_steps": 5472, "loss": 0.6987, "accuracy": 0.625, "learning_rate": 1.0948905109489051e-08, "epoch": 0.008767123287671232, "percentage": 0.22, "elapsed_time": "0:02:13", "remaining_time": "16:54:24"} +{"current_steps": 13, "total_steps": 5472, "loss": 0.6795, "accuracy": 0.875, "learning_rate": 1.1861313868613138e-08, "epoch": 0.009497716894977169, "percentage": 0.24, "elapsed_time": "0:02:23", "remaining_time": "16:43:35"} +{"current_steps": 14, "total_steps": 5472, "loss": 0.7215, "accuracy": 0.125, "learning_rate": 1.2773722627737225e-08, "epoch": 0.010228310502283105, "percentage": 0.26, "elapsed_time": "0:02:32", "remaining_time": "16:33:59"} +{"current_steps": 15, "total_steps": 5472, "loss": 0.6788, "accuracy": 0.375, "learning_rate": 1.3686131386861314e-08, "epoch": 0.010958904109589041, "percentage": 0.27, "elapsed_time": "0:02:42", "remaining_time": "16:26:52"} +{"current_steps": 16, "total_steps": 5472, "loss": 0.6909, "accuracy": 0.75, "learning_rate": 1.45985401459854e-08, "epoch": 0.011689497716894977, "percentage": 0.29, "elapsed_time": "0:02:51", "remaining_time": "16:16:53"} +{"current_steps": 17, "total_steps": 5472, "loss": 0.7021, "accuracy": 0.375, "learning_rate": 1.551094890510949e-08, "epoch": 0.012420091324200914, "percentage": 0.31, "elapsed_time": "0:03:01", "remaining_time": "16:13:19"} +{"current_steps": 18, "total_steps": 5472, "loss": 0.716, "accuracy": 0.375, "learning_rate": 1.6423357664233578e-08, "epoch": 0.01315068493150685, "percentage": 0.33, "elapsed_time": "0:03:10", "remaining_time": "16:03:41"} +{"current_steps": 19, "total_steps": 5472, "loss": 0.6997, "accuracy": 0.375, "learning_rate": 1.7335766423357664e-08, "epoch": 0.013881278538812785, "percentage": 0.35, "elapsed_time": "0:03:21", "remaining_time": "16:05:49"} +{"current_steps": 20, "total_steps": 5472, "loss": 0.6874, "accuracy": 0.5, "learning_rate": 1.824817518248175e-08, "epoch": 0.014611872146118721, "percentage": 0.37, "elapsed_time": "0:03:33", "remaining_time": "16:09:51"} +{"current_steps": 21, "total_steps": 5472, "loss": 0.679, "accuracy": 0.5, "learning_rate": 1.9160583941605838e-08, "epoch": 0.015342465753424657, "percentage": 0.38, "elapsed_time": "0:03:43", "remaining_time": "16:07:42"} +{"current_steps": 22, "total_steps": 5472, "loss": 0.6858, "accuracy": 0.25, "learning_rate": 2.0072992700729927e-08, "epoch": 0.016073059360730592, "percentage": 0.4, "elapsed_time": "0:03:53", "remaining_time": "16:04:22"} +{"current_steps": 23, "total_steps": 5472, "loss": 0.7005, "accuracy": 0.25, "learning_rate": 2.0985401459854013e-08, "epoch": 0.016803652968036528, "percentage": 0.42, "elapsed_time": "0:04:04", "remaining_time": "16:05:05"} +{"current_steps": 24, "total_steps": 5472, "loss": 0.666, "accuracy": 0.875, "learning_rate": 2.1897810218978102e-08, "epoch": 0.017534246575342465, "percentage": 0.44, "elapsed_time": "0:04:14", "remaining_time": "16:02:02"} +{"current_steps": 25, "total_steps": 5472, "loss": 0.6905, "accuracy": 0.625, "learning_rate": 2.2810218978102187e-08, "epoch": 0.0182648401826484, "percentage": 0.46, "elapsed_time": "0:04:24", "remaining_time": "15:59:54"} +{"current_steps": 26, "total_steps": 5472, "loss": 0.6962, "accuracy": 0.625, "learning_rate": 2.3722627737226276e-08, "epoch": 0.018995433789954337, "percentage": 0.48, "elapsed_time": "0:04:34", "remaining_time": "15:59:30"} +{"current_steps": 27, "total_steps": 5472, "loss": 0.6809, "accuracy": 0.625, "learning_rate": 2.4635036496350365e-08, "epoch": 0.019726027397260273, "percentage": 0.49, "elapsed_time": "0:04:44", "remaining_time": "15:56:50"} +{"current_steps": 28, "total_steps": 5472, "loss": 0.6954, "accuracy": 0.375, "learning_rate": 2.554744525547445e-08, "epoch": 0.02045662100456621, "percentage": 0.51, "elapsed_time": "0:04:55", "remaining_time": "15:56:57"} +{"current_steps": 29, "total_steps": 5472, "loss": 0.7036, "accuracy": 0.125, "learning_rate": 2.6459854014598537e-08, "epoch": 0.021187214611872146, "percentage": 0.53, "elapsed_time": "0:05:06", "remaining_time": "15:58:09"} +{"current_steps": 30, "total_steps": 5472, "loss": 0.6891, "accuracy": 0.625, "learning_rate": 2.737226277372263e-08, "epoch": 0.021917808219178082, "percentage": 0.55, "elapsed_time": "0:05:16", "remaining_time": "15:56:39"} +{"current_steps": 31, "total_steps": 5472, "loss": 0.7033, "accuracy": 0.625, "learning_rate": 2.8284671532846714e-08, "epoch": 0.02264840182648402, "percentage": 0.57, "elapsed_time": "0:05:25", "remaining_time": "15:52:56"} +{"current_steps": 32, "total_steps": 5472, "loss": 0.6989, "accuracy": 0.375, "learning_rate": 2.91970802919708e-08, "epoch": 0.023378995433789955, "percentage": 0.58, "elapsed_time": "0:05:35", "remaining_time": "15:51:56"} +{"current_steps": 33, "total_steps": 5472, "loss": 0.691, "accuracy": 0.5, "learning_rate": 3.010948905109489e-08, "epoch": 0.02410958904109589, "percentage": 0.6, "elapsed_time": "0:05:45", "remaining_time": "15:48:02"} +{"current_steps": 34, "total_steps": 5472, "loss": 0.71, "accuracy": 0.375, "learning_rate": 3.102189781021898e-08, "epoch": 0.024840182648401828, "percentage": 0.62, "elapsed_time": "0:05:54", "remaining_time": "15:45:55"} +{"current_steps": 35, "total_steps": 5472, "loss": 0.687, "accuracy": 0.375, "learning_rate": 3.193430656934307e-08, "epoch": 0.025570776255707764, "percentage": 0.64, "elapsed_time": "0:06:05", "remaining_time": "15:45:37"} +{"current_steps": 36, "total_steps": 5472, "loss": 0.7275, "accuracy": 0.375, "learning_rate": 3.2846715328467156e-08, "epoch": 0.0263013698630137, "percentage": 0.66, "elapsed_time": "0:06:14", "remaining_time": "15:43:17"} +{"current_steps": 37, "total_steps": 5472, "loss": 0.7309, "accuracy": 0.5, "learning_rate": 3.375912408759124e-08, "epoch": 0.027031963470319633, "percentage": 0.68, "elapsed_time": "0:06:25", "remaining_time": "15:44:36"} +{"current_steps": 38, "total_steps": 5472, "loss": 0.684, "accuracy": 0.5, "learning_rate": 3.467153284671533e-08, "epoch": 0.02776255707762557, "percentage": 0.69, "elapsed_time": "0:06:36", "remaining_time": "15:45:25"} +{"current_steps": 39, "total_steps": 5472, "loss": 0.6943, "accuracy": 0.125, "learning_rate": 3.558394160583941e-08, "epoch": 0.028493150684931506, "percentage": 0.71, "elapsed_time": "0:06:45", "remaining_time": "15:42:38"} +{"current_steps": 40, "total_steps": 5472, "loss": 0.6999, "accuracy": 0.5, "learning_rate": 3.64963503649635e-08, "epoch": 0.029223744292237442, "percentage": 0.73, "elapsed_time": "0:06:55", "remaining_time": "15:40:45"} +{"current_steps": 41, "total_steps": 5472, "loss": 0.6974, "accuracy": 0.625, "learning_rate": 3.7408759124087594e-08, "epoch": 0.02995433789954338, "percentage": 0.75, "elapsed_time": "0:07:06", "remaining_time": "15:41:50"} +{"current_steps": 42, "total_steps": 5472, "loss": 0.6881, "accuracy": 0.375, "learning_rate": 3.8321167883211676e-08, "epoch": 0.030684931506849315, "percentage": 0.77, "elapsed_time": "0:07:16", "remaining_time": "15:40:35"} +{"current_steps": 43, "total_steps": 5472, "loss": 0.7106, "accuracy": 0.25, "learning_rate": 3.9233576642335765e-08, "epoch": 0.031415525114155254, "percentage": 0.79, "elapsed_time": "0:07:27", "remaining_time": "15:40:43"} +{"current_steps": 44, "total_steps": 5472, "loss": 0.7215, "accuracy": 0.375, "learning_rate": 4.0145985401459854e-08, "epoch": 0.032146118721461184, "percentage": 0.8, "elapsed_time": "0:07:36", "remaining_time": "15:38:26"} +{"current_steps": 45, "total_steps": 5472, "loss": 0.6966, "accuracy": 0.625, "learning_rate": 4.1058394160583937e-08, "epoch": 0.03287671232876712, "percentage": 0.82, "elapsed_time": "0:07:48", "remaining_time": "15:42:32"} +{"current_steps": 46, "total_steps": 5472, "loss": 0.7024, "accuracy": 0.25, "learning_rate": 4.1970802919708026e-08, "epoch": 0.033607305936073056, "percentage": 0.84, "elapsed_time": "0:07:58", "remaining_time": "15:39:49"} +{"current_steps": 47, "total_steps": 5472, "loss": 0.7042, "accuracy": 0.625, "learning_rate": 4.288321167883212e-08, "epoch": 0.03433789954337899, "percentage": 0.86, "elapsed_time": "0:08:06", "remaining_time": "15:36:27"} +{"current_steps": 48, "total_steps": 5472, "loss": 0.7124, "accuracy": 0.375, "learning_rate": 4.3795620437956203e-08, "epoch": 0.03506849315068493, "percentage": 0.88, "elapsed_time": "0:08:18", "remaining_time": "15:38:02"} +{"current_steps": 49, "total_steps": 5472, "loss": 0.7049, "accuracy": 0.625, "learning_rate": 4.470802919708029e-08, "epoch": 0.035799086757990865, "percentage": 0.9, "elapsed_time": "0:08:27", "remaining_time": "15:35:16"} +{"current_steps": 50, "total_steps": 5472, "loss": 0.7167, "accuracy": 0.25, "learning_rate": 4.5620437956204375e-08, "epoch": 0.0365296803652968, "percentage": 0.91, "elapsed_time": "0:08:37", "remaining_time": "15:34:27"} +{"current_steps": 51, "total_steps": 5472, "loss": 0.6899, "accuracy": 0.375, "learning_rate": 4.6532846715328464e-08, "epoch": 0.03726027397260274, "percentage": 0.93, "elapsed_time": "0:08:45", "remaining_time": "15:31:44"} +{"current_steps": 52, "total_steps": 5472, "loss": 0.7012, "accuracy": 0.5, "learning_rate": 4.744525547445255e-08, "epoch": 0.037990867579908674, "percentage": 0.95, "elapsed_time": "0:08:54", "remaining_time": "15:29:20"} +{"current_steps": 53, "total_steps": 5472, "loss": 0.6851, "accuracy": 0.875, "learning_rate": 4.835766423357664e-08, "epoch": 0.03872146118721461, "percentage": 0.97, "elapsed_time": "0:09:04", "remaining_time": "15:27:25"} +{"current_steps": 54, "total_steps": 5472, "loss": 0.6854, "accuracy": 0.5, "learning_rate": 4.927007299270073e-08, "epoch": 0.03945205479452055, "percentage": 0.99, "elapsed_time": "0:09:13", "remaining_time": "15:26:20"} +{"current_steps": 55, "total_steps": 5472, "loss": 0.6824, "accuracy": 0.75, "learning_rate": 5.018248175182482e-08, "epoch": 0.04018264840182648, "percentage": 1.01, "elapsed_time": "0:09:23", "remaining_time": "15:25:09"} +{"current_steps": 56, "total_steps": 5472, "loss": 0.6861, "accuracy": 0.625, "learning_rate": 5.10948905109489e-08, "epoch": 0.04091324200913242, "percentage": 1.02, "elapsed_time": "0:09:34", "remaining_time": "15:25:59"} +{"current_steps": 57, "total_steps": 5472, "loss": 0.6953, "accuracy": 0.625, "learning_rate": 5.200729927007299e-08, "epoch": 0.041643835616438356, "percentage": 1.04, "elapsed_time": "0:09:45", "remaining_time": "15:27:28"} +{"current_steps": 58, "total_steps": 5472, "loss": 0.6825, "accuracy": 0.625, "learning_rate": 5.291970802919707e-08, "epoch": 0.04237442922374429, "percentage": 1.06, "elapsed_time": "0:09:58", "remaining_time": "15:31:48"} +{"current_steps": 59, "total_steps": 5472, "loss": 0.6919, "accuracy": 0.625, "learning_rate": 5.383211678832116e-08, "epoch": 0.04310502283105023, "percentage": 1.08, "elapsed_time": "0:10:09", "remaining_time": "15:31:33"} +{"current_steps": 60, "total_steps": 5472, "loss": 0.6809, "accuracy": 0.5, "learning_rate": 5.474452554744526e-08, "epoch": 0.043835616438356165, "percentage": 1.1, "elapsed_time": "0:10:18", "remaining_time": "15:29:53"} +{"current_steps": 61, "total_steps": 5472, "loss": 0.6947, "accuracy": 0.5, "learning_rate": 5.565693430656934e-08, "epoch": 0.0445662100456621, "percentage": 1.11, "elapsed_time": "0:10:29", "remaining_time": "15:31:11"} +{"current_steps": 62, "total_steps": 5472, "loss": 0.6938, "accuracy": 0.375, "learning_rate": 5.656934306569343e-08, "epoch": 0.04529680365296804, "percentage": 1.13, "elapsed_time": "0:10:40", "remaining_time": "15:30:52"} +{"current_steps": 63, "total_steps": 5472, "loss": 0.6779, "accuracy": 0.75, "learning_rate": 5.748175182481752e-08, "epoch": 0.046027397260273974, "percentage": 1.15, "elapsed_time": "0:10:49", "remaining_time": "15:29:39"} +{"current_steps": 64, "total_steps": 5472, "loss": 0.6706, "accuracy": 0.625, "learning_rate": 5.83941605839416e-08, "epoch": 0.04675799086757991, "percentage": 1.17, "elapsed_time": "0:10:59", "remaining_time": "15:29:19"} +{"current_steps": 65, "total_steps": 5472, "loss": 0.7031, "accuracy": 0.75, "learning_rate": 5.930656934306569e-08, "epoch": 0.047488584474885846, "percentage": 1.19, "elapsed_time": "0:11:09", "remaining_time": "15:28:39"} +{"current_steps": 66, "total_steps": 5472, "loss": 0.6846, "accuracy": 0.375, "learning_rate": 6.021897810218978e-08, "epoch": 0.04821917808219178, "percentage": 1.21, "elapsed_time": "0:11:20", "remaining_time": "15:29:17"} +{"current_steps": 67, "total_steps": 5472, "loss": 0.7034, "accuracy": 0.375, "learning_rate": 6.113138686131387e-08, "epoch": 0.04894977168949772, "percentage": 1.22, "elapsed_time": "0:11:31", "remaining_time": "15:29:05"} +{"current_steps": 68, "total_steps": 5472, "loss": 0.6889, "accuracy": 0.5, "learning_rate": 6.204379562043796e-08, "epoch": 0.049680365296803655, "percentage": 1.24, "elapsed_time": "0:11:41", "remaining_time": "15:28:47"} +{"current_steps": 69, "total_steps": 5472, "loss": 0.6922, "accuracy": 0.625, "learning_rate": 6.295620437956205e-08, "epoch": 0.05041095890410959, "percentage": 1.26, "elapsed_time": "0:11:51", "remaining_time": "15:28:24"} +{"current_steps": 70, "total_steps": 5472, "loss": 0.7078, "accuracy": 0.375, "learning_rate": 6.386861313868613e-08, "epoch": 0.05114155251141553, "percentage": 1.28, "elapsed_time": "0:12:00", "remaining_time": "15:26:38"} +{"current_steps": 71, "total_steps": 5472, "loss": 0.6888, "accuracy": 0.5, "learning_rate": 6.478102189781022e-08, "epoch": 0.051872146118721464, "percentage": 1.3, "elapsed_time": "0:12:09", "remaining_time": "15:24:41"} +{"current_steps": 72, "total_steps": 5472, "loss": 0.6714, "accuracy": 0.75, "learning_rate": 6.569343065693431e-08, "epoch": 0.0526027397260274, "percentage": 1.32, "elapsed_time": "0:12:18", "remaining_time": "15:23:29"} +{"current_steps": 73, "total_steps": 5472, "loss": 0.6976, "accuracy": 0.375, "learning_rate": 6.66058394160584e-08, "epoch": 0.05333333333333334, "percentage": 1.33, "elapsed_time": "0:12:27", "remaining_time": "15:21:45"} +{"current_steps": 74, "total_steps": 5472, "loss": 0.681, "accuracy": 0.625, "learning_rate": 6.751824817518248e-08, "epoch": 0.054063926940639266, "percentage": 1.35, "elapsed_time": "0:12:38", "remaining_time": "15:21:55"} +{"current_steps": 75, "total_steps": 5472, "loss": 0.6977, "accuracy": 0.875, "learning_rate": 6.843065693430657e-08, "epoch": 0.0547945205479452, "percentage": 1.37, "elapsed_time": "0:12:48", "remaining_time": "15:21:17"} +{"current_steps": 76, "total_steps": 5472, "loss": 0.6762, "accuracy": 0.75, "learning_rate": 6.934306569343065e-08, "epoch": 0.05552511415525114, "percentage": 1.39, "elapsed_time": "0:12:57", "remaining_time": "15:20:27"} +{"current_steps": 77, "total_steps": 5472, "loss": 0.6957, "accuracy": 0.625, "learning_rate": 7.025547445255474e-08, "epoch": 0.056255707762557075, "percentage": 1.41, "elapsed_time": "0:13:10", "remaining_time": "15:23:17"} +{"current_steps": 78, "total_steps": 5472, "loss": 0.7023, "accuracy": 0.375, "learning_rate": 7.116788321167882e-08, "epoch": 0.05698630136986301, "percentage": 1.43, "elapsed_time": "0:13:20", "remaining_time": "15:22:20"} +{"current_steps": 79, "total_steps": 5472, "loss": 0.6823, "accuracy": 0.75, "learning_rate": 7.208029197080291e-08, "epoch": 0.05771689497716895, "percentage": 1.44, "elapsed_time": "0:13:30", "remaining_time": "15:22:00"} +{"current_steps": 80, "total_steps": 5472, "loss": 0.6631, "accuracy": 0.875, "learning_rate": 7.2992700729927e-08, "epoch": 0.058447488584474884, "percentage": 1.46, "elapsed_time": "0:13:40", "remaining_time": "15:21:15"} +{"current_steps": 81, "total_steps": 5472, "loss": 0.6892, "accuracy": 0.625, "learning_rate": 7.390510948905109e-08, "epoch": 0.05917808219178082, "percentage": 1.48, "elapsed_time": "0:13:49", "remaining_time": "15:19:35"} +{"current_steps": 82, "total_steps": 5472, "loss": 0.685, "accuracy": 0.625, "learning_rate": 7.481751824817519e-08, "epoch": 0.05990867579908676, "percentage": 1.5, "elapsed_time": "0:14:00", "remaining_time": "15:20:57"} +{"current_steps": 83, "total_steps": 5472, "loss": 0.6779, "accuracy": 0.625, "learning_rate": 7.572992700729927e-08, "epoch": 0.06063926940639269, "percentage": 1.52, "elapsed_time": "0:14:10", "remaining_time": "15:20:13"} +{"current_steps": 84, "total_steps": 5472, "loss": 0.6837, "accuracy": 0.5, "learning_rate": 7.664233576642335e-08, "epoch": 0.06136986301369863, "percentage": 1.54, "elapsed_time": "0:14:20", "remaining_time": "15:19:40"} +{"current_steps": 85, "total_steps": 5472, "loss": 0.684, "accuracy": 0.625, "learning_rate": 7.755474452554745e-08, "epoch": 0.062100456621004566, "percentage": 1.55, "elapsed_time": "0:14:29", "remaining_time": "15:18:38"} +{"current_steps": 86, "total_steps": 5472, "loss": 0.686, "accuracy": 0.5, "learning_rate": 7.846715328467153e-08, "epoch": 0.06283105022831051, "percentage": 1.57, "elapsed_time": "0:14:39", "remaining_time": "15:17:41"} +{"current_steps": 87, "total_steps": 5472, "loss": 0.687, "accuracy": 0.5, "learning_rate": 7.937956204379561e-08, "epoch": 0.06356164383561644, "percentage": 1.59, "elapsed_time": "0:14:48", "remaining_time": "15:16:34"} +{"current_steps": 88, "total_steps": 5472, "loss": 0.6953, "accuracy": 0.5, "learning_rate": 8.029197080291971e-08, "epoch": 0.06429223744292237, "percentage": 1.61, "elapsed_time": "0:14:58", "remaining_time": "15:16:21"} +{"current_steps": 89, "total_steps": 5472, "loss": 0.6851, "accuracy": 0.5, "learning_rate": 8.120437956204379e-08, "epoch": 0.06502283105022831, "percentage": 1.63, "elapsed_time": "0:15:07", "remaining_time": "15:14:47"} +{"current_steps": 90, "total_steps": 5472, "loss": 0.6883, "accuracy": 0.75, "learning_rate": 8.211678832116787e-08, "epoch": 0.06575342465753424, "percentage": 1.64, "elapsed_time": "0:15:16", "remaining_time": "15:13:49"} +{"current_steps": 91, "total_steps": 5472, "loss": 0.686, "accuracy": 0.75, "learning_rate": 8.302919708029197e-08, "epoch": 0.06648401826484018, "percentage": 1.66, "elapsed_time": "0:15:26", "remaining_time": "15:13:15"} +{"current_steps": 92, "total_steps": 5472, "loss": 0.705, "accuracy": 0.375, "learning_rate": 8.394160583941605e-08, "epoch": 0.06721461187214611, "percentage": 1.68, "elapsed_time": "0:15:36", "remaining_time": "15:12:22"} +{"current_steps": 93, "total_steps": 5472, "loss": 0.6788, "accuracy": 0.875, "learning_rate": 8.485401459854013e-08, "epoch": 0.06794520547945206, "percentage": 1.7, "elapsed_time": "0:15:45", "remaining_time": "15:11:34"} +{"current_steps": 94, "total_steps": 5472, "loss": 0.6808, "accuracy": 0.625, "learning_rate": 8.576642335766424e-08, "epoch": 0.06867579908675799, "percentage": 1.72, "elapsed_time": "0:15:55", "remaining_time": "15:11:30"} +{"current_steps": 95, "total_steps": 5472, "loss": 0.6803, "accuracy": 0.5, "learning_rate": 8.667883211678832e-08, "epoch": 0.06940639269406393, "percentage": 1.74, "elapsed_time": "0:16:05", "remaining_time": "15:10:38"} +{"current_steps": 96, "total_steps": 5472, "loss": 0.6754, "accuracy": 0.625, "learning_rate": 8.759124087591241e-08, "epoch": 0.07013698630136986, "percentage": 1.75, "elapsed_time": "0:16:15", "remaining_time": "15:10:05"} +{"current_steps": 97, "total_steps": 5472, "loss": 0.6982, "accuracy": 0.5, "learning_rate": 8.850364963503649e-08, "epoch": 0.0708675799086758, "percentage": 1.77, "elapsed_time": "0:16:26", "remaining_time": "15:10:53"} +{"current_steps": 98, "total_steps": 5472, "loss": 0.6638, "accuracy": 0.625, "learning_rate": 8.941605839416058e-08, "epoch": 0.07159817351598173, "percentage": 1.79, "elapsed_time": "0:16:35", "remaining_time": "15:10:11"} +{"current_steps": 99, "total_steps": 5472, "loss": 0.6709, "accuracy": 0.5, "learning_rate": 9.032846715328467e-08, "epoch": 0.07232876712328767, "percentage": 1.81, "elapsed_time": "0:16:46", "remaining_time": "15:10:07"} +{"current_steps": 100, "total_steps": 5472, "loss": 0.6935, "accuracy": 0.625, "learning_rate": 9.124087591240875e-08, "epoch": 0.0730593607305936, "percentage": 1.83, "elapsed_time": "0:16:56", "remaining_time": "15:10:03"} +{"current_steps": 101, "total_steps": 5472, "loss": 0.6619, "accuracy": 0.75, "learning_rate": 9.215328467153285e-08, "epoch": 0.07378995433789955, "percentage": 1.85, "elapsed_time": "0:17:06", "remaining_time": "15:09:42"} +{"current_steps": 102, "total_steps": 5472, "loss": 0.664, "accuracy": 0.625, "learning_rate": 9.306569343065693e-08, "epoch": 0.07452054794520548, "percentage": 1.86, "elapsed_time": "0:17:16", "remaining_time": "15:09:19"} +{"current_steps": 103, "total_steps": 5472, "loss": 0.6744, "accuracy": 0.5, "learning_rate": 9.397810218978101e-08, "epoch": 0.07525114155251142, "percentage": 1.88, "elapsed_time": "0:17:25", "remaining_time": "15:08:00"} +{"current_steps": 104, "total_steps": 5472, "loss": 0.6822, "accuracy": 0.75, "learning_rate": 9.48905109489051e-08, "epoch": 0.07598173515981735, "percentage": 1.9, "elapsed_time": "0:17:34", "remaining_time": "15:07:24"} +{"current_steps": 105, "total_steps": 5472, "loss": 0.6658, "accuracy": 0.5, "learning_rate": 9.580291970802919e-08, "epoch": 0.07671232876712329, "percentage": 1.92, "elapsed_time": "0:17:44", "remaining_time": "15:06:30"} +{"current_steps": 106, "total_steps": 5472, "loss": 0.6817, "accuracy": 0.875, "learning_rate": 9.671532846715328e-08, "epoch": 0.07744292237442922, "percentage": 1.94, "elapsed_time": "0:17:55", "remaining_time": "15:07:14"} +{"current_steps": 107, "total_steps": 5472, "loss": 0.6724, "accuracy": 0.875, "learning_rate": 9.762773722627738e-08, "epoch": 0.07817351598173516, "percentage": 1.96, "elapsed_time": "0:18:06", "remaining_time": "15:07:46"} +{"current_steps": 108, "total_steps": 5472, "loss": 0.6699, "accuracy": 0.25, "learning_rate": 9.854014598540146e-08, "epoch": 0.0789041095890411, "percentage": 1.97, "elapsed_time": "0:18:16", "remaining_time": "15:07:32"} +{"current_steps": 109, "total_steps": 5472, "loss": 0.64, "accuracy": 0.75, "learning_rate": 9.945255474452554e-08, "epoch": 0.07963470319634704, "percentage": 1.99, "elapsed_time": "0:18:26", "remaining_time": "15:07:36"} +{"current_steps": 110, "total_steps": 5472, "loss": 0.6566, "accuracy": 0.75, "learning_rate": 1.0036496350364964e-07, "epoch": 0.08036529680365297, "percentage": 2.01, "elapsed_time": "0:18:36", "remaining_time": "15:07:12"} +{"current_steps": 111, "total_steps": 5472, "loss": 0.6694, "accuracy": 0.5, "learning_rate": 1.0127737226277372e-07, "epoch": 0.08109589041095891, "percentage": 2.03, "elapsed_time": "0:18:48", "remaining_time": "15:08:04"} +{"current_steps": 112, "total_steps": 5472, "loss": 0.6562, "accuracy": 0.625, "learning_rate": 1.021897810218978e-07, "epoch": 0.08182648401826484, "percentage": 2.05, "elapsed_time": "0:18:58", "remaining_time": "15:07:52"} +{"current_steps": 113, "total_steps": 5472, "loss": 0.644, "accuracy": 0.75, "learning_rate": 1.0310218978102189e-07, "epoch": 0.08255707762557078, "percentage": 2.07, "elapsed_time": "0:19:07", "remaining_time": "15:06:44"} +{"current_steps": 114, "total_steps": 5472, "loss": 0.6668, "accuracy": 0.625, "learning_rate": 1.0401459854014598e-07, "epoch": 0.08328767123287671, "percentage": 2.08, "elapsed_time": "0:19:17", "remaining_time": "15:06:34"} +{"current_steps": 115, "total_steps": 5472, "loss": 0.6794, "accuracy": 0.75, "learning_rate": 1.0492700729927006e-07, "epoch": 0.08401826484018265, "percentage": 2.1, "elapsed_time": "0:19:27", "remaining_time": "15:06:04"} +{"current_steps": 116, "total_steps": 5472, "loss": 0.6823, "accuracy": 0.625, "learning_rate": 1.0583941605839415e-07, "epoch": 0.08474885844748858, "percentage": 2.12, "elapsed_time": "0:19:38", "remaining_time": "15:06:54"} +{"current_steps": 117, "total_steps": 5472, "loss": 0.6729, "accuracy": 0.75, "learning_rate": 1.0675182481751824e-07, "epoch": 0.08547945205479453, "percentage": 2.14, "elapsed_time": "0:19:48", "remaining_time": "15:06:39"} +{"current_steps": 118, "total_steps": 5472, "loss": 0.6576, "accuracy": 0.5, "learning_rate": 1.0766423357664232e-07, "epoch": 0.08621004566210046, "percentage": 2.16, "elapsed_time": "0:19:58", "remaining_time": "15:06:21"} +{"current_steps": 119, "total_steps": 5472, "loss": 0.6612, "accuracy": 0.75, "learning_rate": 1.0857664233576642e-07, "epoch": 0.08694063926940639, "percentage": 2.17, "elapsed_time": "0:20:07", "remaining_time": "15:05:24"} +{"current_steps": 120, "total_steps": 5472, "loss": 0.6752, "accuracy": 0.625, "learning_rate": 1.0948905109489052e-07, "epoch": 0.08767123287671233, "percentage": 2.19, "elapsed_time": "0:20:17", "remaining_time": "15:04:44"} +{"current_steps": 121, "total_steps": 5472, "loss": 0.6571, "accuracy": 0.625, "learning_rate": 1.104014598540146e-07, "epoch": 0.08840182648401826, "percentage": 2.21, "elapsed_time": "0:20:26", "remaining_time": "15:04:20"} +{"current_steps": 122, "total_steps": 5472, "loss": 0.6545, "accuracy": 0.5, "learning_rate": 1.1131386861313868e-07, "epoch": 0.0891324200913242, "percentage": 2.23, "elapsed_time": "0:20:36", "remaining_time": "15:04:02"} +{"current_steps": 123, "total_steps": 5472, "loss": 0.6585, "accuracy": 0.75, "learning_rate": 1.1222627737226278e-07, "epoch": 0.08986301369863013, "percentage": 2.25, "elapsed_time": "0:20:46", "remaining_time": "15:03:31"} +{"current_steps": 124, "total_steps": 5472, "loss": 0.6388, "accuracy": 0.5, "learning_rate": 1.1313868613138686e-07, "epoch": 0.09059360730593607, "percentage": 2.27, "elapsed_time": "0:20:55", "remaining_time": "15:02:35"} +{"current_steps": 125, "total_steps": 5472, "loss": 0.6275, "accuracy": 0.625, "learning_rate": 1.1405109489051094e-07, "epoch": 0.091324200913242, "percentage": 2.28, "elapsed_time": "0:21:05", "remaining_time": "15:02:27"} +{"current_steps": 126, "total_steps": 5472, "loss": 0.6445, "accuracy": 0.625, "learning_rate": 1.1496350364963504e-07, "epoch": 0.09205479452054795, "percentage": 2.3, "elapsed_time": "0:21:15", "remaining_time": "15:01:46"} +{"current_steps": 127, "total_steps": 5472, "loss": 0.6507, "accuracy": 1.0, "learning_rate": 1.1587591240875912e-07, "epoch": 0.09278538812785388, "percentage": 2.32, "elapsed_time": "0:21:25", "remaining_time": "15:01:38"} +{"current_steps": 128, "total_steps": 5472, "loss": 0.6269, "accuracy": 0.75, "learning_rate": 1.167883211678832e-07, "epoch": 0.09351598173515982, "percentage": 2.34, "elapsed_time": "0:21:35", "remaining_time": "15:01:28"} +{"current_steps": 129, "total_steps": 5472, "loss": 0.648, "accuracy": 0.75, "learning_rate": 1.1770072992700728e-07, "epoch": 0.09424657534246575, "percentage": 2.36, "elapsed_time": "0:21:45", "remaining_time": "15:01:03"} +{"current_steps": 130, "total_steps": 5472, "loss": 0.6529, "accuracy": 0.75, "learning_rate": 1.1861313868613138e-07, "epoch": 0.09497716894977169, "percentage": 2.38, "elapsed_time": "0:21:54", "remaining_time": "15:00:29"} +{"current_steps": 131, "total_steps": 5472, "loss": 0.6484, "accuracy": 0.625, "learning_rate": 1.1952554744525547e-07, "epoch": 0.09570776255707762, "percentage": 2.39, "elapsed_time": "0:22:04", "remaining_time": "14:59:59"} +{"current_steps": 132, "total_steps": 5472, "loss": 0.66, "accuracy": 0.5, "learning_rate": 1.2043795620437956e-07, "epoch": 0.09643835616438357, "percentage": 2.41, "elapsed_time": "0:22:14", "remaining_time": "14:59:55"} +{"current_steps": 133, "total_steps": 5472, "loss": 0.6669, "accuracy": 0.75, "learning_rate": 1.2135036496350364e-07, "epoch": 0.0971689497716895, "percentage": 2.43, "elapsed_time": "0:22:24", "remaining_time": "14:59:12"} +{"current_steps": 134, "total_steps": 5472, "loss": 0.6751, "accuracy": 0.75, "learning_rate": 1.2226277372262775e-07, "epoch": 0.09789954337899544, "percentage": 2.45, "elapsed_time": "0:22:34", "remaining_time": "14:59:11"} +{"current_steps": 135, "total_steps": 5472, "loss": 0.6097, "accuracy": 0.75, "learning_rate": 1.2317518248175183e-07, "epoch": 0.09863013698630137, "percentage": 2.47, "elapsed_time": "0:22:45", "remaining_time": "14:59:39"} +{"current_steps": 136, "total_steps": 5472, "loss": 0.6393, "accuracy": 0.75, "learning_rate": 1.240875912408759e-07, "epoch": 0.09936073059360731, "percentage": 2.49, "elapsed_time": "0:22:55", "remaining_time": "14:59:35"} +{"current_steps": 137, "total_steps": 5472, "loss": 0.6802, "accuracy": 0.875, "learning_rate": 1.25e-07, "epoch": 0.10009132420091324, "percentage": 2.5, "elapsed_time": "0:23:06", "remaining_time": "14:59:43"} +{"current_steps": 138, "total_steps": 5472, "loss": 0.6367, "accuracy": 0.75, "learning_rate": 1.259124087591241e-07, "epoch": 0.10082191780821918, "percentage": 2.52, "elapsed_time": "0:23:15", "remaining_time": "14:58:53"} +{"current_steps": 139, "total_steps": 5472, "loss": 0.6618, "accuracy": 0.75, "learning_rate": 1.2682481751824816e-07, "epoch": 0.10155251141552511, "percentage": 2.54, "elapsed_time": "0:23:24", "remaining_time": "14:57:54"} +{"current_steps": 140, "total_steps": 5472, "loss": 0.6241, "accuracy": 0.75, "learning_rate": 1.2773722627737227e-07, "epoch": 0.10228310502283106, "percentage": 2.56, "elapsed_time": "0:23:34", "remaining_time": "14:57:45"} +{"current_steps": 141, "total_steps": 5472, "loss": 0.6389, "accuracy": 1.0, "learning_rate": 1.2864963503649635e-07, "epoch": 0.10301369863013699, "percentage": 2.58, "elapsed_time": "0:23:44", "remaining_time": "14:57:34"} +{"current_steps": 142, "total_steps": 5472, "loss": 0.6311, "accuracy": 0.875, "learning_rate": 1.2956204379562043e-07, "epoch": 0.10374429223744293, "percentage": 2.6, "elapsed_time": "0:23:54", "remaining_time": "14:57:08"} +{"current_steps": 143, "total_steps": 5472, "loss": 0.6171, "accuracy": 0.625, "learning_rate": 1.3047445255474451e-07, "epoch": 0.10447488584474886, "percentage": 2.61, "elapsed_time": "0:24:03", "remaining_time": "14:56:44"} +{"current_steps": 144, "total_steps": 5472, "loss": 0.6432, "accuracy": 0.875, "learning_rate": 1.3138686131386862e-07, "epoch": 0.1052054794520548, "percentage": 2.63, "elapsed_time": "0:24:13", "remaining_time": "14:56:12"} +{"current_steps": 145, "total_steps": 5472, "loss": 0.6706, "accuracy": 0.625, "learning_rate": 1.3229927007299268e-07, "epoch": 0.10593607305936073, "percentage": 2.65, "elapsed_time": "0:24:23", "remaining_time": "14:56:19"} +{"current_steps": 146, "total_steps": 5472, "loss": 0.6306, "accuracy": 0.625, "learning_rate": 1.332116788321168e-07, "epoch": 0.10666666666666667, "percentage": 2.67, "elapsed_time": "0:24:33", "remaining_time": "14:55:59"} +{"current_steps": 147, "total_steps": 5472, "loss": 0.6645, "accuracy": 0.625, "learning_rate": 1.3412408759124087e-07, "epoch": 0.1073972602739726, "percentage": 2.69, "elapsed_time": "0:24:45", "remaining_time": "14:56:45"} +{"current_steps": 148, "total_steps": 5472, "loss": 0.6128, "accuracy": 0.625, "learning_rate": 1.3503649635036495e-07, "epoch": 0.10812785388127853, "percentage": 2.7, "elapsed_time": "0:24:54", "remaining_time": "14:56:04"} +{"current_steps": 149, "total_steps": 5472, "loss": 0.6211, "accuracy": 0.625, "learning_rate": 1.3594890510948904e-07, "epoch": 0.10885844748858448, "percentage": 2.72, "elapsed_time": "0:25:03", "remaining_time": "14:55:24"} +{"current_steps": 150, "total_steps": 5472, "loss": 0.6526, "accuracy": 0.5, "learning_rate": 1.3686131386861314e-07, "epoch": 0.1095890410958904, "percentage": 2.74, "elapsed_time": "0:25:12", "remaining_time": "14:54:35"} +{"current_steps": 151, "total_steps": 5472, "loss": 0.6239, "accuracy": 0.625, "learning_rate": 1.3777372262773723e-07, "epoch": 0.11031963470319635, "percentage": 2.76, "elapsed_time": "0:25:22", "remaining_time": "14:54:03"} +{"current_steps": 152, "total_steps": 5472, "loss": 0.6522, "accuracy": 0.625, "learning_rate": 1.386861313868613e-07, "epoch": 0.11105022831050228, "percentage": 2.78, "elapsed_time": "0:25:34", "remaining_time": "14:55:16"} +{"current_steps": 153, "total_steps": 5472, "loss": 0.6, "accuracy": 0.5, "learning_rate": 1.3959854014598542e-07, "epoch": 0.11178082191780822, "percentage": 2.8, "elapsed_time": "0:25:44", "remaining_time": "14:55:11"} +{"current_steps": 154, "total_steps": 5472, "loss": 0.6297, "accuracy": 0.875, "learning_rate": 1.4051094890510947e-07, "epoch": 0.11251141552511415, "percentage": 2.81, "elapsed_time": "0:25:56", "remaining_time": "14:56:00"} +{"current_steps": 155, "total_steps": 5472, "loss": 0.6553, "accuracy": 0.625, "learning_rate": 1.4142335766423358e-07, "epoch": 0.1132420091324201, "percentage": 2.83, "elapsed_time": "0:26:06", "remaining_time": "14:55:41"} +{"current_steps": 156, "total_steps": 5472, "loss": 0.6291, "accuracy": 0.625, "learning_rate": 1.4233576642335764e-07, "epoch": 0.11397260273972602, "percentage": 2.85, "elapsed_time": "0:26:15", "remaining_time": "14:54:59"} +{"current_steps": 157, "total_steps": 5472, "loss": 0.6098, "accuracy": 0.75, "learning_rate": 1.4324817518248175e-07, "epoch": 0.11470319634703197, "percentage": 2.87, "elapsed_time": "0:26:24", "remaining_time": "14:54:15"} +{"current_steps": 158, "total_steps": 5472, "loss": 0.6026, "accuracy": 0.75, "learning_rate": 1.4416058394160583e-07, "epoch": 0.1154337899543379, "percentage": 2.89, "elapsed_time": "0:26:35", "remaining_time": "14:54:30"} +{"current_steps": 159, "total_steps": 5472, "loss": 0.5769, "accuracy": 1.0, "learning_rate": 1.450729927007299e-07, "epoch": 0.11616438356164384, "percentage": 2.91, "elapsed_time": "0:26:45", "remaining_time": "14:53:55"} +{"current_steps": 160, "total_steps": 5472, "loss": 0.6774, "accuracy": 0.875, "learning_rate": 1.45985401459854e-07, "epoch": 0.11689497716894977, "percentage": 2.92, "elapsed_time": "0:26:55", "remaining_time": "14:53:59"} +{"current_steps": 161, "total_steps": 5472, "loss": 0.625, "accuracy": 0.375, "learning_rate": 1.468978102189781e-07, "epoch": 0.11762557077625571, "percentage": 2.94, "elapsed_time": "0:27:06", "remaining_time": "14:54:18"} +{"current_steps": 162, "total_steps": 5472, "loss": 0.6718, "accuracy": 0.75, "learning_rate": 1.4781021897810219e-07, "epoch": 0.11835616438356164, "percentage": 2.96, "elapsed_time": "0:27:18", "remaining_time": "14:55:10"} +{"current_steps": 163, "total_steps": 5472, "loss": 0.5996, "accuracy": 0.75, "learning_rate": 1.4872262773722627e-07, "epoch": 0.11908675799086758, "percentage": 2.98, "elapsed_time": "0:27:27", "remaining_time": "14:54:30"} +{"current_steps": 164, "total_steps": 5472, "loss": 0.6241, "accuracy": 0.75, "learning_rate": 1.4963503649635038e-07, "epoch": 0.11981735159817351, "percentage": 3.0, "elapsed_time": "0:27:38", "remaining_time": "14:54:40"} +{"current_steps": 165, "total_steps": 5472, "loss": 0.6116, "accuracy": 0.75, "learning_rate": 1.5054744525547443e-07, "epoch": 0.12054794520547946, "percentage": 3.02, "elapsed_time": "0:27:47", "remaining_time": "14:53:50"} +{"current_steps": 166, "total_steps": 5472, "loss": 0.5983, "accuracy": 0.875, "learning_rate": 1.5145985401459854e-07, "epoch": 0.12127853881278539, "percentage": 3.03, "elapsed_time": "0:27:56", "remaining_time": "14:53:23"} +{"current_steps": 167, "total_steps": 5472, "loss": 0.549, "accuracy": 0.625, "learning_rate": 1.5237226277372262e-07, "epoch": 0.12200913242009133, "percentage": 3.05, "elapsed_time": "0:28:07", "remaining_time": "14:53:28"} +{"current_steps": 168, "total_steps": 5472, "loss": 0.6284, "accuracy": 0.625, "learning_rate": 1.532846715328467e-07, "epoch": 0.12273972602739726, "percentage": 3.07, "elapsed_time": "0:28:16", "remaining_time": "14:52:44"} +{"current_steps": 169, "total_steps": 5472, "loss": 0.6338, "accuracy": 0.625, "learning_rate": 1.541970802919708e-07, "epoch": 0.1234703196347032, "percentage": 3.09, "elapsed_time": "0:28:26", "remaining_time": "14:52:26"} +{"current_steps": 170, "total_steps": 5472, "loss": 0.6539, "accuracy": 0.5, "learning_rate": 1.551094890510949e-07, "epoch": 0.12420091324200913, "percentage": 3.11, "elapsed_time": "0:28:38", "remaining_time": "14:53:24"} +{"current_steps": 171, "total_steps": 5472, "loss": 0.5903, "accuracy": 0.625, "learning_rate": 1.5602189781021895e-07, "epoch": 0.12493150684931507, "percentage": 3.12, "elapsed_time": "0:28:48", "remaining_time": "14:52:57"} +{"current_steps": 172, "total_steps": 5472, "loss": 0.5695, "accuracy": 0.625, "learning_rate": 1.5693430656934306e-07, "epoch": 0.12566210045662102, "percentage": 3.14, "elapsed_time": "0:28:58", "remaining_time": "14:52:41"} +{"current_steps": 173, "total_steps": 5472, "loss": 0.5963, "accuracy": 0.875, "learning_rate": 1.5784671532846714e-07, "epoch": 0.12639269406392695, "percentage": 3.16, "elapsed_time": "0:29:08", "remaining_time": "14:52:39"} +{"current_steps": 174, "total_steps": 5472, "loss": 0.614, "accuracy": 0.625, "learning_rate": 1.5875912408759123e-07, "epoch": 0.12712328767123288, "percentage": 3.18, "elapsed_time": "0:29:18", "remaining_time": "14:52:11"} +{"current_steps": 175, "total_steps": 5472, "loss": 0.5778, "accuracy": 0.5, "learning_rate": 1.5967153284671533e-07, "epoch": 0.1278538812785388, "percentage": 3.2, "elapsed_time": "0:29:28", "remaining_time": "14:52:10"} +{"current_steps": 176, "total_steps": 5472, "loss": 0.5677, "accuracy": 0.75, "learning_rate": 1.6058394160583942e-07, "epoch": 0.12858447488584474, "percentage": 3.22, "elapsed_time": "0:29:38", "remaining_time": "14:51:44"} +{"current_steps": 177, "total_steps": 5472, "loss": 0.5922, "accuracy": 0.75, "learning_rate": 1.614963503649635e-07, "epoch": 0.1293150684931507, "percentage": 3.23, "elapsed_time": "0:29:47", "remaining_time": "14:51:27"} +{"current_steps": 178, "total_steps": 5472, "loss": 0.6139, "accuracy": 1.0, "learning_rate": 1.6240875912408758e-07, "epoch": 0.13004566210045662, "percentage": 3.25, "elapsed_time": "0:29:58", "remaining_time": "14:51:17"} +{"current_steps": 179, "total_steps": 5472, "loss": 0.5301, "accuracy": 0.875, "learning_rate": 1.633211678832117e-07, "epoch": 0.13077625570776255, "percentage": 3.27, "elapsed_time": "0:30:08", "remaining_time": "14:51:16"} +{"current_steps": 180, "total_steps": 5472, "loss": 0.5186, "accuracy": 1.0, "learning_rate": 1.6423357664233575e-07, "epoch": 0.13150684931506848, "percentage": 3.29, "elapsed_time": "0:30:18", "remaining_time": "14:50:53"} +{"current_steps": 181, "total_steps": 5472, "loss": 0.5858, "accuracy": 0.75, "learning_rate": 1.6514598540145986e-07, "epoch": 0.13223744292237444, "percentage": 3.31, "elapsed_time": "0:30:29", "remaining_time": "14:51:19"} +{"current_steps": 182, "total_steps": 5472, "loss": 0.6017, "accuracy": 0.625, "learning_rate": 1.6605839416058394e-07, "epoch": 0.13296803652968037, "percentage": 3.33, "elapsed_time": "0:30:39", "remaining_time": "14:51:02"} +{"current_steps": 183, "total_steps": 5472, "loss": 0.5771, "accuracy": 0.75, "learning_rate": 1.6697080291970802e-07, "epoch": 0.1336986301369863, "percentage": 3.34, "elapsed_time": "0:30:48", "remaining_time": "14:50:22"} +{"current_steps": 184, "total_steps": 5472, "loss": 0.7233, "accuracy": 0.25, "learning_rate": 1.678832116788321e-07, "epoch": 0.13442922374429223, "percentage": 3.36, "elapsed_time": "0:30:57", "remaining_time": "14:49:55"} +{"current_steps": 185, "total_steps": 5472, "loss": 0.5356, "accuracy": 0.75, "learning_rate": 1.687956204379562e-07, "epoch": 0.13515981735159818, "percentage": 3.38, "elapsed_time": "0:31:07", "remaining_time": "14:49:23"} +{"current_steps": 186, "total_steps": 5472, "loss": 0.6003, "accuracy": 0.75, "learning_rate": 1.6970802919708027e-07, "epoch": 0.1358904109589041, "percentage": 3.4, "elapsed_time": "0:31:18", "remaining_time": "14:49:40"} +{"current_steps": 187, "total_steps": 5472, "loss": 0.6584, "accuracy": 0.625, "learning_rate": 1.7062043795620438e-07, "epoch": 0.13662100456621004, "percentage": 3.42, "elapsed_time": "0:31:28", "remaining_time": "14:49:27"} +{"current_steps": 188, "total_steps": 5472, "loss": 0.5917, "accuracy": 0.375, "learning_rate": 1.7153284671532848e-07, "epoch": 0.13735159817351597, "percentage": 3.44, "elapsed_time": "0:31:38", "remaining_time": "14:49:25"} +{"current_steps": 189, "total_steps": 5472, "loss": 0.663, "accuracy": 0.625, "learning_rate": 1.7244525547445254e-07, "epoch": 0.13808219178082193, "percentage": 3.45, "elapsed_time": "0:31:48", "remaining_time": "14:49:03"} +{"current_steps": 190, "total_steps": 5472, "loss": 0.572, "accuracy": 0.75, "learning_rate": 1.7335766423357665e-07, "epoch": 0.13881278538812786, "percentage": 3.47, "elapsed_time": "0:32:00", "remaining_time": "14:49:40"} +{"current_steps": 191, "total_steps": 5472, "loss": 0.6067, "accuracy": 0.75, "learning_rate": 1.742700729927007e-07, "epoch": 0.1395433789954338, "percentage": 3.49, "elapsed_time": "0:32:09", "remaining_time": "14:49:17"} +{"current_steps": 192, "total_steps": 5472, "loss": 0.52, "accuracy": 0.875, "learning_rate": 1.7518248175182481e-07, "epoch": 0.14027397260273972, "percentage": 3.51, "elapsed_time": "0:32:19", "remaining_time": "14:49:02"} +{"current_steps": 193, "total_steps": 5472, "loss": 0.5664, "accuracy": 1.0, "learning_rate": 1.760948905109489e-07, "epoch": 0.14100456621004567, "percentage": 3.53, "elapsed_time": "0:32:30", "remaining_time": "14:49:09"} +{"current_steps": 194, "total_steps": 5472, "loss": 0.5672, "accuracy": 0.875, "learning_rate": 1.7700729927007298e-07, "epoch": 0.1417351598173516, "percentage": 3.55, "elapsed_time": "0:32:40", "remaining_time": "14:48:47"} +{"current_steps": 195, "total_steps": 5472, "loss": 0.5772, "accuracy": 0.75, "learning_rate": 1.7791970802919706e-07, "epoch": 0.14246575342465753, "percentage": 3.56, "elapsed_time": "0:32:49", "remaining_time": "14:48:25"} +{"current_steps": 196, "total_steps": 5472, "loss": 0.5903, "accuracy": 0.75, "learning_rate": 1.7883211678832117e-07, "epoch": 0.14319634703196346, "percentage": 3.58, "elapsed_time": "0:32:59", "remaining_time": "14:48:15"} +{"current_steps": 197, "total_steps": 5472, "loss": 0.6653, "accuracy": 0.625, "learning_rate": 1.7974452554744523e-07, "epoch": 0.14392694063926942, "percentage": 3.6, "elapsed_time": "0:33:10", "remaining_time": "14:48:12"} +{"current_steps": 198, "total_steps": 5472, "loss": 0.5215, "accuracy": 0.75, "learning_rate": 1.8065693430656933e-07, "epoch": 0.14465753424657535, "percentage": 3.62, "elapsed_time": "0:33:19", "remaining_time": "14:47:29"} +{"current_steps": 199, "total_steps": 5472, "loss": 0.5185, "accuracy": 0.875, "learning_rate": 1.8156934306569342e-07, "epoch": 0.14538812785388128, "percentage": 3.64, "elapsed_time": "0:33:29", "remaining_time": "14:47:31"} +{"current_steps": 200, "total_steps": 5472, "loss": 0.5573, "accuracy": 0.625, "learning_rate": 1.824817518248175e-07, "epoch": 0.1461187214611872, "percentage": 3.65, "elapsed_time": "0:33:40", "remaining_time": "14:47:29"} +{"current_steps": 201, "total_steps": 5472, "loss": 0.6035, "accuracy": 0.5, "learning_rate": 1.833941605839416e-07, "epoch": 0.14684931506849316, "percentage": 3.67, "elapsed_time": "0:33:50", "remaining_time": "14:47:36"} +{"current_steps": 202, "total_steps": 5472, "loss": 0.5538, "accuracy": 0.875, "learning_rate": 1.843065693430657e-07, "epoch": 0.1475799086757991, "percentage": 3.69, "elapsed_time": "0:34:00", "remaining_time": "14:47:10"} +{"current_steps": 203, "total_steps": 5472, "loss": 0.6336, "accuracy": 0.625, "learning_rate": 1.8521897810218977e-07, "epoch": 0.14831050228310502, "percentage": 3.71, "elapsed_time": "0:34:10", "remaining_time": "14:47:12"} +{"current_steps": 204, "total_steps": 5472, "loss": 0.5285, "accuracy": 0.625, "learning_rate": 1.8613138686131385e-07, "epoch": 0.14904109589041095, "percentage": 3.73, "elapsed_time": "0:34:21", "remaining_time": "14:47:18"} +{"current_steps": 205, "total_steps": 5472, "loss": 0.6821, "accuracy": 0.75, "learning_rate": 1.8704379562043796e-07, "epoch": 0.14977168949771688, "percentage": 3.75, "elapsed_time": "0:34:31", "remaining_time": "14:47:01"} +{"current_steps": 206, "total_steps": 5472, "loss": 0.5741, "accuracy": 0.75, "learning_rate": 1.8795620437956202e-07, "epoch": 0.15050228310502284, "percentage": 3.76, "elapsed_time": "0:34:43", "remaining_time": "14:47:32"} +{"current_steps": 207, "total_steps": 5472, "loss": 0.5803, "accuracy": 0.875, "learning_rate": 1.8886861313868613e-07, "epoch": 0.15123287671232877, "percentage": 3.78, "elapsed_time": "0:34:52", "remaining_time": "14:47:00"} +{"current_steps": 208, "total_steps": 5472, "loss": 0.7517, "accuracy": 0.5, "learning_rate": 1.897810218978102e-07, "epoch": 0.1519634703196347, "percentage": 3.8, "elapsed_time": "0:35:03", "remaining_time": "14:47:05"} +{"current_steps": 209, "total_steps": 5472, "loss": 0.6547, "accuracy": 0.375, "learning_rate": 1.906934306569343e-07, "epoch": 0.15269406392694063, "percentage": 3.82, "elapsed_time": "0:35:12", "remaining_time": "14:46:34"} +{"current_steps": 210, "total_steps": 5472, "loss": 0.5204, "accuracy": 0.875, "learning_rate": 1.9160583941605838e-07, "epoch": 0.15342465753424658, "percentage": 3.84, "elapsed_time": "0:35:22", "remaining_time": "14:46:26"} +{"current_steps": 211, "total_steps": 5472, "loss": 0.5211, "accuracy": 0.75, "learning_rate": 1.9251824817518248e-07, "epoch": 0.1541552511415525, "percentage": 3.86, "elapsed_time": "0:35:32", "remaining_time": "14:46:03"} +{"current_steps": 212, "total_steps": 5472, "loss": 0.5922, "accuracy": 0.625, "learning_rate": 1.9343065693430657e-07, "epoch": 0.15488584474885844, "percentage": 3.87, "elapsed_time": "0:35:41", "remaining_time": "14:45:27"} +{"current_steps": 213, "total_steps": 5472, "loss": 0.5708, "accuracy": 0.75, "learning_rate": 1.9434306569343065e-07, "epoch": 0.15561643835616437, "percentage": 3.89, "elapsed_time": "0:35:51", "remaining_time": "14:45:09"} +{"current_steps": 214, "total_steps": 5472, "loss": 0.6234, "accuracy": 0.75, "learning_rate": 1.9525547445255476e-07, "epoch": 0.15634703196347033, "percentage": 3.91, "elapsed_time": "0:36:01", "remaining_time": "14:44:57"} +{"current_steps": 215, "total_steps": 5472, "loss": 0.6602, "accuracy": 0.25, "learning_rate": 1.9616788321167881e-07, "epoch": 0.15707762557077626, "percentage": 3.93, "elapsed_time": "0:36:12", "remaining_time": "14:45:22"} +{"current_steps": 216, "total_steps": 5472, "loss": 0.5428, "accuracy": 0.75, "learning_rate": 1.9708029197080292e-07, "epoch": 0.1578082191780822, "percentage": 3.95, "elapsed_time": "0:36:22", "remaining_time": "14:45:08"} +{"current_steps": 217, "total_steps": 5472, "loss": 0.5425, "accuracy": 0.875, "learning_rate": 1.97992700729927e-07, "epoch": 0.15853881278538812, "percentage": 3.97, "elapsed_time": "0:36:31", "remaining_time": "14:44:23"} +{"current_steps": 218, "total_steps": 5472, "loss": 0.6745, "accuracy": 0.625, "learning_rate": 1.989051094890511e-07, "epoch": 0.15926940639269407, "percentage": 3.98, "elapsed_time": "0:36:42", "remaining_time": "14:44:54"} +{"current_steps": 219, "total_steps": 5472, "loss": 0.595, "accuracy": 0.5, "learning_rate": 1.9981751824817517e-07, "epoch": 0.16, "percentage": 4.0, "elapsed_time": "0:36:53", "remaining_time": "14:44:44"} +{"current_steps": 220, "total_steps": 5472, "loss": 0.5532, "accuracy": 0.875, "learning_rate": 2.0072992700729928e-07, "epoch": 0.16073059360730593, "percentage": 4.02, "elapsed_time": "0:37:04", "remaining_time": "14:44:56"} +{"current_steps": 221, "total_steps": 5472, "loss": 0.5409, "accuracy": 0.875, "learning_rate": 2.0164233576642333e-07, "epoch": 0.16146118721461186, "percentage": 4.04, "elapsed_time": "0:37:13", "remaining_time": "14:44:18"} +{"current_steps": 222, "total_steps": 5472, "loss": 0.5107, "accuracy": 0.75, "learning_rate": 2.0255474452554744e-07, "epoch": 0.16219178082191782, "percentage": 4.06, "elapsed_time": "0:37:22", "remaining_time": "14:43:52"} +{"current_steps": 223, "total_steps": 5472, "loss": 0.5538, "accuracy": 0.75, "learning_rate": 2.034671532846715e-07, "epoch": 0.16292237442922375, "percentage": 4.08, "elapsed_time": "0:37:33", "remaining_time": "14:43:56"} +{"current_steps": 224, "total_steps": 5472, "loss": 0.6198, "accuracy": 0.625, "learning_rate": 2.043795620437956e-07, "epoch": 0.16365296803652968, "percentage": 4.09, "elapsed_time": "0:37:44", "remaining_time": "14:44:05"} +{"current_steps": 225, "total_steps": 5472, "loss": 0.5061, "accuracy": 0.75, "learning_rate": 2.0529197080291972e-07, "epoch": 0.1643835616438356, "percentage": 4.11, "elapsed_time": "0:37:53", "remaining_time": "14:43:27"} +{"current_steps": 226, "total_steps": 5472, "loss": 0.51, "accuracy": 0.5, "learning_rate": 2.0620437956204377e-07, "epoch": 0.16511415525114156, "percentage": 4.13, "elapsed_time": "0:38:02", "remaining_time": "14:43:06"} +{"current_steps": 227, "total_steps": 5472, "loss": 0.5151, "accuracy": 0.875, "learning_rate": 2.0711678832116788e-07, "epoch": 0.1658447488584475, "percentage": 4.15, "elapsed_time": "0:38:11", "remaining_time": "14:42:36"} +{"current_steps": 228, "total_steps": 5472, "loss": 0.5181, "accuracy": 1.0, "learning_rate": 2.0802919708029196e-07, "epoch": 0.16657534246575342, "percentage": 4.17, "elapsed_time": "0:38:20", "remaining_time": "14:41:57"} +{"current_steps": 229, "total_steps": 5472, "loss": 0.6213, "accuracy": 0.625, "learning_rate": 2.0894160583941605e-07, "epoch": 0.16730593607305935, "percentage": 4.18, "elapsed_time": "0:38:31", "remaining_time": "14:42:05"} +{"current_steps": 230, "total_steps": 5472, "loss": 0.523, "accuracy": 0.625, "learning_rate": 2.0985401459854013e-07, "epoch": 0.1680365296803653, "percentage": 4.2, "elapsed_time": "0:38:41", "remaining_time": "14:41:59"} +{"current_steps": 231, "total_steps": 5472, "loss": 0.5164, "accuracy": 0.75, "learning_rate": 2.1076642335766424e-07, "epoch": 0.16876712328767124, "percentage": 4.22, "elapsed_time": "0:38:51", "remaining_time": "14:41:26"} +{"current_steps": 232, "total_steps": 5472, "loss": 0.5974, "accuracy": 0.5, "learning_rate": 2.116788321167883e-07, "epoch": 0.16949771689497717, "percentage": 4.24, "elapsed_time": "0:39:00", "remaining_time": "14:40:56"} +{"current_steps": 233, "total_steps": 5472, "loss": 0.6834, "accuracy": 0.5, "learning_rate": 2.125912408759124e-07, "epoch": 0.1702283105022831, "percentage": 4.26, "elapsed_time": "0:39:10", "remaining_time": "14:40:41"} +{"current_steps": 234, "total_steps": 5472, "loss": 0.4778, "accuracy": 0.625, "learning_rate": 2.1350364963503648e-07, "epoch": 0.17095890410958905, "percentage": 4.28, "elapsed_time": "0:39:18", "remaining_time": "14:40:01"} +{"current_steps": 235, "total_steps": 5472, "loss": 0.5382, "accuracy": 0.875, "learning_rate": 2.1441605839416057e-07, "epoch": 0.17168949771689498, "percentage": 4.29, "elapsed_time": "0:39:28", "remaining_time": "14:39:40"} +{"current_steps": 236, "total_steps": 5472, "loss": 0.5077, "accuracy": 0.5, "learning_rate": 2.1532846715328465e-07, "epoch": 0.1724200913242009, "percentage": 4.31, "elapsed_time": "0:39:37", "remaining_time": "14:39:03"} +{"current_steps": 237, "total_steps": 5472, "loss": 0.574, "accuracy": 0.75, "learning_rate": 2.1624087591240876e-07, "epoch": 0.17315068493150684, "percentage": 4.33, "elapsed_time": "0:39:46", "remaining_time": "14:38:25"} +{"current_steps": 238, "total_steps": 5472, "loss": 0.6038, "accuracy": 0.75, "learning_rate": 2.1715328467153284e-07, "epoch": 0.17388127853881277, "percentage": 4.35, "elapsed_time": "0:39:56", "remaining_time": "14:38:24"} +{"current_steps": 239, "total_steps": 5472, "loss": 0.5156, "accuracy": 0.875, "learning_rate": 2.1806569343065692e-07, "epoch": 0.17461187214611873, "percentage": 4.37, "elapsed_time": "0:40:06", "remaining_time": "14:38:17"} +{"current_steps": 240, "total_steps": 5472, "loss": 0.6712, "accuracy": 0.5, "learning_rate": 2.1897810218978103e-07, "epoch": 0.17534246575342466, "percentage": 4.39, "elapsed_time": "0:40:18", "remaining_time": "14:38:36"} +{"current_steps": 241, "total_steps": 5472, "loss": 0.5362, "accuracy": 0.75, "learning_rate": 2.1989051094890509e-07, "epoch": 0.1760730593607306, "percentage": 4.4, "elapsed_time": "0:40:32", "remaining_time": "14:39:48"} +{"current_steps": 242, "total_steps": 5472, "loss": 0.5623, "accuracy": 0.625, "learning_rate": 2.208029197080292e-07, "epoch": 0.17680365296803652, "percentage": 4.42, "elapsed_time": "0:40:42", "remaining_time": "14:39:41"} +{"current_steps": 243, "total_steps": 5472, "loss": 0.4896, "accuracy": 0.625, "learning_rate": 2.2171532846715328e-07, "epoch": 0.17753424657534247, "percentage": 4.44, "elapsed_time": "0:40:52", "remaining_time": "14:39:25"} +{"current_steps": 244, "total_steps": 5472, "loss": 0.5279, "accuracy": 0.75, "learning_rate": 2.2262773722627736e-07, "epoch": 0.1782648401826484, "percentage": 4.46, "elapsed_time": "0:41:01", "remaining_time": "14:39:09"} +{"current_steps": 245, "total_steps": 5472, "loss": 0.5492, "accuracy": 0.875, "learning_rate": 2.2354014598540144e-07, "epoch": 0.17899543378995433, "percentage": 4.48, "elapsed_time": "0:41:12", "remaining_time": "14:39:09"} +{"current_steps": 246, "total_steps": 5472, "loss": 0.503, "accuracy": 0.75, "learning_rate": 2.2445255474452555e-07, "epoch": 0.17972602739726026, "percentage": 4.5, "elapsed_time": "0:41:22", "remaining_time": "14:39:05"} +{"current_steps": 247, "total_steps": 5472, "loss": 0.5104, "accuracy": 1.0, "learning_rate": 2.253649635036496e-07, "epoch": 0.18045662100456622, "percentage": 4.51, "elapsed_time": "0:41:33", "remaining_time": "14:39:09"} +{"current_steps": 248, "total_steps": 5472, "loss": 0.6383, "accuracy": 0.75, "learning_rate": 2.2627737226277372e-07, "epoch": 0.18118721461187215, "percentage": 4.53, "elapsed_time": "0:41:44", "remaining_time": "14:39:26"} +{"current_steps": 249, "total_steps": 5472, "loss": 0.5014, "accuracy": 0.875, "learning_rate": 2.271897810218978e-07, "epoch": 0.18191780821917808, "percentage": 4.55, "elapsed_time": "0:41:54", "remaining_time": "14:38:57"} +{"current_steps": 250, "total_steps": 5472, "loss": 0.4913, "accuracy": 0.875, "learning_rate": 2.2810218978102188e-07, "epoch": 0.182648401826484, "percentage": 4.57, "elapsed_time": "0:42:04", "remaining_time": "14:38:50"} +{"current_steps": 251, "total_steps": 5472, "loss": 0.6398, "accuracy": 0.75, "learning_rate": 2.29014598540146e-07, "epoch": 0.18337899543378997, "percentage": 4.59, "elapsed_time": "0:42:13", "remaining_time": "14:38:22"} +{"current_steps": 252, "total_steps": 5472, "loss": 0.489, "accuracy": 0.75, "learning_rate": 2.2992700729927007e-07, "epoch": 0.1841095890410959, "percentage": 4.61, "elapsed_time": "0:42:23", "remaining_time": "14:38:10"} +{"current_steps": 253, "total_steps": 5472, "loss": 0.5413, "accuracy": 0.625, "learning_rate": 2.3083941605839415e-07, "epoch": 0.18484018264840182, "percentage": 4.62, "elapsed_time": "0:42:33", "remaining_time": "14:37:52"} +{"current_steps": 254, "total_steps": 5472, "loss": 0.5148, "accuracy": 0.5, "learning_rate": 2.3175182481751824e-07, "epoch": 0.18557077625570775, "percentage": 4.64, "elapsed_time": "0:42:42", "remaining_time": "14:37:12"} +{"current_steps": 255, "total_steps": 5472, "loss": 0.5023, "accuracy": 0.75, "learning_rate": 2.3266423357664234e-07, "epoch": 0.1863013698630137, "percentage": 4.66, "elapsed_time": "0:42:52", "remaining_time": "14:37:07"} +{"current_steps": 256, "total_steps": 5472, "loss": 0.5511, "accuracy": 0.75, "learning_rate": 2.335766423357664e-07, "epoch": 0.18703196347031964, "percentage": 4.68, "elapsed_time": "0:43:02", "remaining_time": "14:37:03"} +{"current_steps": 257, "total_steps": 5472, "loss": 0.5079, "accuracy": 0.875, "learning_rate": 2.344890510948905e-07, "epoch": 0.18776255707762557, "percentage": 4.7, "elapsed_time": "0:43:12", "remaining_time": "14:36:42"} +{"current_steps": 258, "total_steps": 5472, "loss": 0.5468, "accuracy": 0.5, "learning_rate": 2.3540145985401457e-07, "epoch": 0.1884931506849315, "percentage": 4.71, "elapsed_time": "0:43:22", "remaining_time": "14:36:42"} +{"current_steps": 259, "total_steps": 5472, "loss": 0.6011, "accuracy": 0.5, "learning_rate": 2.3631386861313867e-07, "epoch": 0.18922374429223746, "percentage": 4.73, "elapsed_time": "0:43:35", "remaining_time": "14:37:20"} +{"current_steps": 260, "total_steps": 5472, "loss": 0.57, "accuracy": 0.5, "learning_rate": 2.3722627737226276e-07, "epoch": 0.18995433789954339, "percentage": 4.75, "elapsed_time": "0:43:46", "remaining_time": "14:37:28"} +{"current_steps": 261, "total_steps": 5472, "loss": 0.5265, "accuracy": 0.875, "learning_rate": 2.3813868613138684e-07, "epoch": 0.19068493150684931, "percentage": 4.77, "elapsed_time": "0:43:56", "remaining_time": "14:37:17"} +{"current_steps": 262, "total_steps": 5472, "loss": 0.473, "accuracy": 1.0, "learning_rate": 2.3905109489051095e-07, "epoch": 0.19141552511415524, "percentage": 4.79, "elapsed_time": "0:44:07", "remaining_time": "14:37:26"} +{"current_steps": 263, "total_steps": 5472, "loss": 0.4913, "accuracy": 1.0, "learning_rate": 2.3996350364963503e-07, "epoch": 0.1921461187214612, "percentage": 4.81, "elapsed_time": "0:44:17", "remaining_time": "14:37:11"} +{"current_steps": 264, "total_steps": 5472, "loss": 0.5481, "accuracy": 0.5, "learning_rate": 2.408759124087591e-07, "epoch": 0.19287671232876713, "percentage": 4.82, "elapsed_time": "0:44:27", "remaining_time": "14:37:00"} +{"current_steps": 265, "total_steps": 5472, "loss": 0.4669, "accuracy": 0.75, "learning_rate": 2.417883211678832e-07, "epoch": 0.19360730593607306, "percentage": 4.84, "elapsed_time": "0:44:37", "remaining_time": "14:36:55"} +{"current_steps": 266, "total_steps": 5472, "loss": 0.4924, "accuracy": 0.75, "learning_rate": 2.427007299270073e-07, "epoch": 0.194337899543379, "percentage": 4.86, "elapsed_time": "0:44:48", "remaining_time": "14:36:48"} +{"current_steps": 267, "total_steps": 5472, "loss": 0.5561, "accuracy": 0.625, "learning_rate": 2.4361313868613136e-07, "epoch": 0.19506849315068492, "percentage": 4.88, "elapsed_time": "0:44:57", "remaining_time": "14:36:28"} +{"current_steps": 268, "total_steps": 5472, "loss": 0.5295, "accuracy": 0.625, "learning_rate": 2.445255474452555e-07, "epoch": 0.19579908675799088, "percentage": 4.9, "elapsed_time": "0:45:07", "remaining_time": "14:36:08"} +{"current_steps": 269, "total_steps": 5472, "loss": 0.4243, "accuracy": 0.875, "learning_rate": 2.454379562043795e-07, "epoch": 0.1965296803652968, "percentage": 4.92, "elapsed_time": "0:45:18", "remaining_time": "14:36:19"} +{"current_steps": 270, "total_steps": 5472, "loss": 0.5419, "accuracy": 0.625, "learning_rate": 2.4635036496350366e-07, "epoch": 0.19726027397260273, "percentage": 4.93, "elapsed_time": "0:45:28", "remaining_time": "14:36:06"} +{"current_steps": 271, "total_steps": 5472, "loss": 0.3854, "accuracy": 0.875, "learning_rate": 2.4726277372262774e-07, "epoch": 0.19799086757990866, "percentage": 4.95, "elapsed_time": "0:45:38", "remaining_time": "14:35:54"} +{"current_steps": 272, "total_steps": 5472, "loss": 0.6039, "accuracy": 0.625, "learning_rate": 2.481751824817518e-07, "epoch": 0.19872146118721462, "percentage": 4.97, "elapsed_time": "0:45:47", "remaining_time": "14:35:33"} +{"current_steps": 273, "total_steps": 5472, "loss": 0.519, "accuracy": 0.75, "learning_rate": 2.490875912408759e-07, "epoch": 0.19945205479452055, "percentage": 4.99, "elapsed_time": "0:45:57", "remaining_time": "14:35:10"} +{"current_steps": 274, "total_steps": 5472, "loss": 0.4469, "accuracy": 0.875, "learning_rate": 2.5e-07, "epoch": 0.20018264840182648, "percentage": 5.01, "elapsed_time": "0:46:05", "remaining_time": "14:34:33"} +{"current_steps": 275, "total_steps": 5472, "loss": 0.5264, "accuracy": 1.0, "learning_rate": 2.5091240875912407e-07, "epoch": 0.2009132420091324, "percentage": 5.03, "elapsed_time": "0:46:16", "remaining_time": "14:34:21"} +{"current_steps": 276, "total_steps": 5472, "loss": 0.5812, "accuracy": 0.625, "learning_rate": 2.518248175182482e-07, "epoch": 0.20164383561643837, "percentage": 5.04, "elapsed_time": "0:46:26", "remaining_time": "14:34:21"} +{"current_steps": 277, "total_steps": 5472, "loss": 0.5581, "accuracy": 0.75, "learning_rate": 2.5273722627737224e-07, "epoch": 0.2023744292237443, "percentage": 5.06, "elapsed_time": "0:46:36", "remaining_time": "14:33:58"} +{"current_steps": 278, "total_steps": 5472, "loss": 0.5971, "accuracy": 0.875, "learning_rate": 2.536496350364963e-07, "epoch": 0.20310502283105022, "percentage": 5.08, "elapsed_time": "0:46:45", "remaining_time": "14:33:41"} +{"current_steps": 279, "total_steps": 5472, "loss": 0.4536, "accuracy": 0.75, "learning_rate": 2.545620437956204e-07, "epoch": 0.20383561643835615, "percentage": 5.1, "elapsed_time": "0:46:54", "remaining_time": "14:33:12"} +{"current_steps": 280, "total_steps": 5472, "loss": 0.5786, "accuracy": 0.625, "learning_rate": 2.5547445255474454e-07, "epoch": 0.2045662100456621, "percentage": 5.12, "elapsed_time": "0:47:05", "remaining_time": "14:33:17"} +{"current_steps": 281, "total_steps": 5472, "loss": 0.5628, "accuracy": 0.875, "learning_rate": 2.563868613138686e-07, "epoch": 0.20529680365296804, "percentage": 5.14, "elapsed_time": "0:47:16", "remaining_time": "14:33:17"} +{"current_steps": 282, "total_steps": 5472, "loss": 0.5042, "accuracy": 0.75, "learning_rate": 2.572992700729927e-07, "epoch": 0.20602739726027397, "percentage": 5.15, "elapsed_time": "0:47:25", "remaining_time": "14:32:48"} +{"current_steps": 283, "total_steps": 5472, "loss": 0.5581, "accuracy": 0.625, "learning_rate": 2.5821167883211673e-07, "epoch": 0.2067579908675799, "percentage": 5.17, "elapsed_time": "0:47:35", "remaining_time": "14:32:45"} +{"current_steps": 284, "total_steps": 5472, "loss": 0.4842, "accuracy": 0.75, "learning_rate": 2.5912408759124086e-07, "epoch": 0.20748858447488586, "percentage": 5.19, "elapsed_time": "0:47:45", "remaining_time": "14:32:21"} +{"current_steps": 285, "total_steps": 5472, "loss": 0.5208, "accuracy": 0.625, "learning_rate": 2.6003649635036495e-07, "epoch": 0.20821917808219179, "percentage": 5.21, "elapsed_time": "0:47:55", "remaining_time": "14:32:22"} +{"current_steps": 286, "total_steps": 5472, "loss": 0.5421, "accuracy": 0.625, "learning_rate": 2.6094890510948903e-07, "epoch": 0.20894977168949772, "percentage": 5.23, "elapsed_time": "0:48:05", "remaining_time": "14:32:10"} +{"current_steps": 287, "total_steps": 5472, "loss": 0.5115, "accuracy": 0.5, "learning_rate": 2.6186131386861316e-07, "epoch": 0.20968036529680364, "percentage": 5.24, "elapsed_time": "0:48:15", "remaining_time": "14:31:59"} +{"current_steps": 288, "total_steps": 5472, "loss": 0.671, "accuracy": 0.625, "learning_rate": 2.6277372262773725e-07, "epoch": 0.2104109589041096, "percentage": 5.26, "elapsed_time": "0:48:26", "remaining_time": "14:31:57"} +{"current_steps": 289, "total_steps": 5472, "loss": 0.537, "accuracy": 0.75, "learning_rate": 2.636861313868613e-07, "epoch": 0.21114155251141553, "percentage": 5.28, "elapsed_time": "0:48:35", "remaining_time": "14:31:28"} +{"current_steps": 290, "total_steps": 5472, "loss": 0.4947, "accuracy": 0.625, "learning_rate": 2.6459854014598536e-07, "epoch": 0.21187214611872146, "percentage": 5.3, "elapsed_time": "0:48:44", "remaining_time": "14:30:59"} +{"current_steps": 291, "total_steps": 5472, "loss": 0.571, "accuracy": 0.75, "learning_rate": 2.655109489051095e-07, "epoch": 0.2126027397260274, "percentage": 5.32, "elapsed_time": "0:48:53", "remaining_time": "14:30:36"} +{"current_steps": 292, "total_steps": 5472, "loss": 0.5175, "accuracy": 0.625, "learning_rate": 2.664233576642336e-07, "epoch": 0.21333333333333335, "percentage": 5.34, "elapsed_time": "0:49:03", "remaining_time": "14:30:09"} +{"current_steps": 293, "total_steps": 5472, "loss": 0.4949, "accuracy": 1.0, "learning_rate": 2.6733576642335766e-07, "epoch": 0.21406392694063928, "percentage": 5.35, "elapsed_time": "0:49:13", "remaining_time": "14:30:05"} +{"current_steps": 294, "total_steps": 5472, "loss": 0.6626, "accuracy": 0.5, "learning_rate": 2.6824817518248174e-07, "epoch": 0.2147945205479452, "percentage": 5.37, "elapsed_time": "0:49:23", "remaining_time": "14:30:00"} +{"current_steps": 295, "total_steps": 5472, "loss": 0.5482, "accuracy": 0.75, "learning_rate": 2.691605839416058e-07, "epoch": 0.21552511415525114, "percentage": 5.39, "elapsed_time": "0:49:33", "remaining_time": "14:29:49"} +{"current_steps": 296, "total_steps": 5472, "loss": 0.5415, "accuracy": 0.75, "learning_rate": 2.700729927007299e-07, "epoch": 0.21625570776255706, "percentage": 5.41, "elapsed_time": "0:49:42", "remaining_time": "14:29:18"} +{"current_steps": 297, "total_steps": 5472, "loss": 0.4443, "accuracy": 0.75, "learning_rate": 2.70985401459854e-07, "epoch": 0.21698630136986302, "percentage": 5.43, "elapsed_time": "0:49:51", "remaining_time": "14:28:51"} +{"current_steps": 298, "total_steps": 5472, "loss": 0.542, "accuracy": 0.875, "learning_rate": 2.7189781021897807e-07, "epoch": 0.21771689497716895, "percentage": 5.45, "elapsed_time": "0:50:03", "remaining_time": "14:29:05"} +{"current_steps": 299, "total_steps": 5472, "loss": 0.5531, "accuracy": 0.25, "learning_rate": 2.728102189781022e-07, "epoch": 0.21844748858447488, "percentage": 5.46, "elapsed_time": "0:50:14", "remaining_time": "14:29:05"} +{"current_steps": 300, "total_steps": 5472, "loss": 0.5509, "accuracy": 0.5, "learning_rate": 2.737226277372263e-07, "epoch": 0.2191780821917808, "percentage": 5.48, "elapsed_time": "0:50:23", "remaining_time": "14:28:42"} +{"current_steps": 301, "total_steps": 5472, "loss": 0.6039, "accuracy": 0.75, "learning_rate": 2.746350364963503e-07, "epoch": 0.21990867579908677, "percentage": 5.5, "elapsed_time": "0:50:33", "remaining_time": "14:28:28"} +{"current_steps": 302, "total_steps": 5472, "loss": 0.632, "accuracy": 0.625, "learning_rate": 2.7554744525547445e-07, "epoch": 0.2206392694063927, "percentage": 5.52, "elapsed_time": "0:50:43", "remaining_time": "14:28:27"} +{"current_steps": 303, "total_steps": 5472, "loss": 0.5863, "accuracy": 0.625, "learning_rate": 2.7645985401459854e-07, "epoch": 0.22136986301369863, "percentage": 5.54, "elapsed_time": "0:50:53", "remaining_time": "14:28:16"} +{"current_steps": 304, "total_steps": 5472, "loss": 0.4428, "accuracy": 0.875, "learning_rate": 2.773722627737226e-07, "epoch": 0.22210045662100455, "percentage": 5.56, "elapsed_time": "0:51:02", "remaining_time": "14:27:45"} +{"current_steps": 305, "total_steps": 5472, "loss": 0.3992, "accuracy": 0.75, "learning_rate": 2.782846715328467e-07, "epoch": 0.2228310502283105, "percentage": 5.57, "elapsed_time": "0:51:11", "remaining_time": "14:27:18"} +{"current_steps": 306, "total_steps": 5472, "loss": 0.4879, "accuracy": 0.875, "learning_rate": 2.7919708029197084e-07, "epoch": 0.22356164383561644, "percentage": 5.59, "elapsed_time": "0:51:21", "remaining_time": "14:27:09"} +{"current_steps": 307, "total_steps": 5472, "loss": 0.4469, "accuracy": 0.875, "learning_rate": 2.8010948905109486e-07, "epoch": 0.22429223744292237, "percentage": 5.61, "elapsed_time": "0:51:31", "remaining_time": "14:26:54"} +{"current_steps": 308, "total_steps": 5472, "loss": 0.5365, "accuracy": 0.5, "learning_rate": 2.8102189781021895e-07, "epoch": 0.2250228310502283, "percentage": 5.63, "elapsed_time": "0:51:42", "remaining_time": "14:27:03"} +{"current_steps": 309, "total_steps": 5472, "loss": 0.4448, "accuracy": 0.625, "learning_rate": 2.8193430656934303e-07, "epoch": 0.22575342465753426, "percentage": 5.65, "elapsed_time": "0:51:52", "remaining_time": "14:26:47"} +{"current_steps": 310, "total_steps": 5472, "loss": 0.5819, "accuracy": 0.5, "learning_rate": 2.8284671532846716e-07, "epoch": 0.2264840182648402, "percentage": 5.67, "elapsed_time": "0:52:03", "remaining_time": "14:26:49"} +{"current_steps": 311, "total_steps": 5472, "loss": 0.5572, "accuracy": 0.75, "learning_rate": 2.8375912408759125e-07, "epoch": 0.22721461187214612, "percentage": 5.68, "elapsed_time": "0:52:13", "remaining_time": "14:26:39"} +{"current_steps": 312, "total_steps": 5472, "loss": 0.4552, "accuracy": 0.5, "learning_rate": 2.846715328467153e-07, "epoch": 0.22794520547945205, "percentage": 5.7, "elapsed_time": "0:52:23", "remaining_time": "14:26:26"} +{"current_steps": 313, "total_steps": 5472, "loss": 0.4383, "accuracy": 0.875, "learning_rate": 2.855839416058394e-07, "epoch": 0.228675799086758, "percentage": 5.72, "elapsed_time": "0:52:32", "remaining_time": "14:26:00"} +{"current_steps": 314, "total_steps": 5472, "loss": 0.4215, "accuracy": 0.75, "learning_rate": 2.864963503649635e-07, "epoch": 0.22940639269406393, "percentage": 5.74, "elapsed_time": "0:52:42", "remaining_time": "14:25:44"} +{"current_steps": 315, "total_steps": 5472, "loss": 0.4516, "accuracy": 0.875, "learning_rate": 2.874087591240876e-07, "epoch": 0.23013698630136986, "percentage": 5.76, "elapsed_time": "0:52:52", "remaining_time": "14:25:44"} +{"current_steps": 316, "total_steps": 5472, "loss": 0.5474, "accuracy": 0.75, "learning_rate": 2.8832116788321166e-07, "epoch": 0.2308675799086758, "percentage": 5.77, "elapsed_time": "0:53:04", "remaining_time": "14:25:58"} +{"current_steps": 317, "total_steps": 5472, "loss": 0.5048, "accuracy": 0.75, "learning_rate": 2.892335766423358e-07, "epoch": 0.23159817351598175, "percentage": 5.79, "elapsed_time": "0:53:14", "remaining_time": "14:25:40"} +{"current_steps": 318, "total_steps": 5472, "loss": 0.5384, "accuracy": 0.625, "learning_rate": 2.901459854014598e-07, "epoch": 0.23232876712328768, "percentage": 5.81, "elapsed_time": "0:53:23", "remaining_time": "14:25:14"} +{"current_steps": 319, "total_steps": 5472, "loss": 0.4563, "accuracy": 0.75, "learning_rate": 2.910583941605839e-07, "epoch": 0.2330593607305936, "percentage": 5.83, "elapsed_time": "0:53:32", "remaining_time": "14:24:56"} +{"current_steps": 320, "total_steps": 5472, "loss": 0.4949, "accuracy": 0.625, "learning_rate": 2.91970802919708e-07, "epoch": 0.23378995433789954, "percentage": 5.85, "elapsed_time": "0:53:42", "remaining_time": "14:24:36"} +{"current_steps": 321, "total_steps": 5472, "loss": 0.4722, "accuracy": 0.75, "learning_rate": 2.928832116788321e-07, "epoch": 0.2345205479452055, "percentage": 5.87, "elapsed_time": "0:53:50", "remaining_time": "14:24:06"} +{"current_steps": 322, "total_steps": 5472, "loss": 0.393, "accuracy": 0.75, "learning_rate": 2.937956204379562e-07, "epoch": 0.23525114155251142, "percentage": 5.88, "elapsed_time": "0:53:59", "remaining_time": "14:23:36"} +{"current_steps": 323, "total_steps": 5472, "loss": 0.498, "accuracy": 0.625, "learning_rate": 2.947080291970803e-07, "epoch": 0.23598173515981735, "percentage": 5.9, "elapsed_time": "0:54:09", "remaining_time": "14:23:25"} +{"current_steps": 324, "total_steps": 5472, "loss": 0.5788, "accuracy": 0.75, "learning_rate": 2.9562043795620437e-07, "epoch": 0.23671232876712328, "percentage": 5.92, "elapsed_time": "0:54:20", "remaining_time": "14:23:20"} +{"current_steps": 325, "total_steps": 5472, "loss": 0.5042, "accuracy": 0.75, "learning_rate": 2.9653284671532845e-07, "epoch": 0.2374429223744292, "percentage": 5.94, "elapsed_time": "0:54:29", "remaining_time": "14:22:57"} +{"current_steps": 326, "total_steps": 5472, "loss": 0.545, "accuracy": 0.75, "learning_rate": 2.9744525547445253e-07, "epoch": 0.23817351598173517, "percentage": 5.96, "elapsed_time": "0:54:39", "remaining_time": "14:22:46"} +{"current_steps": 327, "total_steps": 5472, "loss": 0.5181, "accuracy": 0.625, "learning_rate": 2.983576642335766e-07, "epoch": 0.2389041095890411, "percentage": 5.98, "elapsed_time": "0:54:48", "remaining_time": "14:22:18"} +{"current_steps": 328, "total_steps": 5472, "loss": 0.5644, "accuracy": 0.375, "learning_rate": 2.9927007299270075e-07, "epoch": 0.23963470319634703, "percentage": 5.99, "elapsed_time": "0:54:57", "remaining_time": "14:21:56"} +{"current_steps": 329, "total_steps": 5472, "loss": 0.4919, "accuracy": 0.875, "learning_rate": 3.0018248175182483e-07, "epoch": 0.24036529680365296, "percentage": 6.01, "elapsed_time": "0:55:06", "remaining_time": "14:21:33"} +{"current_steps": 330, "total_steps": 5472, "loss": 0.5438, "accuracy": 0.75, "learning_rate": 3.0109489051094886e-07, "epoch": 0.2410958904109589, "percentage": 6.03, "elapsed_time": "0:55:17", "remaining_time": "14:21:36"} +{"current_steps": 331, "total_steps": 5472, "loss": 0.5158, "accuracy": 0.625, "learning_rate": 3.0200729927007295e-07, "epoch": 0.24182648401826484, "percentage": 6.05, "elapsed_time": "0:55:27", "remaining_time": "14:21:24"} +{"current_steps": 332, "total_steps": 5472, "loss": 0.6226, "accuracy": 0.625, "learning_rate": 3.029197080291971e-07, "epoch": 0.24255707762557077, "percentage": 6.07, "elapsed_time": "0:55:38", "remaining_time": "14:21:20"} +{"current_steps": 333, "total_steps": 5472, "loss": 0.5478, "accuracy": 0.75, "learning_rate": 3.0383211678832116e-07, "epoch": 0.2432876712328767, "percentage": 6.09, "elapsed_time": "0:55:47", "remaining_time": "14:21:00"} +{"current_steps": 334, "total_steps": 5472, "loss": 0.5887, "accuracy": 0.625, "learning_rate": 3.0474452554744525e-07, "epoch": 0.24401826484018266, "percentage": 6.1, "elapsed_time": "0:55:57", "remaining_time": "14:20:54"} +{"current_steps": 335, "total_steps": 5472, "loss": 0.3564, "accuracy": 0.75, "learning_rate": 3.0565693430656933e-07, "epoch": 0.2447488584474886, "percentage": 6.12, "elapsed_time": "0:56:07", "remaining_time": "14:20:32"} +{"current_steps": 336, "total_steps": 5472, "loss": 0.4341, "accuracy": 1.0, "learning_rate": 3.065693430656934e-07, "epoch": 0.24547945205479452, "percentage": 6.14, "elapsed_time": "0:56:16", "remaining_time": "14:20:13"} +{"current_steps": 337, "total_steps": 5472, "loss": 0.4516, "accuracy": 0.75, "learning_rate": 3.074817518248175e-07, "epoch": 0.24621004566210045, "percentage": 6.16, "elapsed_time": "0:56:25", "remaining_time": "14:19:49"} +{"current_steps": 338, "total_steps": 5472, "loss": 0.5517, "accuracy": 0.375, "learning_rate": 3.083941605839416e-07, "epoch": 0.2469406392694064, "percentage": 6.18, "elapsed_time": "0:56:34", "remaining_time": "14:19:25"} +{"current_steps": 339, "total_steps": 5472, "loss": 0.5302, "accuracy": 0.625, "learning_rate": 3.093065693430657e-07, "epoch": 0.24767123287671233, "percentage": 6.2, "elapsed_time": "0:56:45", "remaining_time": "14:19:22"} +{"current_steps": 340, "total_steps": 5472, "loss": 0.4985, "accuracy": 0.625, "learning_rate": 3.102189781021898e-07, "epoch": 0.24840182648401826, "percentage": 6.21, "elapsed_time": "0:56:54", "remaining_time": "14:19:04"} +{"current_steps": 341, "total_steps": 5472, "loss": 0.5246, "accuracy": 0.875, "learning_rate": 3.111313868613139e-07, "epoch": 0.2491324200913242, "percentage": 6.23, "elapsed_time": "0:57:03", "remaining_time": "14:18:39"} +{"current_steps": 342, "total_steps": 5472, "loss": 0.3634, "accuracy": 0.875, "learning_rate": 3.120437956204379e-07, "epoch": 0.24986301369863015, "percentage": 6.25, "elapsed_time": "0:57:13", "remaining_time": "14:18:19"} +{"current_steps": 343, "total_steps": 5472, "loss": 0.4509, "accuracy": 0.75, "learning_rate": 3.1295620437956204e-07, "epoch": 0.25059360730593605, "percentage": 6.27, "elapsed_time": "0:57:23", "remaining_time": "14:18:15"} +{"current_steps": 344, "total_steps": 5472, "loss": 0.4069, "accuracy": 0.75, "learning_rate": 3.138686131386861e-07, "epoch": 0.25132420091324204, "percentage": 6.29, "elapsed_time": "0:57:32", "remaining_time": "14:17:46"} +{"current_steps": 345, "total_steps": 5472, "loss": 0.4332, "accuracy": 0.875, "learning_rate": 3.147810218978102e-07, "epoch": 0.25205479452054796, "percentage": 6.3, "elapsed_time": "0:57:43", "remaining_time": "14:17:46"} +{"current_steps": 346, "total_steps": 5472, "loss": 0.4389, "accuracy": 0.75, "learning_rate": 3.156934306569343e-07, "epoch": 0.2527853881278539, "percentage": 6.32, "elapsed_time": "0:57:52", "remaining_time": "14:17:24"} +{"current_steps": 347, "total_steps": 5472, "loss": 0.4796, "accuracy": 0.75, "learning_rate": 3.1660583941605837e-07, "epoch": 0.2535159817351598, "percentage": 6.34, "elapsed_time": "0:58:03", "remaining_time": "14:17:31"} +{"current_steps": 348, "total_steps": 5472, "loss": 0.4923, "accuracy": 0.875, "learning_rate": 3.1751824817518245e-07, "epoch": 0.25424657534246575, "percentage": 6.36, "elapsed_time": "0:58:17", "remaining_time": "14:18:13"} +{"current_steps": 349, "total_steps": 5472, "loss": 0.5068, "accuracy": 0.75, "learning_rate": 3.1843065693430653e-07, "epoch": 0.2549771689497717, "percentage": 6.38, "elapsed_time": "0:58:26", "remaining_time": "14:17:57"} +{"current_steps": 350, "total_steps": 5472, "loss": 0.43, "accuracy": 0.5, "learning_rate": 3.1934306569343067e-07, "epoch": 0.2557077625570776, "percentage": 6.4, "elapsed_time": "0:58:36", "remaining_time": "14:17:38"} +{"current_steps": 351, "total_steps": 5472, "loss": 0.485, "accuracy": 0.625, "learning_rate": 3.2025547445255475e-07, "epoch": 0.25643835616438354, "percentage": 6.41, "elapsed_time": "0:58:45", "remaining_time": "14:17:19"} +{"current_steps": 352, "total_steps": 5472, "loss": 0.3594, "accuracy": 0.875, "learning_rate": 3.2116788321167883e-07, "epoch": 0.25716894977168947, "percentage": 6.43, "elapsed_time": "0:58:55", "remaining_time": "14:17:00"} +{"current_steps": 353, "total_steps": 5472, "loss": 0.4782, "accuracy": 0.625, "learning_rate": 3.2208029197080286e-07, "epoch": 0.25789954337899546, "percentage": 6.45, "elapsed_time": "0:59:04", "remaining_time": "14:16:45"} +{"current_steps": 354, "total_steps": 5472, "loss": 0.6685, "accuracy": 0.875, "learning_rate": 3.22992700729927e-07, "epoch": 0.2586301369863014, "percentage": 6.47, "elapsed_time": "0:59:14", "remaining_time": "14:16:25"} +{"current_steps": 355, "total_steps": 5472, "loss": 0.5627, "accuracy": 0.75, "learning_rate": 3.239051094890511e-07, "epoch": 0.2593607305936073, "percentage": 6.49, "elapsed_time": "0:59:25", "remaining_time": "14:16:32"} +{"current_steps": 356, "total_steps": 5472, "loss": 0.4686, "accuracy": 0.75, "learning_rate": 3.2481751824817516e-07, "epoch": 0.26009132420091324, "percentage": 6.51, "elapsed_time": "0:59:35", "remaining_time": "14:16:20"} +{"current_steps": 357, "total_steps": 5472, "loss": 0.4385, "accuracy": 1.0, "learning_rate": 3.2572992700729925e-07, "epoch": 0.2608219178082192, "percentage": 6.52, "elapsed_time": "0:59:46", "remaining_time": "14:16:28"} +{"current_steps": 358, "total_steps": 5472, "loss": 0.4254, "accuracy": 0.5, "learning_rate": 3.266423357664234e-07, "epoch": 0.2615525114155251, "percentage": 6.54, "elapsed_time": "0:59:57", "remaining_time": "14:16:36"} +{"current_steps": 359, "total_steps": 5472, "loss": 0.4848, "accuracy": 0.625, "learning_rate": 3.275547445255474e-07, "epoch": 0.26228310502283103, "percentage": 6.56, "elapsed_time": "1:00:09", "remaining_time": "14:16:42"} +{"current_steps": 360, "total_steps": 5472, "loss": 0.477, "accuracy": 0.75, "learning_rate": 3.284671532846715e-07, "epoch": 0.26301369863013696, "percentage": 6.58, "elapsed_time": "1:00:20", "remaining_time": "14:16:53"} +{"current_steps": 361, "total_steps": 5472, "loss": 0.5117, "accuracy": 0.75, "learning_rate": 3.293795620437956e-07, "epoch": 0.26374429223744295, "percentage": 6.6, "elapsed_time": "1:00:31", "remaining_time": "14:17:00"} +{"current_steps": 362, "total_steps": 5472, "loss": 0.4955, "accuracy": 0.5, "learning_rate": 3.302919708029197e-07, "epoch": 0.2644748858447489, "percentage": 6.62, "elapsed_time": "1:00:44", "remaining_time": "14:17:19"} +{"current_steps": 363, "total_steps": 5472, "loss": 0.5966, "accuracy": 0.625, "learning_rate": 3.312043795620438e-07, "epoch": 0.2652054794520548, "percentage": 6.63, "elapsed_time": "1:00:55", "remaining_time": "14:17:23"} +{"current_steps": 364, "total_steps": 5472, "loss": 0.4747, "accuracy": 0.75, "learning_rate": 3.321167883211679e-07, "epoch": 0.26593607305936073, "percentage": 6.65, "elapsed_time": "1:01:05", "remaining_time": "14:17:21"} +{"current_steps": 365, "total_steps": 5472, "loss": 0.489, "accuracy": 0.75, "learning_rate": 3.3302919708029196e-07, "epoch": 0.26666666666666666, "percentage": 6.67, "elapsed_time": "1:01:15", "remaining_time": "14:17:13"} +{"current_steps": 366, "total_steps": 5472, "loss": 0.372, "accuracy": 0.75, "learning_rate": 3.3394160583941604e-07, "epoch": 0.2673972602739726, "percentage": 6.69, "elapsed_time": "1:01:24", "remaining_time": "14:16:48"} +{"current_steps": 367, "total_steps": 5472, "loss": 0.432, "accuracy": 0.875, "learning_rate": 3.348540145985401e-07, "epoch": 0.2681278538812785, "percentage": 6.71, "elapsed_time": "1:01:35", "remaining_time": "14:16:48"} +{"current_steps": 368, "total_steps": 5472, "loss": 0.3865, "accuracy": 0.875, "learning_rate": 3.357664233576642e-07, "epoch": 0.26885844748858445, "percentage": 6.73, "elapsed_time": "1:01:45", "remaining_time": "14:16:33"} +{"current_steps": 369, "total_steps": 5472, "loss": 0.5107, "accuracy": 0.625, "learning_rate": 3.3667883211678834e-07, "epoch": 0.26958904109589044, "percentage": 6.74, "elapsed_time": "1:01:54", "remaining_time": "14:16:11"} +{"current_steps": 370, "total_steps": 5472, "loss": 0.4533, "accuracy": 0.75, "learning_rate": 3.375912408759124e-07, "epoch": 0.27031963470319637, "percentage": 6.76, "elapsed_time": "1:02:03", "remaining_time": "14:15:50"} +{"current_steps": 371, "total_steps": 5472, "loss": 0.4145, "accuracy": 0.75, "learning_rate": 3.3850364963503645e-07, "epoch": 0.2710502283105023, "percentage": 6.78, "elapsed_time": "1:02:13", "remaining_time": "14:15:35"} +{"current_steps": 372, "total_steps": 5472, "loss": 0.4222, "accuracy": 0.875, "learning_rate": 3.3941605839416053e-07, "epoch": 0.2717808219178082, "percentage": 6.8, "elapsed_time": "1:02:24", "remaining_time": "14:15:36"} +{"current_steps": 373, "total_steps": 5472, "loss": 0.5504, "accuracy": 0.75, "learning_rate": 3.4032846715328467e-07, "epoch": 0.27251141552511415, "percentage": 6.82, "elapsed_time": "1:02:33", "remaining_time": "14:15:11"} +{"current_steps": 374, "total_steps": 5472, "loss": 0.4022, "accuracy": 0.625, "learning_rate": 3.4124087591240875e-07, "epoch": 0.2732420091324201, "percentage": 6.83, "elapsed_time": "1:02:43", "remaining_time": "14:15:03"} +{"current_steps": 375, "total_steps": 5472, "loss": 0.4691, "accuracy": 0.875, "learning_rate": 3.4215328467153283e-07, "epoch": 0.273972602739726, "percentage": 6.85, "elapsed_time": "1:02:54", "remaining_time": "14:15:06"} +{"current_steps": 376, "total_steps": 5472, "loss": 0.3669, "accuracy": 0.875, "learning_rate": 3.4306569343065697e-07, "epoch": 0.27470319634703194, "percentage": 6.87, "elapsed_time": "1:03:06", "remaining_time": "14:15:16"} +{"current_steps": 377, "total_steps": 5472, "loss": 0.4993, "accuracy": 0.75, "learning_rate": 3.43978102189781e-07, "epoch": 0.2754337899543379, "percentage": 6.89, "elapsed_time": "1:03:15", "remaining_time": "14:15:00"} +{"current_steps": 378, "total_steps": 5472, "loss": 0.4472, "accuracy": 0.375, "learning_rate": 3.448905109489051e-07, "epoch": 0.27616438356164386, "percentage": 6.91, "elapsed_time": "1:03:26", "remaining_time": "14:15:01"} +{"current_steps": 379, "total_steps": 5472, "loss": 0.494, "accuracy": 0.75, "learning_rate": 3.4580291970802916e-07, "epoch": 0.2768949771689498, "percentage": 6.93, "elapsed_time": "1:03:36", "remaining_time": "14:14:46"} +{"current_steps": 380, "total_steps": 5472, "loss": 0.5215, "accuracy": 0.75, "learning_rate": 3.467153284671533e-07, "epoch": 0.2776255707762557, "percentage": 6.94, "elapsed_time": "1:03:46", "remaining_time": "14:14:34"} +{"current_steps": 381, "total_steps": 5472, "loss": 0.4519, "accuracy": 0.625, "learning_rate": 3.476277372262774e-07, "epoch": 0.27835616438356164, "percentage": 6.96, "elapsed_time": "1:03:56", "remaining_time": "14:14:26"} +{"current_steps": 382, "total_steps": 5472, "loss": 0.4811, "accuracy": 0.875, "learning_rate": 3.485401459854014e-07, "epoch": 0.2790867579908676, "percentage": 6.98, "elapsed_time": "1:04:06", "remaining_time": "14:14:08"} +{"current_steps": 383, "total_steps": 5472, "loss": 0.3826, "accuracy": 0.75, "learning_rate": 3.494525547445255e-07, "epoch": 0.2798173515981735, "percentage": 7.0, "elapsed_time": "1:04:16", "remaining_time": "14:13:59"} +{"current_steps": 384, "total_steps": 5472, "loss": 0.4444, "accuracy": 1.0, "learning_rate": 3.5036496350364963e-07, "epoch": 0.28054794520547943, "percentage": 7.02, "elapsed_time": "1:04:25", "remaining_time": "14:13:39"} +{"current_steps": 385, "total_steps": 5472, "loss": 0.3296, "accuracy": 0.875, "learning_rate": 3.512773722627737e-07, "epoch": 0.28127853881278536, "percentage": 7.04, "elapsed_time": "1:04:34", "remaining_time": "14:13:15"} +{"current_steps": 386, "total_steps": 5472, "loss": 0.4485, "accuracy": 0.875, "learning_rate": 3.521897810218978e-07, "epoch": 0.28200913242009135, "percentage": 7.05, "elapsed_time": "1:04:47", "remaining_time": "14:13:39"} +{"current_steps": 387, "total_steps": 5472, "loss": 0.4533, "accuracy": 0.875, "learning_rate": 3.5310218978102193e-07, "epoch": 0.2827397260273973, "percentage": 7.07, "elapsed_time": "1:04:57", "remaining_time": "14:13:31"} +{"current_steps": 388, "total_steps": 5472, "loss": 0.4419, "accuracy": 0.875, "learning_rate": 3.5401459854014596e-07, "epoch": 0.2834703196347032, "percentage": 7.09, "elapsed_time": "1:05:06", "remaining_time": "14:13:10"} +{"current_steps": 389, "total_steps": 5472, "loss": 0.4234, "accuracy": 0.875, "learning_rate": 3.5492700729927004e-07, "epoch": 0.28420091324200913, "percentage": 7.11, "elapsed_time": "1:05:16", "remaining_time": "14:12:59"} +{"current_steps": 390, "total_steps": 5472, "loss": 0.5132, "accuracy": 1.0, "learning_rate": 3.558394160583941e-07, "epoch": 0.28493150684931506, "percentage": 7.13, "elapsed_time": "1:05:25", "remaining_time": "14:12:36"} +{"current_steps": 391, "total_steps": 5472, "loss": 0.4193, "accuracy": 0.5, "learning_rate": 3.5675182481751826e-07, "epoch": 0.285662100456621, "percentage": 7.15, "elapsed_time": "1:05:37", "remaining_time": "14:12:51"} +{"current_steps": 392, "total_steps": 5472, "loss": 0.5573, "accuracy": 0.75, "learning_rate": 3.5766423357664234e-07, "epoch": 0.2863926940639269, "percentage": 7.16, "elapsed_time": "1:05:46", "remaining_time": "14:12:25"} +{"current_steps": 393, "total_steps": 5472, "loss": 0.4373, "accuracy": 0.75, "learning_rate": 3.585766423357664e-07, "epoch": 0.28712328767123285, "percentage": 7.18, "elapsed_time": "1:05:56", "remaining_time": "14:12:10"} +{"current_steps": 394, "total_steps": 5472, "loss": 0.4025, "accuracy": 0.875, "learning_rate": 3.5948905109489045e-07, "epoch": 0.28785388127853884, "percentage": 7.2, "elapsed_time": "1:06:07", "remaining_time": "14:12:18"} +{"current_steps": 395, "total_steps": 5472, "loss": 0.5132, "accuracy": 0.625, "learning_rate": 3.604014598540146e-07, "epoch": 0.28858447488584477, "percentage": 7.22, "elapsed_time": "1:06:16", "remaining_time": "14:11:51"} +{"current_steps": 396, "total_steps": 5472, "loss": 0.4849, "accuracy": 0.75, "learning_rate": 3.6131386861313867e-07, "epoch": 0.2893150684931507, "percentage": 7.24, "elapsed_time": "1:06:26", "remaining_time": "14:11:36"} +{"current_steps": 397, "total_steps": 5472, "loss": 0.3696, "accuracy": 1.0, "learning_rate": 3.6222627737226275e-07, "epoch": 0.2900456621004566, "percentage": 7.26, "elapsed_time": "1:06:36", "remaining_time": "14:11:31"} +{"current_steps": 398, "total_steps": 5472, "loss": 0.6548, "accuracy": 0.875, "learning_rate": 3.6313868613138683e-07, "epoch": 0.29077625570776255, "percentage": 7.27, "elapsed_time": "1:06:46", "remaining_time": "14:11:20"} +{"current_steps": 399, "total_steps": 5472, "loss": 0.5631, "accuracy": 0.875, "learning_rate": 3.6405109489051097e-07, "epoch": 0.2915068493150685, "percentage": 7.29, "elapsed_time": "1:06:59", "remaining_time": "14:11:51"} +{"current_steps": 400, "total_steps": 5472, "loss": 0.474, "accuracy": 0.875, "learning_rate": 3.64963503649635e-07, "epoch": 0.2922374429223744, "percentage": 7.31, "elapsed_time": "1:07:09", "remaining_time": "14:11:30"} +{"current_steps": 401, "total_steps": 5472, "loss": 0.385, "accuracy": 1.0, "learning_rate": 3.658759124087591e-07, "epoch": 0.29296803652968034, "percentage": 7.33, "elapsed_time": "1:07:18", "remaining_time": "14:11:10"} +{"current_steps": 402, "total_steps": 5472, "loss": 0.5387, "accuracy": 0.875, "learning_rate": 3.667883211678832e-07, "epoch": 0.2936986301369863, "percentage": 7.35, "elapsed_time": "1:07:29", "remaining_time": "14:11:06"} +{"current_steps": 403, "total_steps": 5472, "loss": 0.4172, "accuracy": 0.875, "learning_rate": 3.677007299270073e-07, "epoch": 0.29442922374429226, "percentage": 7.36, "elapsed_time": "1:07:39", "remaining_time": "14:10:59"} +{"current_steps": 404, "total_steps": 5472, "loss": 0.5492, "accuracy": 0.5, "learning_rate": 3.686131386861314e-07, "epoch": 0.2951598173515982, "percentage": 7.38, "elapsed_time": "1:07:50", "remaining_time": "14:11:00"} +{"current_steps": 405, "total_steps": 5472, "loss": 0.5021, "accuracy": 0.625, "learning_rate": 3.6952554744525546e-07, "epoch": 0.2958904109589041, "percentage": 7.4, "elapsed_time": "1:08:00", "remaining_time": "14:10:48"} +{"current_steps": 406, "total_steps": 5472, "loss": 0.379, "accuracy": 0.75, "learning_rate": 3.7043795620437954e-07, "epoch": 0.29662100456621004, "percentage": 7.42, "elapsed_time": "1:08:09", "remaining_time": "14:10:30"} +{"current_steps": 407, "total_steps": 5472, "loss": 0.5563, "accuracy": 0.875, "learning_rate": 3.7135036496350363e-07, "epoch": 0.297351598173516, "percentage": 7.44, "elapsed_time": "1:08:19", "remaining_time": "14:10:19"} +{"current_steps": 408, "total_steps": 5472, "loss": 0.5268, "accuracy": 0.625, "learning_rate": 3.722627737226277e-07, "epoch": 0.2980821917808219, "percentage": 7.46, "elapsed_time": "1:08:29", "remaining_time": "14:10:03"} +{"current_steps": 409, "total_steps": 5472, "loss": 0.477, "accuracy": 0.5, "learning_rate": 3.731751824817518e-07, "epoch": 0.29881278538812783, "percentage": 7.47, "elapsed_time": "1:08:40", "remaining_time": "14:10:03"} +{"current_steps": 410, "total_steps": 5472, "loss": 0.415, "accuracy": 1.0, "learning_rate": 3.7408759124087593e-07, "epoch": 0.29954337899543376, "percentage": 7.49, "elapsed_time": "1:08:48", "remaining_time": "14:09:34"} +{"current_steps": 411, "total_steps": 5472, "loss": 0.4828, "accuracy": 0.5, "learning_rate": 3.75e-07, "epoch": 0.30027397260273975, "percentage": 7.51, "elapsed_time": "1:08:59", "remaining_time": "14:09:34"} +{"current_steps": 412, "total_steps": 5472, "loss": 0.5585, "accuracy": 0.75, "learning_rate": 3.7591240875912404e-07, "epoch": 0.3010045662100457, "percentage": 7.53, "elapsed_time": "1:09:10", "remaining_time": "14:09:34"} +{"current_steps": 413, "total_steps": 5472, "loss": 0.5711, "accuracy": 0.875, "learning_rate": 3.768248175182482e-07, "epoch": 0.3017351598173516, "percentage": 7.55, "elapsed_time": "1:09:20", "remaining_time": "14:09:25"} +{"current_steps": 414, "total_steps": 5472, "loss": 0.4399, "accuracy": 0.875, "learning_rate": 3.7773722627737226e-07, "epoch": 0.30246575342465754, "percentage": 7.57, "elapsed_time": "1:09:30", "remaining_time": "14:09:09"} +{"current_steps": 415, "total_steps": 5472, "loss": 0.4571, "accuracy": 0.375, "learning_rate": 3.7864963503649634e-07, "epoch": 0.30319634703196346, "percentage": 7.58, "elapsed_time": "1:09:39", "remaining_time": "14:08:48"} +{"current_steps": 416, "total_steps": 5472, "loss": 0.4756, "accuracy": 0.625, "learning_rate": 3.795620437956204e-07, "epoch": 0.3039269406392694, "percentage": 7.6, "elapsed_time": "1:09:50", "remaining_time": "14:08:54"} +{"current_steps": 417, "total_steps": 5472, "loss": 0.586, "accuracy": 0.5, "learning_rate": 3.804744525547445e-07, "epoch": 0.3046575342465753, "percentage": 7.62, "elapsed_time": "1:10:00", "remaining_time": "14:08:36"} +{"current_steps": 418, "total_steps": 5472, "loss": 0.5614, "accuracy": 0.625, "learning_rate": 3.813868613138686e-07, "epoch": 0.30538812785388125, "percentage": 7.64, "elapsed_time": "1:10:10", "remaining_time": "14:08:24"} +{"current_steps": 419, "total_steps": 5472, "loss": 0.4788, "accuracy": 0.375, "learning_rate": 3.8229927007299267e-07, "epoch": 0.30611872146118724, "percentage": 7.66, "elapsed_time": "1:10:20", "remaining_time": "14:08:18"} +{"current_steps": 420, "total_steps": 5472, "loss": 0.3808, "accuracy": 0.75, "learning_rate": 3.8321167883211675e-07, "epoch": 0.30684931506849317, "percentage": 7.68, "elapsed_time": "1:10:31", "remaining_time": "14:08:14"} +{"current_steps": 421, "total_steps": 5472, "loss": 0.3742, "accuracy": 0.625, "learning_rate": 3.841240875912409e-07, "epoch": 0.3075799086757991, "percentage": 7.69, "elapsed_time": "1:10:40", "remaining_time": "14:07:54"} +{"current_steps": 422, "total_steps": 5472, "loss": 0.5083, "accuracy": 0.75, "learning_rate": 3.8503649635036497e-07, "epoch": 0.308310502283105, "percentage": 7.71, "elapsed_time": "1:10:51", "remaining_time": "14:07:52"} +{"current_steps": 423, "total_steps": 5472, "loss": 0.5425, "accuracy": 0.625, "learning_rate": 3.85948905109489e-07, "epoch": 0.30904109589041096, "percentage": 7.73, "elapsed_time": "1:11:00", "remaining_time": "14:07:38"} +{"current_steps": 424, "total_steps": 5472, "loss": 0.4213, "accuracy": 0.75, "learning_rate": 3.8686131386861313e-07, "epoch": 0.3097716894977169, "percentage": 7.75, "elapsed_time": "1:11:11", "remaining_time": "14:07:32"} +{"current_steps": 425, "total_steps": 5472, "loss": 0.5936, "accuracy": 0.625, "learning_rate": 3.877737226277372e-07, "epoch": 0.3105022831050228, "percentage": 7.77, "elapsed_time": "1:11:20", "remaining_time": "14:07:16"} +{"current_steps": 426, "total_steps": 5472, "loss": 0.4619, "accuracy": 0.75, "learning_rate": 3.886861313868613e-07, "epoch": 0.31123287671232874, "percentage": 7.79, "elapsed_time": "1:11:31", "remaining_time": "14:07:07"} +{"current_steps": 427, "total_steps": 5472, "loss": 0.4359, "accuracy": 0.625, "learning_rate": 3.895985401459854e-07, "epoch": 0.31196347031963473, "percentage": 7.8, "elapsed_time": "1:11:39", "remaining_time": "14:06:41"} +{"current_steps": 428, "total_steps": 5472, "loss": 0.5413, "accuracy": 0.625, "learning_rate": 3.905109489051095e-07, "epoch": 0.31269406392694066, "percentage": 7.82, "elapsed_time": "1:11:49", "remaining_time": "14:06:23"} +{"current_steps": 429, "total_steps": 5472, "loss": 0.5172, "accuracy": 0.875, "learning_rate": 3.9142335766423354e-07, "epoch": 0.3134246575342466, "percentage": 7.84, "elapsed_time": "1:12:00", "remaining_time": "14:06:26"} +{"current_steps": 430, "total_steps": 5472, "loss": 0.34, "accuracy": 0.875, "learning_rate": 3.9233576642335763e-07, "epoch": 0.3141552511415525, "percentage": 7.86, "elapsed_time": "1:12:09", "remaining_time": "14:06:04"} +{"current_steps": 431, "total_steps": 5472, "loss": 0.5009, "accuracy": 0.875, "learning_rate": 3.932481751824817e-07, "epoch": 0.31488584474885845, "percentage": 7.88, "elapsed_time": "1:12:18", "remaining_time": "14:05:45"} +{"current_steps": 432, "total_steps": 5472, "loss": 0.4401, "accuracy": 0.625, "learning_rate": 3.9416058394160584e-07, "epoch": 0.3156164383561644, "percentage": 7.89, "elapsed_time": "1:12:30", "remaining_time": "14:05:50"} +{"current_steps": 433, "total_steps": 5472, "loss": 0.5066, "accuracy": 0.625, "learning_rate": 3.9507299270072993e-07, "epoch": 0.3163470319634703, "percentage": 7.91, "elapsed_time": "1:12:40", "remaining_time": "14:05:42"} +{"current_steps": 434, "total_steps": 5472, "loss": 0.3925, "accuracy": 1.0, "learning_rate": 3.95985401459854e-07, "epoch": 0.31707762557077623, "percentage": 7.93, "elapsed_time": "1:12:49", "remaining_time": "14:05:27"} +{"current_steps": 435, "total_steps": 5472, "loss": 0.5241, "accuracy": 0.625, "learning_rate": 3.9689781021897804e-07, "epoch": 0.3178082191780822, "percentage": 7.95, "elapsed_time": "1:12:58", "remaining_time": "14:05:02"} +{"current_steps": 436, "total_steps": 5472, "loss": 0.3317, "accuracy": 1.0, "learning_rate": 3.978102189781022e-07, "epoch": 0.31853881278538815, "percentage": 7.97, "elapsed_time": "1:13:08", "remaining_time": "14:04:51"} +{"current_steps": 437, "total_steps": 5472, "loss": 0.5233, "accuracy": 0.75, "learning_rate": 3.9872262773722626e-07, "epoch": 0.3192694063926941, "percentage": 7.99, "elapsed_time": "1:13:18", "remaining_time": "14:04:42"} +{"current_steps": 438, "total_steps": 5472, "loss": 0.5253, "accuracy": 1.0, "learning_rate": 3.9963503649635034e-07, "epoch": 0.32, "percentage": 8.0, "elapsed_time": "1:13:28", "remaining_time": "14:04:23"} +{"current_steps": 439, "total_steps": 5472, "loss": 0.5337, "accuracy": 0.75, "learning_rate": 4.005474452554745e-07, "epoch": 0.32073059360730594, "percentage": 8.02, "elapsed_time": "1:13:37", "remaining_time": "14:04:05"} +{"current_steps": 440, "total_steps": 5472, "loss": 0.4537, "accuracy": 0.625, "learning_rate": 4.0145985401459856e-07, "epoch": 0.32146118721461187, "percentage": 8.04, "elapsed_time": "1:13:47", "remaining_time": "14:03:52"} +{"current_steps": 441, "total_steps": 5472, "loss": 0.435, "accuracy": 0.75, "learning_rate": 4.023722627737226e-07, "epoch": 0.3221917808219178, "percentage": 8.06, "elapsed_time": "1:13:56", "remaining_time": "14:03:35"} +{"current_steps": 442, "total_steps": 5472, "loss": 0.3275, "accuracy": 1.0, "learning_rate": 4.0328467153284667e-07, "epoch": 0.3229223744292237, "percentage": 8.08, "elapsed_time": "1:14:05", "remaining_time": "14:03:13"} +{"current_steps": 443, "total_steps": 5472, "loss": 0.3821, "accuracy": 0.875, "learning_rate": 4.041970802919708e-07, "epoch": 0.32365296803652965, "percentage": 8.1, "elapsed_time": "1:14:14", "remaining_time": "14:02:52"} +{"current_steps": 444, "total_steps": 5472, "loss": 0.4623, "accuracy": 0.875, "learning_rate": 4.051094890510949e-07, "epoch": 0.32438356164383564, "percentage": 8.11, "elapsed_time": "1:14:25", "remaining_time": "14:02:49"} +{"current_steps": 445, "total_steps": 5472, "loss": 0.4018, "accuracy": 0.75, "learning_rate": 4.0602189781021897e-07, "epoch": 0.32511415525114157, "percentage": 8.13, "elapsed_time": "1:14:37", "remaining_time": "14:03:00"} +{"current_steps": 446, "total_steps": 5472, "loss": 0.4881, "accuracy": 0.75, "learning_rate": 4.06934306569343e-07, "epoch": 0.3258447488584475, "percentage": 8.15, "elapsed_time": "1:14:47", "remaining_time": "14:02:53"} +{"current_steps": 447, "total_steps": 5472, "loss": 0.4865, "accuracy": 0.75, "learning_rate": 4.0784671532846713e-07, "epoch": 0.3265753424657534, "percentage": 8.17, "elapsed_time": "1:14:56", "remaining_time": "14:02:28"} +{"current_steps": 448, "total_steps": 5472, "loss": 0.331, "accuracy": 0.875, "learning_rate": 4.087591240875912e-07, "epoch": 0.32730593607305936, "percentage": 8.19, "elapsed_time": "1:15:06", "remaining_time": "14:02:17"} +{"current_steps": 449, "total_steps": 5472, "loss": 0.4008, "accuracy": 0.75, "learning_rate": 4.096715328467153e-07, "epoch": 0.3280365296803653, "percentage": 8.21, "elapsed_time": "1:15:17", "remaining_time": "14:02:15"} +{"current_steps": 450, "total_steps": 5472, "loss": 0.4375, "accuracy": 1.0, "learning_rate": 4.1058394160583943e-07, "epoch": 0.3287671232876712, "percentage": 8.22, "elapsed_time": "1:15:27", "remaining_time": "14:02:05"} +{"current_steps": 451, "total_steps": 5472, "loss": 0.3319, "accuracy": 0.875, "learning_rate": 4.114963503649635e-07, "epoch": 0.32949771689497714, "percentage": 8.24, "elapsed_time": "1:15:36", "remaining_time": "14:01:40"} +{"current_steps": 452, "total_steps": 5472, "loss": 0.3792, "accuracy": 1.0, "learning_rate": 4.1240875912408754e-07, "epoch": 0.33022831050228313, "percentage": 8.26, "elapsed_time": "1:15:46", "remaining_time": "14:01:36"} +{"current_steps": 453, "total_steps": 5472, "loss": 0.3968, "accuracy": 1.0, "learning_rate": 4.133211678832116e-07, "epoch": 0.33095890410958906, "percentage": 8.28, "elapsed_time": "1:15:56", "remaining_time": "14:01:21"} +{"current_steps": 454, "total_steps": 5472, "loss": 0.4328, "accuracy": 0.75, "learning_rate": 4.1423357664233576e-07, "epoch": 0.331689497716895, "percentage": 8.3, "elapsed_time": "1:16:06", "remaining_time": "14:01:07"} +{"current_steps": 455, "total_steps": 5472, "loss": 0.4565, "accuracy": 0.875, "learning_rate": 4.1514598540145984e-07, "epoch": 0.3324200913242009, "percentage": 8.32, "elapsed_time": "1:16:14", "remaining_time": "14:00:43"} +{"current_steps": 456, "total_steps": 5472, "loss": 0.4021, "accuracy": 1.0, "learning_rate": 4.160583941605839e-07, "epoch": 0.33315068493150685, "percentage": 8.33, "elapsed_time": "1:16:26", "remaining_time": "14:00:46"} +{"current_steps": 457, "total_steps": 5472, "loss": 0.4134, "accuracy": 0.625, "learning_rate": 4.16970802919708e-07, "epoch": 0.3338812785388128, "percentage": 8.35, "elapsed_time": "1:16:35", "remaining_time": "14:00:24"} +{"current_steps": 458, "total_steps": 5472, "loss": 0.4665, "accuracy": 0.875, "learning_rate": 4.178832116788321e-07, "epoch": 0.3346118721461187, "percentage": 8.37, "elapsed_time": "1:16:43", "remaining_time": "14:00:02"} +{"current_steps": 459, "total_steps": 5472, "loss": 0.3728, "accuracy": 0.875, "learning_rate": 4.1879562043795617e-07, "epoch": 0.33534246575342463, "percentage": 8.39, "elapsed_time": "1:16:53", "remaining_time": "13:59:48"} +{"current_steps": 460, "total_steps": 5472, "loss": 0.5091, "accuracy": 0.875, "learning_rate": 4.1970802919708026e-07, "epoch": 0.3360730593607306, "percentage": 8.41, "elapsed_time": "1:17:03", "remaining_time": "13:59:32"} +{"current_steps": 461, "total_steps": 5472, "loss": 0.427, "accuracy": 0.875, "learning_rate": 4.206204379562044e-07, "epoch": 0.33680365296803655, "percentage": 8.42, "elapsed_time": "1:17:15", "remaining_time": "13:59:44"} +{"current_steps": 462, "total_steps": 5472, "loss": 0.4741, "accuracy": 0.75, "learning_rate": 4.2153284671532847e-07, "epoch": 0.3375342465753425, "percentage": 8.44, "elapsed_time": "1:17:24", "remaining_time": "13:59:23"} +{"current_steps": 463, "total_steps": 5472, "loss": 0.4422, "accuracy": 0.75, "learning_rate": 4.2244525547445256e-07, "epoch": 0.3382648401826484, "percentage": 8.46, "elapsed_time": "1:17:34", "remaining_time": "13:59:12"} +{"current_steps": 464, "total_steps": 5472, "loss": 0.3894, "accuracy": 0.875, "learning_rate": 4.233576642335766e-07, "epoch": 0.33899543378995434, "percentage": 8.48, "elapsed_time": "1:17:44", "remaining_time": "13:59:08"} +{"current_steps": 465, "total_steps": 5472, "loss": 0.314, "accuracy": 0.875, "learning_rate": 4.242700729927007e-07, "epoch": 0.33972602739726027, "percentage": 8.5, "elapsed_time": "1:17:54", "remaining_time": "13:58:52"} +{"current_steps": 466, "total_steps": 5472, "loss": 0.52, "accuracy": 0.875, "learning_rate": 4.251824817518248e-07, "epoch": 0.3404566210045662, "percentage": 8.52, "elapsed_time": "1:18:05", "remaining_time": "13:58:49"} +{"current_steps": 467, "total_steps": 5472, "loss": 0.4171, "accuracy": 0.875, "learning_rate": 4.260948905109489e-07, "epoch": 0.3411872146118721, "percentage": 8.53, "elapsed_time": "1:18:14", "remaining_time": "13:58:31"} +{"current_steps": 468, "total_steps": 5472, "loss": 0.5618, "accuracy": 0.5, "learning_rate": 4.2700729927007297e-07, "epoch": 0.3419178082191781, "percentage": 8.55, "elapsed_time": "1:18:23", "remaining_time": "13:58:15"} +{"current_steps": 469, "total_steps": 5472, "loss": 0.4569, "accuracy": 0.875, "learning_rate": 4.279197080291971e-07, "epoch": 0.34264840182648404, "percentage": 8.57, "elapsed_time": "1:18:33", "remaining_time": "13:58:01"} +{"current_steps": 470, "total_steps": 5472, "loss": 0.3365, "accuracy": 1.0, "learning_rate": 4.2883211678832113e-07, "epoch": 0.34337899543378997, "percentage": 8.59, "elapsed_time": "1:18:43", "remaining_time": "13:57:50"} +{"current_steps": 471, "total_steps": 5472, "loss": 0.5824, "accuracy": 0.625, "learning_rate": 4.297445255474452e-07, "epoch": 0.3441095890410959, "percentage": 8.61, "elapsed_time": "1:18:53", "remaining_time": "13:57:43"} +{"current_steps": 472, "total_steps": 5472, "loss": 0.4306, "accuracy": 0.5, "learning_rate": 4.306569343065693e-07, "epoch": 0.3448401826484018, "percentage": 8.63, "elapsed_time": "1:19:03", "remaining_time": "13:57:24"} +{"current_steps": 473, "total_steps": 5472, "loss": 0.4349, "accuracy": 0.75, "learning_rate": 4.3156934306569343e-07, "epoch": 0.34557077625570776, "percentage": 8.64, "elapsed_time": "1:19:12", "remaining_time": "13:57:05"} +{"current_steps": 474, "total_steps": 5472, "loss": 0.3578, "accuracy": 1.0, "learning_rate": 4.324817518248175e-07, "epoch": 0.3463013698630137, "percentage": 8.66, "elapsed_time": "1:19:21", "remaining_time": "13:56:44"} +{"current_steps": 475, "total_steps": 5472, "loss": 0.3711, "accuracy": 0.875, "learning_rate": 4.333941605839416e-07, "epoch": 0.3470319634703196, "percentage": 8.68, "elapsed_time": "1:19:30", "remaining_time": "13:56:24"} +{"current_steps": 476, "total_steps": 5472, "loss": 0.3226, "accuracy": 1.0, "learning_rate": 4.343065693430657e-07, "epoch": 0.34776255707762554, "percentage": 8.7, "elapsed_time": "1:19:39", "remaining_time": "13:56:03"} +{"current_steps": 477, "total_steps": 5472, "loss": 0.4154, "accuracy": 0.75, "learning_rate": 4.3521897810218976e-07, "epoch": 0.34849315068493153, "percentage": 8.72, "elapsed_time": "1:19:51", "remaining_time": "13:56:15"} +{"current_steps": 478, "total_steps": 5472, "loss": 0.432, "accuracy": 0.625, "learning_rate": 4.3613138686131384e-07, "epoch": 0.34922374429223746, "percentage": 8.74, "elapsed_time": "1:20:00", "remaining_time": "13:55:52"} +{"current_steps": 479, "total_steps": 5472, "loss": 0.5983, "accuracy": 0.5, "learning_rate": 4.370437956204379e-07, "epoch": 0.3499543378995434, "percentage": 8.75, "elapsed_time": "1:20:10", "remaining_time": "13:55:46"} +{"current_steps": 480, "total_steps": 5472, "loss": 0.5565, "accuracy": 0.5, "learning_rate": 4.3795620437956206e-07, "epoch": 0.3506849315068493, "percentage": 8.77, "elapsed_time": "1:20:20", "remaining_time": "13:55:29"} +{"current_steps": 481, "total_steps": 5472, "loss": 0.4144, "accuracy": 0.875, "learning_rate": 4.388686131386861e-07, "epoch": 0.35141552511415525, "percentage": 8.79, "elapsed_time": "1:20:29", "remaining_time": "13:55:08"} +{"current_steps": 482, "total_steps": 5472, "loss": 0.4096, "accuracy": 0.75, "learning_rate": 4.3978102189781017e-07, "epoch": 0.3521461187214612, "percentage": 8.81, "elapsed_time": "1:20:38", "remaining_time": "13:54:56"} +{"current_steps": 483, "total_steps": 5472, "loss": 0.4234, "accuracy": 0.75, "learning_rate": 4.4069343065693426e-07, "epoch": 0.3528767123287671, "percentage": 8.83, "elapsed_time": "1:20:48", "remaining_time": "13:54:39"} +{"current_steps": 484, "total_steps": 5472, "loss": 0.5335, "accuracy": 0.75, "learning_rate": 4.416058394160584e-07, "epoch": 0.35360730593607304, "percentage": 8.85, "elapsed_time": "1:20:59", "remaining_time": "13:54:37"} +{"current_steps": 485, "total_steps": 5472, "loss": 0.3317, "accuracy": 0.625, "learning_rate": 4.4251824817518247e-07, "epoch": 0.354337899543379, "percentage": 8.86, "elapsed_time": "1:21:09", "remaining_time": "13:54:32"} +{"current_steps": 486, "total_steps": 5472, "loss": 0.4594, "accuracy": 0.875, "learning_rate": 4.4343065693430656e-07, "epoch": 0.35506849315068495, "percentage": 8.88, "elapsed_time": "1:21:18", "remaining_time": "13:54:14"} +{"current_steps": 487, "total_steps": 5472, "loss": 0.3491, "accuracy": 0.875, "learning_rate": 4.4434306569343064e-07, "epoch": 0.3557990867579909, "percentage": 8.9, "elapsed_time": "1:21:29", "remaining_time": "13:54:12"} +{"current_steps": 488, "total_steps": 5472, "loss": 0.37, "accuracy": 0.75, "learning_rate": 4.452554744525547e-07, "epoch": 0.3565296803652968, "percentage": 8.92, "elapsed_time": "1:21:39", "remaining_time": "13:54:02"} +{"current_steps": 489, "total_steps": 5472, "loss": 0.3756, "accuracy": 0.875, "learning_rate": 4.461678832116788e-07, "epoch": 0.35726027397260274, "percentage": 8.94, "elapsed_time": "1:21:50", "remaining_time": "13:53:57"} +{"current_steps": 490, "total_steps": 5472, "loss": 0.3963, "accuracy": 0.75, "learning_rate": 4.470802919708029e-07, "epoch": 0.35799086757990867, "percentage": 8.95, "elapsed_time": "1:22:00", "remaining_time": "13:53:43"} +{"current_steps": 491, "total_steps": 5472, "loss": 0.2873, "accuracy": 0.875, "learning_rate": 4.47992700729927e-07, "epoch": 0.3587214611872146, "percentage": 8.97, "elapsed_time": "1:22:09", "remaining_time": "13:53:23"} +{"current_steps": 492, "total_steps": 5472, "loss": 0.5471, "accuracy": 0.75, "learning_rate": 4.489051094890511e-07, "epoch": 0.3594520547945205, "percentage": 8.99, "elapsed_time": "1:22:19", "remaining_time": "13:53:19"} +{"current_steps": 493, "total_steps": 5472, "loss": 0.3101, "accuracy": 1.0, "learning_rate": 4.4981751824817513e-07, "epoch": 0.3601826484018265, "percentage": 9.01, "elapsed_time": "1:22:29", "remaining_time": "13:53:02"} +{"current_steps": 494, "total_steps": 5472, "loss": 0.5516, "accuracy": 1.0, "learning_rate": 4.507299270072992e-07, "epoch": 0.36091324200913244, "percentage": 9.03, "elapsed_time": "1:22:39", "remaining_time": "13:52:59"} +{"current_steps": 495, "total_steps": 5472, "loss": 0.401, "accuracy": 0.875, "learning_rate": 4.5164233576642335e-07, "epoch": 0.36164383561643837, "percentage": 9.05, "elapsed_time": "1:22:51", "remaining_time": "13:53:04"} +{"current_steps": 496, "total_steps": 5472, "loss": 0.6059, "accuracy": 0.625, "learning_rate": 4.5255474452554743e-07, "epoch": 0.3623744292237443, "percentage": 9.06, "elapsed_time": "1:23:01", "remaining_time": "13:52:52"} +{"current_steps": 497, "total_steps": 5472, "loss": 0.4027, "accuracy": 1.0, "learning_rate": 4.534671532846715e-07, "epoch": 0.36310502283105023, "percentage": 9.08, "elapsed_time": "1:23:10", "remaining_time": "13:52:35"} +{"current_steps": 498, "total_steps": 5472, "loss": 0.4709, "accuracy": 0.75, "learning_rate": 4.543795620437956e-07, "epoch": 0.36383561643835616, "percentage": 9.1, "elapsed_time": "1:23:20", "remaining_time": "13:52:22"} +{"current_steps": 499, "total_steps": 5472, "loss": 0.3473, "accuracy": 0.75, "learning_rate": 4.552919708029197e-07, "epoch": 0.3645662100456621, "percentage": 9.12, "elapsed_time": "1:23:29", "remaining_time": "13:52:01"} +{"current_steps": 500, "total_steps": 5472, "loss": 0.6819, "accuracy": 0.625, "learning_rate": 4.5620437956204376e-07, "epoch": 0.365296803652968, "percentage": 9.14, "elapsed_time": "1:23:38", "remaining_time": "13:51:48"} +{"current_steps": 501, "total_steps": 5472, "loss": 0.5148, "accuracy": 0.625, "learning_rate": 4.5711678832116784e-07, "epoch": 0.36602739726027395, "percentage": 9.16, "elapsed_time": "1:23:47", "remaining_time": "13:51:25"} +{"current_steps": 502, "total_steps": 5472, "loss": 0.4399, "accuracy": 0.75, "learning_rate": 4.58029197080292e-07, "epoch": 0.36675799086757993, "percentage": 9.17, "elapsed_time": "1:23:57", "remaining_time": "13:51:17"} +{"current_steps": 503, "total_steps": 5472, "loss": 0.5387, "accuracy": 0.75, "learning_rate": 4.5894160583941606e-07, "epoch": 0.36748858447488586, "percentage": 9.19, "elapsed_time": "1:24:07", "remaining_time": "13:51:00"} +{"current_steps": 504, "total_steps": 5472, "loss": 0.3923, "accuracy": 0.875, "learning_rate": 4.5985401459854014e-07, "epoch": 0.3682191780821918, "percentage": 9.21, "elapsed_time": "1:24:18", "remaining_time": "13:51:03"} +{"current_steps": 505, "total_steps": 5472, "loss": 0.4694, "accuracy": 0.875, "learning_rate": 4.6076642335766417e-07, "epoch": 0.3689497716894977, "percentage": 9.23, "elapsed_time": "1:24:29", "remaining_time": "13:50:59"} +{"current_steps": 506, "total_steps": 5472, "loss": 0.5401, "accuracy": 0.75, "learning_rate": 4.616788321167883e-07, "epoch": 0.36968036529680365, "percentage": 9.25, "elapsed_time": "1:24:40", "remaining_time": "13:51:06"} +{"current_steps": 507, "total_steps": 5472, "loss": 0.3664, "accuracy": 0.625, "learning_rate": 4.625912408759124e-07, "epoch": 0.3704109589041096, "percentage": 9.27, "elapsed_time": "1:24:49", "remaining_time": "13:50:43"} +{"current_steps": 508, "total_steps": 5472, "loss": 0.4764, "accuracy": 0.875, "learning_rate": 4.6350364963503647e-07, "epoch": 0.3711415525114155, "percentage": 9.28, "elapsed_time": "1:24:59", "remaining_time": "13:50:31"} +{"current_steps": 509, "total_steps": 5472, "loss": 0.4102, "accuracy": 0.75, "learning_rate": 4.6441605839416055e-07, "epoch": 0.37187214611872144, "percentage": 9.3, "elapsed_time": "1:25:09", "remaining_time": "13:50:24"} +{"current_steps": 510, "total_steps": 5472, "loss": 0.4876, "accuracy": 0.625, "learning_rate": 4.653284671532847e-07, "epoch": 0.3726027397260274, "percentage": 9.32, "elapsed_time": "1:25:19", "remaining_time": "13:50:09"} +{"current_steps": 511, "total_steps": 5472, "loss": 0.5094, "accuracy": 0.75, "learning_rate": 4.662408759124087e-07, "epoch": 0.37333333333333335, "percentage": 9.34, "elapsed_time": "1:25:28", "remaining_time": "13:49:52"} +{"current_steps": 512, "total_steps": 5472, "loss": 0.3468, "accuracy": 0.75, "learning_rate": 4.671532846715328e-07, "epoch": 0.3740639269406393, "percentage": 9.36, "elapsed_time": "1:25:37", "remaining_time": "13:49:29"} +{"current_steps": 513, "total_steps": 5472, "loss": 0.4631, "accuracy": 0.875, "learning_rate": 4.6806569343065694e-07, "epoch": 0.3747945205479452, "percentage": 9.38, "elapsed_time": "1:25:47", "remaining_time": "13:49:14"} +{"current_steps": 514, "total_steps": 5472, "loss": 0.4439, "accuracy": 0.625, "learning_rate": 4.68978102189781e-07, "epoch": 0.37552511415525114, "percentage": 9.39, "elapsed_time": "1:25:56", "remaining_time": "13:48:54"} +{"current_steps": 515, "total_steps": 5472, "loss": 0.5375, "accuracy": 0.75, "learning_rate": 4.698905109489051e-07, "epoch": 0.37625570776255707, "percentage": 9.41, "elapsed_time": "1:26:05", "remaining_time": "13:48:34"} +{"current_steps": 516, "total_steps": 5472, "loss": 0.3843, "accuracy": 1.0, "learning_rate": 4.7080291970802913e-07, "epoch": 0.376986301369863, "percentage": 9.43, "elapsed_time": "1:26:15", "remaining_time": "13:48:24"} +{"current_steps": 517, "total_steps": 5472, "loss": 0.585, "accuracy": 1.0, "learning_rate": 4.7171532846715327e-07, "epoch": 0.3777168949771689, "percentage": 9.45, "elapsed_time": "1:26:24", "remaining_time": "13:48:06"} +{"current_steps": 518, "total_steps": 5472, "loss": 0.3267, "accuracy": 0.875, "learning_rate": 4.7262773722627735e-07, "epoch": 0.3784474885844749, "percentage": 9.47, "elapsed_time": "1:26:34", "remaining_time": "13:47:54"} +{"current_steps": 519, "total_steps": 5472, "loss": 0.4377, "accuracy": 0.625, "learning_rate": 4.7354014598540143e-07, "epoch": 0.37917808219178084, "percentage": 9.48, "elapsed_time": "1:26:44", "remaining_time": "13:47:44"} +{"current_steps": 520, "total_steps": 5472, "loss": 0.4109, "accuracy": 0.875, "learning_rate": 4.744525547445255e-07, "epoch": 0.37990867579908677, "percentage": 9.5, "elapsed_time": "1:26:54", "remaining_time": "13:47:37"} +{"current_steps": 521, "total_steps": 5472, "loss": 0.5223, "accuracy": 0.75, "learning_rate": 4.7536496350364965e-07, "epoch": 0.3806392694063927, "percentage": 9.52, "elapsed_time": "1:27:03", "remaining_time": "13:47:21"} +{"current_steps": 522, "total_steps": 5472, "loss": 0.4229, "accuracy": 1.0, "learning_rate": 4.762773722627737e-07, "epoch": 0.38136986301369863, "percentage": 9.54, "elapsed_time": "1:27:15", "remaining_time": "13:47:30"} +{"current_steps": 523, "total_steps": 5472, "loss": 0.406, "accuracy": 0.75, "learning_rate": 4.771897810218978e-07, "epoch": 0.38210045662100456, "percentage": 9.56, "elapsed_time": "1:27:26", "remaining_time": "13:47:22"} +{"current_steps": 524, "total_steps": 5472, "loss": 0.3279, "accuracy": 0.875, "learning_rate": 4.781021897810219e-07, "epoch": 0.3828310502283105, "percentage": 9.58, "elapsed_time": "1:27:36", "remaining_time": "13:47:11"} +{"current_steps": 525, "total_steps": 5472, "loss": 0.6303, "accuracy": 0.75, "learning_rate": 4.790145985401459e-07, "epoch": 0.3835616438356164, "percentage": 9.59, "elapsed_time": "1:27:46", "remaining_time": "13:47:09"} +{"current_steps": 526, "total_steps": 5472, "loss": 0.4746, "accuracy": 0.75, "learning_rate": 4.799270072992701e-07, "epoch": 0.3842922374429224, "percentage": 9.61, "elapsed_time": "1:27:57", "remaining_time": "13:47:08"} +{"current_steps": 527, "total_steps": 5472, "loss": 0.451, "accuracy": 0.75, "learning_rate": 4.808394160583941e-07, "epoch": 0.38502283105022833, "percentage": 9.63, "elapsed_time": "1:28:07", "remaining_time": "13:46:54"} +{"current_steps": 528, "total_steps": 5472, "loss": 0.3675, "accuracy": 1.0, "learning_rate": 4.817518248175182e-07, "epoch": 0.38575342465753426, "percentage": 9.65, "elapsed_time": "1:28:17", "remaining_time": "13:46:42"} +{"current_steps": 529, "total_steps": 5472, "loss": 0.2958, "accuracy": 0.875, "learning_rate": 4.826642335766424e-07, "epoch": 0.3864840182648402, "percentage": 9.67, "elapsed_time": "1:28:26", "remaining_time": "13:46:22"} +{"current_steps": 530, "total_steps": 5472, "loss": 0.3601, "accuracy": 0.625, "learning_rate": 4.835766423357664e-07, "epoch": 0.3872146118721461, "percentage": 9.69, "elapsed_time": "1:28:37", "remaining_time": "13:46:20"} +{"current_steps": 531, "total_steps": 5472, "loss": 0.4787, "accuracy": 0.875, "learning_rate": 4.844890510948904e-07, "epoch": 0.38794520547945205, "percentage": 9.7, "elapsed_time": "1:28:45", "remaining_time": "13:45:58"} +{"current_steps": 532, "total_steps": 5472, "loss": 0.4017, "accuracy": 0.625, "learning_rate": 4.854014598540146e-07, "epoch": 0.388675799086758, "percentage": 9.72, "elapsed_time": "1:28:56", "remaining_time": "13:45:57"} +{"current_steps": 533, "total_steps": 5472, "loss": 0.4542, "accuracy": 0.625, "learning_rate": 4.863138686131387e-07, "epoch": 0.3894063926940639, "percentage": 9.74, "elapsed_time": "1:29:06", "remaining_time": "13:45:46"} +{"current_steps": 534, "total_steps": 5472, "loss": 0.3615, "accuracy": 0.875, "learning_rate": 4.872262773722627e-07, "epoch": 0.39013698630136984, "percentage": 9.76, "elapsed_time": "1:29:17", "remaining_time": "13:45:42"} +{"current_steps": 535, "total_steps": 5472, "loss": 0.3488, "accuracy": 0.875, "learning_rate": 4.881386861313869e-07, "epoch": 0.3908675799086758, "percentage": 9.78, "elapsed_time": "1:29:26", "remaining_time": "13:45:23"} +{"current_steps": 536, "total_steps": 5472, "loss": 0.4431, "accuracy": 0.5, "learning_rate": 4.89051094890511e-07, "epoch": 0.39159817351598175, "percentage": 9.8, "elapsed_time": "1:29:35", "remaining_time": "13:45:04"} +{"current_steps": 537, "total_steps": 5472, "loss": 0.3372, "accuracy": 0.875, "learning_rate": 4.89963503649635e-07, "epoch": 0.3923287671232877, "percentage": 9.81, "elapsed_time": "1:29:45", "remaining_time": "13:44:50"} +{"current_steps": 538, "total_steps": 5472, "loss": 0.4756, "accuracy": 0.625, "learning_rate": 4.90875912408759e-07, "epoch": 0.3930593607305936, "percentage": 9.83, "elapsed_time": "1:29:54", "remaining_time": "13:44:36"} +{"current_steps": 539, "total_steps": 5472, "loss": 0.484, "accuracy": 0.5, "learning_rate": 4.917883211678832e-07, "epoch": 0.39378995433789954, "percentage": 9.85, "elapsed_time": "1:30:05", "remaining_time": "13:44:29"} +{"current_steps": 540, "total_steps": 5472, "loss": 0.3366, "accuracy": 0.875, "learning_rate": 4.927007299270073e-07, "epoch": 0.39452054794520547, "percentage": 9.87, "elapsed_time": "1:30:17", "remaining_time": "13:44:39"} +{"current_steps": 541, "total_steps": 5472, "loss": 0.3037, "accuracy": 0.75, "learning_rate": 4.936131386861313e-07, "epoch": 0.3952511415525114, "percentage": 9.89, "elapsed_time": "1:30:27", "remaining_time": "13:44:30"} +{"current_steps": 542, "total_steps": 5472, "loss": 0.3996, "accuracy": 1.0, "learning_rate": 4.945255474452555e-07, "epoch": 0.3959817351598173, "percentage": 9.9, "elapsed_time": "1:30:36", "remaining_time": "13:44:14"} +{"current_steps": 543, "total_steps": 5472, "loss": 0.3979, "accuracy": 0.75, "learning_rate": 4.954379562043795e-07, "epoch": 0.3967123287671233, "percentage": 9.92, "elapsed_time": "1:30:47", "remaining_time": "13:44:05"} +{"current_steps": 544, "total_steps": 5472, "loss": 0.3068, "accuracy": 0.75, "learning_rate": 4.963503649635036e-07, "epoch": 0.39744292237442924, "percentage": 9.94, "elapsed_time": "1:30:55", "remaining_time": "13:43:44"} +{"current_steps": 545, "total_steps": 5472, "loss": 0.3653, "accuracy": 0.625, "learning_rate": 4.972627737226277e-07, "epoch": 0.39817351598173517, "percentage": 9.96, "elapsed_time": "1:31:05", "remaining_time": "13:43:25"} +{"current_steps": 546, "total_steps": 5472, "loss": 0.4903, "accuracy": 0.625, "learning_rate": 4.981751824817518e-07, "epoch": 0.3989041095890411, "percentage": 9.98, "elapsed_time": "1:31:14", "remaining_time": "13:43:10"} +{"current_steps": 547, "total_steps": 5472, "loss": 0.3193, "accuracy": 0.75, "learning_rate": 4.99087591240876e-07, "epoch": 0.39963470319634703, "percentage": 10.0, "elapsed_time": "1:31:24", "remaining_time": "13:43:02"} +{"current_steps": 548, "total_steps": 5472, "loss": 0.4518, "accuracy": 0.75, "learning_rate": 5e-07, "epoch": 0.40036529680365296, "percentage": 10.01, "elapsed_time": "1:31:35", "remaining_time": "13:42:58"} +{"current_steps": 549, "total_steps": 5472, "loss": 0.4641, "accuracy": 0.5, "learning_rate": 4.999999491168892e-07, "epoch": 0.4010958904109589, "percentage": 10.03, "elapsed_time": "1:31:45", "remaining_time": "13:42:45"} +{"current_steps": 550, "total_steps": 5472, "loss": 0.3942, "accuracy": 0.75, "learning_rate": 4.999997964675772e-07, "epoch": 0.4018264840182648, "percentage": 10.05, "elapsed_time": "1:31:55", "remaining_time": "13:42:40"} +{"current_steps": 551, "total_steps": 5472, "loss": 0.3647, "accuracy": 0.75, "learning_rate": 4.999995420521264e-07, "epoch": 0.4025570776255708, "percentage": 10.07, "elapsed_time": "1:32:04", "remaining_time": "13:42:23"} +{"current_steps": 552, "total_steps": 5472, "loss": 0.3568, "accuracy": 1.0, "learning_rate": 4.999991858706404e-07, "epoch": 0.40328767123287673, "percentage": 10.09, "elapsed_time": "1:32:14", "remaining_time": "13:42:05"} +{"current_steps": 553, "total_steps": 5472, "loss": 0.3877, "accuracy": 0.875, "learning_rate": 4.999987279232639e-07, "epoch": 0.40401826484018266, "percentage": 10.11, "elapsed_time": "1:32:24", "remaining_time": "13:41:54"} +{"current_steps": 554, "total_steps": 5472, "loss": 0.4172, "accuracy": 0.625, "learning_rate": 4.999981682101836e-07, "epoch": 0.4047488584474886, "percentage": 10.12, "elapsed_time": "1:32:33", "remaining_time": "13:41:38"} +{"current_steps": 555, "total_steps": 5472, "loss": 0.4307, "accuracy": 0.75, "learning_rate": 4.999975067316271e-07, "epoch": 0.4054794520547945, "percentage": 10.14, "elapsed_time": "1:32:44", "remaining_time": "13:41:38"} +{"current_steps": 556, "total_steps": 5472, "loss": 0.3793, "accuracy": 0.75, "learning_rate": 4.999967434878639e-07, "epoch": 0.40621004566210045, "percentage": 10.16, "elapsed_time": "1:32:53", "remaining_time": "13:41:23"} +{"current_steps": 557, "total_steps": 5472, "loss": 0.4642, "accuracy": 1.0, "learning_rate": 4.999958784792045e-07, "epoch": 0.4069406392694064, "percentage": 10.18, "elapsed_time": "1:33:04", "remaining_time": "13:41:14"} +{"current_steps": 558, "total_steps": 5472, "loss": 0.3652, "accuracy": 0.625, "learning_rate": 4.999949117060012e-07, "epoch": 0.4076712328767123, "percentage": 10.2, "elapsed_time": "1:33:13", "remaining_time": "13:40:58"} +{"current_steps": 559, "total_steps": 5472, "loss": 0.326, "accuracy": 1.0, "learning_rate": 4.999938431686473e-07, "epoch": 0.40840182648401824, "percentage": 10.22, "elapsed_time": "1:33:22", "remaining_time": "13:40:36"} +{"current_steps": 560, "total_steps": 5472, "loss": 0.409, "accuracy": 0.5, "learning_rate": 4.999926728675779e-07, "epoch": 0.4091324200913242, "percentage": 10.23, "elapsed_time": "1:33:32", "remaining_time": "13:40:31"} +{"current_steps": 561, "total_steps": 5472, "loss": 0.4262, "accuracy": 0.5, "learning_rate": 4.999914008032695e-07, "epoch": 0.40986301369863015, "percentage": 10.25, "elapsed_time": "1:33:41", "remaining_time": "13:40:12"} +{"current_steps": 562, "total_steps": 5472, "loss": 0.4025, "accuracy": 0.875, "learning_rate": 4.999900269762397e-07, "epoch": 0.4105936073059361, "percentage": 10.27, "elapsed_time": "1:33:52", "remaining_time": "13:40:09"} +{"current_steps": 563, "total_steps": 5472, "loss": 0.3686, "accuracy": 0.75, "learning_rate": 4.999885513870478e-07, "epoch": 0.411324200913242, "percentage": 10.29, "elapsed_time": "1:34:03", "remaining_time": "13:40:06"} +{"current_steps": 564, "total_steps": 5472, "loss": 0.3744, "accuracy": 0.625, "learning_rate": 4.999869740362947e-07, "epoch": 0.41205479452054794, "percentage": 10.31, "elapsed_time": "1:34:12", "remaining_time": "13:39:51"} +{"current_steps": 565, "total_steps": 5472, "loss": 0.3806, "accuracy": 0.5, "learning_rate": 4.99985294924622e-07, "epoch": 0.41278538812785387, "percentage": 10.33, "elapsed_time": "1:34:22", "remaining_time": "13:39:36"} +{"current_steps": 566, "total_steps": 5472, "loss": 0.2683, "accuracy": 0.875, "learning_rate": 4.999835140527136e-07, "epoch": 0.4135159817351598, "percentage": 10.34, "elapsed_time": "1:34:31", "remaining_time": "13:39:23"} +{"current_steps": 567, "total_steps": 5472, "loss": 0.4552, "accuracy": 0.875, "learning_rate": 4.999816314212944e-07, "epoch": 0.41424657534246573, "percentage": 10.36, "elapsed_time": "1:34:41", "remaining_time": "13:39:11"} +{"current_steps": 568, "total_steps": 5472, "loss": 0.4057, "accuracy": 0.875, "learning_rate": 4.999796470311306e-07, "epoch": 0.4149771689497717, "percentage": 10.38, "elapsed_time": "1:34:51", "remaining_time": "13:39:01"} +{"current_steps": 569, "total_steps": 5472, "loss": 0.4168, "accuracy": 0.875, "learning_rate": 4.9997756088303e-07, "epoch": 0.41570776255707764, "percentage": 10.4, "elapsed_time": "1:35:01", "remaining_time": "13:38:44"} +{"current_steps": 570, "total_steps": 5472, "loss": 0.508, "accuracy": 0.5, "learning_rate": 4.999753729778419e-07, "epoch": 0.41643835616438357, "percentage": 10.42, "elapsed_time": "1:35:10", "remaining_time": "13:38:29"} +{"current_steps": 571, "total_steps": 5472, "loss": 0.4706, "accuracy": 0.875, "learning_rate": 4.999730833164569e-07, "epoch": 0.4171689497716895, "percentage": 10.43, "elapsed_time": "1:35:20", "remaining_time": "13:38:16"} +{"current_steps": 572, "total_steps": 5472, "loss": 0.4427, "accuracy": 1.0, "learning_rate": 4.999706918998069e-07, "epoch": 0.41789954337899543, "percentage": 10.45, "elapsed_time": "1:35:30", "remaining_time": "13:38:08"} +{"current_steps": 573, "total_steps": 5472, "loss": 0.4798, "accuracy": 0.75, "learning_rate": 4.999681987288655e-07, "epoch": 0.41863013698630136, "percentage": 10.47, "elapsed_time": "1:35:39", "remaining_time": "13:37:49"} +{"current_steps": 574, "total_steps": 5472, "loss": 0.3952, "accuracy": 0.75, "learning_rate": 4.999656038046476e-07, "epoch": 0.4193607305936073, "percentage": 10.49, "elapsed_time": "1:35:48", "remaining_time": "13:37:36"} +{"current_steps": 575, "total_steps": 5472, "loss": 0.5364, "accuracy": 0.625, "learning_rate": 4.999629071282093e-07, "epoch": 0.4200913242009132, "percentage": 10.51, "elapsed_time": "1:35:57", "remaining_time": "13:37:15"} +{"current_steps": 576, "total_steps": 5472, "loss": 0.3925, "accuracy": 1.0, "learning_rate": 4.999601087006486e-07, "epoch": 0.4208219178082192, "percentage": 10.53, "elapsed_time": "1:36:06", "remaining_time": "13:36:56"} +{"current_steps": 577, "total_steps": 5472, "loss": 0.6327, "accuracy": 0.875, "learning_rate": 4.999572085231045e-07, "epoch": 0.42155251141552513, "percentage": 10.54, "elapsed_time": "1:36:16", "remaining_time": "13:36:46"} +{"current_steps": 578, "total_steps": 5472, "loss": 0.3493, "accuracy": 1.0, "learning_rate": 4.999542065967576e-07, "epoch": 0.42228310502283106, "percentage": 10.56, "elapsed_time": "1:36:26", "remaining_time": "13:36:35"} +{"current_steps": 579, "total_steps": 5472, "loss": 0.5768, "accuracy": 0.375, "learning_rate": 4.999511029228297e-07, "epoch": 0.423013698630137, "percentage": 10.58, "elapsed_time": "1:36:35", "remaining_time": "13:36:19"} +{"current_steps": 580, "total_steps": 5472, "loss": 0.399, "accuracy": 0.875, "learning_rate": 4.999478975025845e-07, "epoch": 0.4237442922374429, "percentage": 10.6, "elapsed_time": "1:36:44", "remaining_time": "13:36:01"} +{"current_steps": 581, "total_steps": 5472, "loss": 0.4562, "accuracy": 0.625, "learning_rate": 4.999445903373266e-07, "epoch": 0.42447488584474885, "percentage": 10.62, "elapsed_time": "1:36:55", "remaining_time": "13:35:53"} +{"current_steps": 582, "total_steps": 5472, "loss": 0.3535, "accuracy": 0.875, "learning_rate": 4.999411814284023e-07, "epoch": 0.4252054794520548, "percentage": 10.64, "elapsed_time": "1:37:05", "remaining_time": "13:35:43"} +{"current_steps": 583, "total_steps": 5472, "loss": 0.3716, "accuracy": 1.0, "learning_rate": 4.999376707771992e-07, "epoch": 0.4259360730593607, "percentage": 10.65, "elapsed_time": "1:37:15", "remaining_time": "13:35:32"} +{"current_steps": 584, "total_steps": 5472, "loss": 0.5084, "accuracy": 0.875, "learning_rate": 4.999340583851465e-07, "epoch": 0.4266666666666667, "percentage": 10.67, "elapsed_time": "1:37:24", "remaining_time": "13:35:19"} +{"current_steps": 585, "total_steps": 5472, "loss": 0.3474, "accuracy": 0.75, "learning_rate": 4.999303442537145e-07, "epoch": 0.4273972602739726, "percentage": 10.69, "elapsed_time": "1:37:34", "remaining_time": "13:35:04"} +{"current_steps": 586, "total_steps": 5472, "loss": 0.4606, "accuracy": 0.75, "learning_rate": 4.999265283844152e-07, "epoch": 0.42812785388127855, "percentage": 10.71, "elapsed_time": "1:37:44", "remaining_time": "13:34:54"} +{"current_steps": 587, "total_steps": 5472, "loss": 0.3499, "accuracy": 0.75, "learning_rate": 4.999226107788018e-07, "epoch": 0.4288584474885845, "percentage": 10.73, "elapsed_time": "1:37:54", "remaining_time": "13:34:46"} +{"current_steps": 588, "total_steps": 5472, "loss": 0.3548, "accuracy": 0.75, "learning_rate": 4.999185914384692e-07, "epoch": 0.4295890410958904, "percentage": 10.75, "elapsed_time": "1:38:04", "remaining_time": "13:34:40"} +{"current_steps": 589, "total_steps": 5472, "loss": 0.3676, "accuracy": 0.875, "learning_rate": 4.999144703650535e-07, "epoch": 0.43031963470319634, "percentage": 10.76, "elapsed_time": "1:38:14", "remaining_time": "13:34:26"} +{"current_steps": 590, "total_steps": 5472, "loss": 0.4545, "accuracy": 1.0, "learning_rate": 4.99910247560232e-07, "epoch": 0.43105022831050227, "percentage": 10.78, "elapsed_time": "1:38:23", "remaining_time": "13:34:11"} +{"current_steps": 591, "total_steps": 5472, "loss": 0.5486, "accuracy": 0.75, "learning_rate": 4.99905923025724e-07, "epoch": 0.4317808219178082, "percentage": 10.8, "elapsed_time": "1:38:34", "remaining_time": "13:34:06"} +{"current_steps": 592, "total_steps": 5472, "loss": 0.4964, "accuracy": 0.75, "learning_rate": 4.999014967632895e-07, "epoch": 0.43251141552511413, "percentage": 10.82, "elapsed_time": "1:38:43", "remaining_time": "13:33:47"} +{"current_steps": 593, "total_steps": 5472, "loss": 0.3356, "accuracy": 1.0, "learning_rate": 4.998969687747306e-07, "epoch": 0.4332420091324201, "percentage": 10.84, "elapsed_time": "1:38:53", "remaining_time": "13:33:37"} +{"current_steps": 594, "total_steps": 5472, "loss": 0.3232, "accuracy": 0.75, "learning_rate": 4.998923390618904e-07, "epoch": 0.43397260273972604, "percentage": 10.86, "elapsed_time": "1:39:04", "remaining_time": "13:33:37"} +{"current_steps": 595, "total_steps": 5472, "loss": 0.373, "accuracy": 0.875, "learning_rate": 4.998876076266534e-07, "epoch": 0.434703196347032, "percentage": 10.87, "elapsed_time": "1:39:15", "remaining_time": "13:33:33"} +{"current_steps": 596, "total_steps": 5472, "loss": 0.4491, "accuracy": 0.625, "learning_rate": 4.998827744709456e-07, "epoch": 0.4354337899543379, "percentage": 10.89, "elapsed_time": "1:39:25", "remaining_time": "13:33:25"} +{"current_steps": 597, "total_steps": 5472, "loss": 0.5054, "accuracy": 1.0, "learning_rate": 4.998778395967345e-07, "epoch": 0.43616438356164383, "percentage": 10.91, "elapsed_time": "1:39:36", "remaining_time": "13:33:21"} +{"current_steps": 598, "total_steps": 5472, "loss": 0.45, "accuracy": 0.875, "learning_rate": 4.998728030060289e-07, "epoch": 0.43689497716894976, "percentage": 10.93, "elapsed_time": "1:39:45", "remaining_time": "13:33:06"} +{"current_steps": 599, "total_steps": 5472, "loss": 0.4058, "accuracy": 0.625, "learning_rate": 4.998676647008789e-07, "epoch": 0.4376255707762557, "percentage": 10.95, "elapsed_time": "1:39:55", "remaining_time": "13:32:55"} +{"current_steps": 600, "total_steps": 5472, "loss": 0.31, "accuracy": 0.875, "learning_rate": 4.998624246833764e-07, "epoch": 0.4383561643835616, "percentage": 10.96, "elapsed_time": "1:40:08", "remaining_time": "13:33:07"} +{"current_steps": 601, "total_steps": 5472, "loss": 0.4221, "accuracy": 1.0, "learning_rate": 4.99857082955654e-07, "epoch": 0.4390867579908676, "percentage": 10.98, "elapsed_time": "1:40:18", "remaining_time": "13:33:00"} +{"current_steps": 602, "total_steps": 5472, "loss": 0.4763, "accuracy": 0.875, "learning_rate": 4.998516395198867e-07, "epoch": 0.43981735159817353, "percentage": 11.0, "elapsed_time": "1:40:28", "remaining_time": "13:32:46"} +{"current_steps": 603, "total_steps": 5472, "loss": 0.2512, "accuracy": 0.875, "learning_rate": 4.998460943782898e-07, "epoch": 0.44054794520547946, "percentage": 11.02, "elapsed_time": "1:40:38", "remaining_time": "13:32:39"} +{"current_steps": 604, "total_steps": 5472, "loss": 0.423, "accuracy": 0.25, "learning_rate": 4.998404475331207e-07, "epoch": 0.4412785388127854, "percentage": 11.04, "elapsed_time": "1:40:47", "remaining_time": "13:32:20"} +{"current_steps": 605, "total_steps": 5472, "loss": 0.3893, "accuracy": 0.625, "learning_rate": 4.99834698986678e-07, "epoch": 0.4420091324200913, "percentage": 11.06, "elapsed_time": "1:40:56", "remaining_time": "13:32:03"} +{"current_steps": 606, "total_steps": 5472, "loss": 0.3614, "accuracy": 0.625, "learning_rate": 4.998288487413021e-07, "epoch": 0.44273972602739725, "percentage": 11.07, "elapsed_time": "1:41:11", "remaining_time": "13:32:28"} +{"current_steps": 607, "total_steps": 5472, "loss": 0.3392, "accuracy": 0.875, "learning_rate": 4.998228967993739e-07, "epoch": 0.4434703196347032, "percentage": 11.09, "elapsed_time": "1:41:20", "remaining_time": "13:32:12"} +{"current_steps": 608, "total_steps": 5472, "loss": 0.3741, "accuracy": 0.875, "learning_rate": 4.998168431633165e-07, "epoch": 0.4442009132420091, "percentage": 11.11, "elapsed_time": "1:41:31", "remaining_time": "13:32:09"} +{"current_steps": 609, "total_steps": 5472, "loss": 0.4427, "accuracy": 0.625, "learning_rate": 4.998106878355941e-07, "epoch": 0.4449315068493151, "percentage": 11.13, "elapsed_time": "1:41:40", "remaining_time": "13:31:53"} +{"current_steps": 610, "total_steps": 5472, "loss": 0.4569, "accuracy": 0.75, "learning_rate": 4.998044308187123e-07, "epoch": 0.445662100456621, "percentage": 11.15, "elapsed_time": "1:41:50", "remaining_time": "13:31:41"} +{"current_steps": 611, "total_steps": 5472, "loss": 0.4723, "accuracy": 0.875, "learning_rate": 4.997980721152181e-07, "epoch": 0.44639269406392695, "percentage": 11.17, "elapsed_time": "1:41:59", "remaining_time": "13:31:23"} +{"current_steps": 612, "total_steps": 5472, "loss": 0.4264, "accuracy": 0.5, "learning_rate": 4.997916117277e-07, "epoch": 0.4471232876712329, "percentage": 11.18, "elapsed_time": "1:42:08", "remaining_time": "13:31:06"} +{"current_steps": 613, "total_steps": 5472, "loss": 0.4642, "accuracy": 0.875, "learning_rate": 4.997850496587875e-07, "epoch": 0.4478538812785388, "percentage": 11.2, "elapsed_time": "1:42:17", "remaining_time": "13:30:51"} +{"current_steps": 614, "total_steps": 5472, "loss": 0.4423, "accuracy": 0.75, "learning_rate": 4.997783859111522e-07, "epoch": 0.44858447488584474, "percentage": 11.22, "elapsed_time": "1:42:28", "remaining_time": "13:30:45"} +{"current_steps": 615, "total_steps": 5472, "loss": 0.3801, "accuracy": 1.0, "learning_rate": 4.997716204875065e-07, "epoch": 0.44931506849315067, "percentage": 11.24, "elapsed_time": "1:42:37", "remaining_time": "13:30:27"} +{"current_steps": 616, "total_steps": 5472, "loss": 0.4612, "accuracy": 0.875, "learning_rate": 4.997647533906042e-07, "epoch": 0.4500456621004566, "percentage": 11.26, "elapsed_time": "1:42:46", "remaining_time": "13:30:13"} +{"current_steps": 617, "total_steps": 5472, "loss": 0.362, "accuracy": 0.625, "learning_rate": 4.997577846232408e-07, "epoch": 0.45077625570776253, "percentage": 11.28, "elapsed_time": "1:42:57", "remaining_time": "13:30:07"} +{"current_steps": 618, "total_steps": 5472, "loss": 0.3659, "accuracy": 0.75, "learning_rate": 4.997507141882532e-07, "epoch": 0.4515068493150685, "percentage": 11.29, "elapsed_time": "1:43:06", "remaining_time": "13:29:51"} +{"current_steps": 619, "total_steps": 5472, "loss": 0.3543, "accuracy": 0.875, "learning_rate": 4.997435420885192e-07, "epoch": 0.45223744292237444, "percentage": 11.31, "elapsed_time": "1:43:15", "remaining_time": "13:29:36"} +{"current_steps": 620, "total_steps": 5472, "loss": 0.4165, "accuracy": 1.0, "learning_rate": 4.997362683269585e-07, "epoch": 0.4529680365296804, "percentage": 11.33, "elapsed_time": "1:43:27", "remaining_time": "13:29:41"} +{"current_steps": 621, "total_steps": 5472, "loss": 0.325, "accuracy": 0.875, "learning_rate": 4.997288929065321e-07, "epoch": 0.4536986301369863, "percentage": 11.35, "elapsed_time": "1:43:39", "remaining_time": "13:29:47"} +{"current_steps": 622, "total_steps": 5472, "loss": 0.4256, "accuracy": 0.75, "learning_rate": 4.99721415830242e-07, "epoch": 0.45442922374429223, "percentage": 11.37, "elapsed_time": "1:43:50", "remaining_time": "13:29:42"} +{"current_steps": 623, "total_steps": 5472, "loss": 0.7255, "accuracy": 0.75, "learning_rate": 4.997138371011321e-07, "epoch": 0.45515981735159816, "percentage": 11.39, "elapsed_time": "1:44:00", "remaining_time": "13:29:32"} +{"current_steps": 624, "total_steps": 5472, "loss": 0.43, "accuracy": 0.75, "learning_rate": 4.997061567222873e-07, "epoch": 0.4558904109589041, "percentage": 11.4, "elapsed_time": "1:44:09", "remaining_time": "13:29:17"} +{"current_steps": 625, "total_steps": 5472, "loss": 0.3735, "accuracy": 0.875, "learning_rate": 4.99698374696834e-07, "epoch": 0.45662100456621, "percentage": 11.42, "elapsed_time": "1:44:19", "remaining_time": "13:29:02"} +{"current_steps": 626, "total_steps": 5472, "loss": 0.6069, "accuracy": 0.375, "learning_rate": 4.9969049102794e-07, "epoch": 0.457351598173516, "percentage": 11.44, "elapsed_time": "1:44:31", "remaining_time": "13:29:08"} +{"current_steps": 627, "total_steps": 5472, "loss": 0.4253, "accuracy": 0.875, "learning_rate": 4.996825057188146e-07, "epoch": 0.45808219178082193, "percentage": 11.46, "elapsed_time": "1:44:41", "remaining_time": "13:28:59"} +{"current_steps": 628, "total_steps": 5472, "loss": 0.4224, "accuracy": 1.0, "learning_rate": 4.996744187727083e-07, "epoch": 0.45881278538812786, "percentage": 11.48, "elapsed_time": "1:44:50", "remaining_time": "13:28:40"} +{"current_steps": 629, "total_steps": 5472, "loss": 0.5152, "accuracy": 0.75, "learning_rate": 4.996662301929128e-07, "epoch": 0.4595433789954338, "percentage": 11.49, "elapsed_time": "1:44:59", "remaining_time": "13:28:25"} +{"current_steps": 630, "total_steps": 5472, "loss": 0.3807, "accuracy": 0.625, "learning_rate": 4.996579399827616e-07, "epoch": 0.4602739726027397, "percentage": 11.51, "elapsed_time": "1:45:11", "remaining_time": "13:28:30"} +{"current_steps": 631, "total_steps": 5472, "loss": 0.5433, "accuracy": 0.875, "learning_rate": 4.996495481456292e-07, "epoch": 0.46100456621004565, "percentage": 11.53, "elapsed_time": "1:45:20", "remaining_time": "13:28:14"} +{"current_steps": 632, "total_steps": 5472, "loss": 0.3638, "accuracy": 0.75, "learning_rate": 4.996410546849318e-07, "epoch": 0.4617351598173516, "percentage": 11.55, "elapsed_time": "1:45:30", "remaining_time": "13:27:58"} +{"current_steps": 633, "total_steps": 5472, "loss": 0.4296, "accuracy": 0.875, "learning_rate": 4.996324596041266e-07, "epoch": 0.4624657534246575, "percentage": 11.57, "elapsed_time": "1:45:39", "remaining_time": "13:27:43"} +{"current_steps": 634, "total_steps": 5472, "loss": 0.3587, "accuracy": 0.875, "learning_rate": 4.996237629067126e-07, "epoch": 0.4631963470319635, "percentage": 11.59, "elapsed_time": "1:45:48", "remaining_time": "13:27:26"} +{"current_steps": 635, "total_steps": 5472, "loss": 0.2681, "accuracy": 1.0, "learning_rate": 4.996149645962297e-07, "epoch": 0.4639269406392694, "percentage": 11.6, "elapsed_time": "1:45:57", "remaining_time": "13:27:09"} +{"current_steps": 636, "total_steps": 5472, "loss": 0.2757, "accuracy": 0.75, "learning_rate": 4.996060646762594e-07, "epoch": 0.46465753424657535, "percentage": 11.62, "elapsed_time": "1:46:07", "remaining_time": "13:26:57"} +{"current_steps": 637, "total_steps": 5472, "loss": 0.3175, "accuracy": 0.875, "learning_rate": 4.995970631504247e-07, "epoch": 0.4653881278538813, "percentage": 11.64, "elapsed_time": "1:46:16", "remaining_time": "13:26:41"} +{"current_steps": 638, "total_steps": 5472, "loss": 0.3064, "accuracy": 0.875, "learning_rate": 4.995879600223897e-07, "epoch": 0.4661187214611872, "percentage": 11.66, "elapsed_time": "1:46:26", "remaining_time": "13:26:29"} +{"current_steps": 639, "total_steps": 5472, "loss": 0.2999, "accuracy": 0.75, "learning_rate": 4.995787552958599e-07, "epoch": 0.46684931506849314, "percentage": 11.68, "elapsed_time": "1:46:36", "remaining_time": "13:26:19"} +{"current_steps": 640, "total_steps": 5472, "loss": 0.4422, "accuracy": 0.875, "learning_rate": 4.995694489745823e-07, "epoch": 0.46757990867579907, "percentage": 11.7, "elapsed_time": "1:46:46", "remaining_time": "13:26:07"} +{"current_steps": 641, "total_steps": 5472, "loss": 0.4382, "accuracy": 0.625, "learning_rate": 4.995600410623453e-07, "epoch": 0.468310502283105, "percentage": 11.71, "elapsed_time": "1:46:57", "remaining_time": "13:26:03"} +{"current_steps": 642, "total_steps": 5472, "loss": 0.3206, "accuracy": 0.75, "learning_rate": 4.995505315629782e-07, "epoch": 0.469041095890411, "percentage": 11.73, "elapsed_time": "1:47:06", "remaining_time": "13:25:45"} +{"current_steps": 643, "total_steps": 5472, "loss": 0.4901, "accuracy": 0.75, "learning_rate": 4.995409204803523e-07, "epoch": 0.4697716894977169, "percentage": 11.75, "elapsed_time": "1:47:15", "remaining_time": "13:25:29"} +{"current_steps": 644, "total_steps": 5472, "loss": 0.3551, "accuracy": 0.75, "learning_rate": 4.995312078183798e-07, "epoch": 0.47050228310502284, "percentage": 11.77, "elapsed_time": "1:47:24", "remaining_time": "13:25:12"} +{"current_steps": 645, "total_steps": 5472, "loss": 0.7301, "accuracy": 0.75, "learning_rate": 4.995213935810145e-07, "epoch": 0.4712328767123288, "percentage": 11.79, "elapsed_time": "1:47:33", "remaining_time": "13:24:58"} +{"current_steps": 646, "total_steps": 5472, "loss": 0.4681, "accuracy": 0.625, "learning_rate": 4.995114777722511e-07, "epoch": 0.4719634703196347, "percentage": 11.81, "elapsed_time": "1:47:43", "remaining_time": "13:24:44"} +{"current_steps": 647, "total_steps": 5472, "loss": 0.4929, "accuracy": 0.875, "learning_rate": 4.995014603961264e-07, "epoch": 0.47269406392694063, "percentage": 11.82, "elapsed_time": "1:47:52", "remaining_time": "13:24:30"} +{"current_steps": 648, "total_steps": 5472, "loss": 0.2248, "accuracy": 1.0, "learning_rate": 4.994913414567178e-07, "epoch": 0.47342465753424656, "percentage": 11.84, "elapsed_time": "1:48:01", "remaining_time": "13:24:10"} +{"current_steps": 649, "total_steps": 5472, "loss": 0.5098, "accuracy": 0.75, "learning_rate": 4.994811209581446e-07, "epoch": 0.4741552511415525, "percentage": 11.86, "elapsed_time": "1:48:11", "remaining_time": "13:23:58"} +{"current_steps": 650, "total_steps": 5472, "loss": 0.51, "accuracy": 0.625, "learning_rate": 4.994707989045671e-07, "epoch": 0.4748858447488584, "percentage": 11.88, "elapsed_time": "1:48:21", "remaining_time": "13:23:53"} +{"current_steps": 651, "total_steps": 5472, "loss": 0.4227, "accuracy": 0.75, "learning_rate": 4.99460375300187e-07, "epoch": 0.4756164383561644, "percentage": 11.9, "elapsed_time": "1:48:31", "remaining_time": "13:23:42"} +{"current_steps": 652, "total_steps": 5472, "loss": 0.3261, "accuracy": 0.625, "learning_rate": 4.994498501492474e-07, "epoch": 0.47634703196347034, "percentage": 11.92, "elapsed_time": "1:48:41", "remaining_time": "13:23:31"} +{"current_steps": 653, "total_steps": 5472, "loss": 0.4174, "accuracy": 0.75, "learning_rate": 4.994392234560328e-07, "epoch": 0.47707762557077626, "percentage": 11.93, "elapsed_time": "1:48:50", "remaining_time": "13:23:13"} +{"current_steps": 654, "total_steps": 5472, "loss": 0.3568, "accuracy": 0.625, "learning_rate": 4.99428495224869e-07, "epoch": 0.4778082191780822, "percentage": 11.95, "elapsed_time": "1:48:59", "remaining_time": "13:22:55"} +{"current_steps": 655, "total_steps": 5472, "loss": 0.3998, "accuracy": 1.0, "learning_rate": 4.994176654601229e-07, "epoch": 0.4785388127853881, "percentage": 11.97, "elapsed_time": "1:49:09", "remaining_time": "13:22:48"} +{"current_steps": 656, "total_steps": 5472, "loss": 0.4316, "accuracy": 1.0, "learning_rate": 4.994067341662029e-07, "epoch": 0.47926940639269405, "percentage": 11.99, "elapsed_time": "1:49:19", "remaining_time": "13:22:37"} +{"current_steps": 657, "total_steps": 5472, "loss": 0.4287, "accuracy": 0.75, "learning_rate": 4.99395701347559e-07, "epoch": 0.48, "percentage": 12.01, "elapsed_time": "1:49:29", "remaining_time": "13:22:26"} +{"current_steps": 658, "total_steps": 5472, "loss": 0.7126, "accuracy": 0.5, "learning_rate": 4.993845670086822e-07, "epoch": 0.4807305936073059, "percentage": 12.02, "elapsed_time": "1:49:40", "remaining_time": "13:22:25"} +{"current_steps": 659, "total_steps": 5472, "loss": 0.4577, "accuracy": 0.625, "learning_rate": 4.993733311541046e-07, "epoch": 0.4814611872146119, "percentage": 12.04, "elapsed_time": "1:49:49", "remaining_time": "13:22:09"} +{"current_steps": 660, "total_steps": 5472, "loss": 0.3852, "accuracy": 0.875, "learning_rate": 4.993619937884003e-07, "epoch": 0.4821917808219178, "percentage": 12.06, "elapsed_time": "1:49:59", "remaining_time": "13:21:54"} +{"current_steps": 661, "total_steps": 5472, "loss": 0.482, "accuracy": 0.75, "learning_rate": 4.993505549161841e-07, "epoch": 0.48292237442922376, "percentage": 12.08, "elapsed_time": "1:50:08", "remaining_time": "13:21:42"} +{"current_steps": 662, "total_steps": 5472, "loss": 0.2981, "accuracy": 0.875, "learning_rate": 4.993390145421125e-07, "epoch": 0.4836529680365297, "percentage": 12.1, "elapsed_time": "1:50:18", "remaining_time": "13:21:28"} +{"current_steps": 663, "total_steps": 5472, "loss": 0.3401, "accuracy": 0.75, "learning_rate": 4.993273726708831e-07, "epoch": 0.4843835616438356, "percentage": 12.12, "elapsed_time": "1:50:27", "remaining_time": "13:21:13"} +{"current_steps": 664, "total_steps": 5472, "loss": 0.4623, "accuracy": 0.875, "learning_rate": 4.99315629307235e-07, "epoch": 0.48511415525114154, "percentage": 12.13, "elapsed_time": "1:50:37", "remaining_time": "13:21:04"} +{"current_steps": 665, "total_steps": 5472, "loss": 0.3032, "accuracy": 0.875, "learning_rate": 4.993037844559484e-07, "epoch": 0.4858447488584475, "percentage": 12.15, "elapsed_time": "1:50:47", "remaining_time": "13:20:52"} +{"current_steps": 666, "total_steps": 5472, "loss": 0.3447, "accuracy": 0.625, "learning_rate": 4.99291838121845e-07, "epoch": 0.4865753424657534, "percentage": 12.17, "elapsed_time": "1:50:56", "remaining_time": "13:20:33"} +{"current_steps": 667, "total_steps": 5472, "loss": 0.321, "accuracy": 0.875, "learning_rate": 4.992797903097878e-07, "epoch": 0.4873059360730594, "percentage": 12.19, "elapsed_time": "1:51:06", "remaining_time": "13:20:21"} +{"current_steps": 668, "total_steps": 5472, "loss": 0.4141, "accuracy": 0.625, "learning_rate": 4.992676410246807e-07, "epoch": 0.4880365296803653, "percentage": 12.21, "elapsed_time": "1:51:15", "remaining_time": "13:20:08"} +{"current_steps": 669, "total_steps": 5472, "loss": 0.3671, "accuracy": 0.875, "learning_rate": 4.992553902714696e-07, "epoch": 0.48876712328767125, "percentage": 12.23, "elapsed_time": "1:51:24", "remaining_time": "13:19:53"} +{"current_steps": 670, "total_steps": 5472, "loss": 0.473, "accuracy": 0.75, "learning_rate": 4.992430380551412e-07, "epoch": 0.4894977168949772, "percentage": 12.24, "elapsed_time": "1:51:34", "remaining_time": "13:19:39"} +{"current_steps": 671, "total_steps": 5472, "loss": 0.2853, "accuracy": 0.875, "learning_rate": 4.992305843807238e-07, "epoch": 0.4902283105022831, "percentage": 12.26, "elapsed_time": "1:51:44", "remaining_time": "13:19:27"} +{"current_steps": 672, "total_steps": 5472, "loss": 0.4264, "accuracy": 0.75, "learning_rate": 4.992180292532867e-07, "epoch": 0.49095890410958903, "percentage": 12.28, "elapsed_time": "1:51:55", "remaining_time": "13:19:29"} +{"current_steps": 673, "total_steps": 5472, "loss": 0.3105, "accuracy": 1.0, "learning_rate": 4.992053726779406e-07, "epoch": 0.49168949771689496, "percentage": 12.3, "elapsed_time": "1:52:06", "remaining_time": "13:19:24"} +{"current_steps": 674, "total_steps": 5472, "loss": 0.3849, "accuracy": 0.625, "learning_rate": 4.991926146598377e-07, "epoch": 0.4924200913242009, "percentage": 12.32, "elapsed_time": "1:52:15", "remaining_time": "13:19:09"} +{"current_steps": 675, "total_steps": 5472, "loss": 0.3934, "accuracy": 1.0, "learning_rate": 4.991797552041714e-07, "epoch": 0.4931506849315068, "percentage": 12.34, "elapsed_time": "1:52:24", "remaining_time": "13:18:53"} +{"current_steps": 676, "total_steps": 5472, "loss": 0.5084, "accuracy": 0.5, "learning_rate": 4.991667943161762e-07, "epoch": 0.4938812785388128, "percentage": 12.35, "elapsed_time": "1:52:36", "remaining_time": "13:18:51"} +{"current_steps": 677, "total_steps": 5472, "loss": 0.4295, "accuracy": 0.75, "learning_rate": 4.991537320011278e-07, "epoch": 0.49461187214611874, "percentage": 12.37, "elapsed_time": "1:52:45", "remaining_time": "13:18:37"} +{"current_steps": 678, "total_steps": 5472, "loss": 0.5685, "accuracy": 0.625, "learning_rate": 4.99140568264344e-07, "epoch": 0.49534246575342467, "percentage": 12.39, "elapsed_time": "1:52:55", "remaining_time": "13:18:26"} +{"current_steps": 679, "total_steps": 5472, "loss": 0.3098, "accuracy": 0.625, "learning_rate": 4.991273031111827e-07, "epoch": 0.4960730593607306, "percentage": 12.41, "elapsed_time": "1:53:04", "remaining_time": "13:18:11"} +{"current_steps": 680, "total_steps": 5472, "loss": 0.5631, "accuracy": 0.75, "learning_rate": 4.99113936547044e-07, "epoch": 0.4968036529680365, "percentage": 12.43, "elapsed_time": "1:53:15", "remaining_time": "13:18:04"} +{"current_steps": 681, "total_steps": 5472, "loss": 0.2741, "accuracy": 0.875, "learning_rate": 4.991004685773689e-07, "epoch": 0.49753424657534245, "percentage": 12.45, "elapsed_time": "1:53:28", "remaining_time": "13:18:22"} +{"current_steps": 682, "total_steps": 5472, "loss": 0.3997, "accuracy": 0.75, "learning_rate": 4.990868992076397e-07, "epoch": 0.4982648401826484, "percentage": 12.46, "elapsed_time": "1:53:39", "remaining_time": "13:18:16"} +{"current_steps": 683, "total_steps": 5472, "loss": 0.372, "accuracy": 1.0, "learning_rate": 4.9907322844338e-07, "epoch": 0.4989954337899543, "percentage": 12.48, "elapsed_time": "1:53:48", "remaining_time": "13:17:57"} +{"current_steps": 684, "total_steps": 5472, "loss": 0.4072, "accuracy": 0.625, "learning_rate": 4.990594562901547e-07, "epoch": 0.4997260273972603, "percentage": 12.5, "elapsed_time": "1:53:57", "remaining_time": "13:17:40"} +{"current_steps": 685, "total_steps": 5472, "loss": 0.3723, "accuracy": 0.75, "learning_rate": 4.990455827535701e-07, "epoch": 0.5004566210045662, "percentage": 12.52, "elapsed_time": "1:54:06", "remaining_time": "13:17:24"} +{"current_steps": 686, "total_steps": 5472, "loss": 0.2817, "accuracy": 0.625, "learning_rate": 4.990316078392735e-07, "epoch": 0.5011872146118721, "percentage": 12.54, "elapsed_time": "1:54:16", "remaining_time": "13:17:14"} +{"current_steps": 687, "total_steps": 5472, "loss": 0.3824, "accuracy": 0.625, "learning_rate": 4.990175315529536e-07, "epoch": 0.5019178082191781, "percentage": 12.55, "elapsed_time": "1:54:25", "remaining_time": "13:16:56"} +{"current_steps": 688, "total_steps": 5472, "loss": 0.4471, "accuracy": 0.875, "learning_rate": 4.990033539003402e-07, "epoch": 0.5026484018264841, "percentage": 12.57, "elapsed_time": "1:54:36", "remaining_time": "13:16:55"} +{"current_steps": 689, "total_steps": 5472, "loss": 0.3537, "accuracy": 0.875, "learning_rate": 4.989890748872048e-07, "epoch": 0.5033789954337899, "percentage": 12.59, "elapsed_time": "1:54:45", "remaining_time": "13:16:40"} +{"current_steps": 690, "total_steps": 5472, "loss": 0.2877, "accuracy": 0.875, "learning_rate": 4.9897469451936e-07, "epoch": 0.5041095890410959, "percentage": 12.61, "elapsed_time": "1:54:54", "remaining_time": "13:16:24"} +{"current_steps": 691, "total_steps": 5472, "loss": 0.4937, "accuracy": 0.75, "learning_rate": 4.98960212802659e-07, "epoch": 0.5048401826484018, "percentage": 12.63, "elapsed_time": "1:55:05", "remaining_time": "13:16:20"} +{"current_steps": 692, "total_steps": 5472, "loss": 0.3903, "accuracy": 0.875, "learning_rate": 4.989456297429973e-07, "epoch": 0.5055707762557078, "percentage": 12.65, "elapsed_time": "1:55:16", "remaining_time": "13:16:15"} +{"current_steps": 693, "total_steps": 5472, "loss": 0.2795, "accuracy": 1.0, "learning_rate": 4.989309453463109e-07, "epoch": 0.5063013698630137, "percentage": 12.66, "elapsed_time": "1:55:25", "remaining_time": "13:16:02"} +{"current_steps": 694, "total_steps": 5472, "loss": 0.4049, "accuracy": 1.0, "learning_rate": 4.989161596185774e-07, "epoch": 0.5070319634703196, "percentage": 12.68, "elapsed_time": "1:55:36", "remaining_time": "13:15:56"} +{"current_steps": 695, "total_steps": 5472, "loss": 0.338, "accuracy": 0.75, "learning_rate": 4.989012725658156e-07, "epoch": 0.5077625570776255, "percentage": 12.7, "elapsed_time": "1:55:46", "remaining_time": "13:15:43"} +{"current_steps": 696, "total_steps": 5472, "loss": 0.3711, "accuracy": 0.875, "learning_rate": 4.988862841940853e-07, "epoch": 0.5084931506849315, "percentage": 12.72, "elapsed_time": "1:55:56", "remaining_time": "13:15:32"} +{"current_steps": 697, "total_steps": 5472, "loss": 0.412, "accuracy": 1.0, "learning_rate": 4.98871194509488e-07, "epoch": 0.5092237442922375, "percentage": 12.74, "elapsed_time": "1:56:05", "remaining_time": "13:15:18"} +{"current_steps": 698, "total_steps": 5472, "loss": 0.4069, "accuracy": 0.875, "learning_rate": 4.988560035181659e-07, "epoch": 0.5099543378995434, "percentage": 12.76, "elapsed_time": "1:56:16", "remaining_time": "13:15:13"} +{"current_steps": 699, "total_steps": 5472, "loss": 0.348, "accuracy": 0.625, "learning_rate": 4.988407112263029e-07, "epoch": 0.5106849315068493, "percentage": 12.77, "elapsed_time": "1:56:26", "remaining_time": "13:15:09"} +{"current_steps": 700, "total_steps": 5472, "loss": 0.5571, "accuracy": 0.875, "learning_rate": 4.98825317640124e-07, "epoch": 0.5114155251141552, "percentage": 12.79, "elapsed_time": "1:56:37", "remaining_time": "13:15:03"} +{"current_steps": 701, "total_steps": 5472, "loss": 0.3116, "accuracy": 0.875, "learning_rate": 4.988098227658952e-07, "epoch": 0.5121461187214612, "percentage": 12.81, "elapsed_time": "1:56:46", "remaining_time": "13:14:46"} +{"current_steps": 702, "total_steps": 5472, "loss": 0.4409, "accuracy": 0.75, "learning_rate": 4.987942266099241e-07, "epoch": 0.5128767123287671, "percentage": 12.83, "elapsed_time": "1:56:55", "remaining_time": "13:14:30"} +{"current_steps": 703, "total_steps": 5472, "loss": 0.3933, "accuracy": 0.75, "learning_rate": 4.987785291785592e-07, "epoch": 0.5136073059360731, "percentage": 12.85, "elapsed_time": "1:57:05", "remaining_time": "13:14:21"} +{"current_steps": 704, "total_steps": 5472, "loss": 0.281, "accuracy": 0.875, "learning_rate": 4.987627304781905e-07, "epoch": 0.5143378995433789, "percentage": 12.87, "elapsed_time": "1:57:19", "remaining_time": "13:14:36"} +{"current_steps": 705, "total_steps": 5472, "loss": 0.435, "accuracy": 0.875, "learning_rate": 4.987468305152491e-07, "epoch": 0.5150684931506849, "percentage": 12.88, "elapsed_time": "1:57:30", "remaining_time": "13:14:32"} +{"current_steps": 706, "total_steps": 5472, "loss": 0.2714, "accuracy": 0.875, "learning_rate": 4.987308292962072e-07, "epoch": 0.5157990867579909, "percentage": 12.9, "elapsed_time": "1:57:39", "remaining_time": "13:14:16"} +{"current_steps": 707, "total_steps": 5472, "loss": 0.2781, "accuracy": 0.75, "learning_rate": 4.987147268275784e-07, "epoch": 0.5165296803652968, "percentage": 12.92, "elapsed_time": "1:57:48", "remaining_time": "13:13:59"} +{"current_steps": 708, "total_steps": 5472, "loss": 0.2812, "accuracy": 1.0, "learning_rate": 4.986985231159174e-07, "epoch": 0.5172602739726028, "percentage": 12.94, "elapsed_time": "1:57:58", "remaining_time": "13:13:52"} +{"current_steps": 709, "total_steps": 5472, "loss": 0.5188, "accuracy": 0.625, "learning_rate": 4.986822181678203e-07, "epoch": 0.5179908675799086, "percentage": 12.96, "elapsed_time": "1:58:09", "remaining_time": "13:13:45"} +{"current_steps": 710, "total_steps": 5472, "loss": 0.5092, "accuracy": 0.75, "learning_rate": 4.986658119899241e-07, "epoch": 0.5187214611872146, "percentage": 12.98, "elapsed_time": "1:58:20", "remaining_time": "13:13:41"} +{"current_steps": 711, "total_steps": 5472, "loss": 0.4315, "accuracy": 0.75, "learning_rate": 4.986493045889073e-07, "epoch": 0.5194520547945205, "percentage": 12.99, "elapsed_time": "1:58:29", "remaining_time": "13:13:28"} +{"current_steps": 712, "total_steps": 5472, "loss": 0.3445, "accuracy": 1.0, "learning_rate": 4.986326959714894e-07, "epoch": 0.5201826484018265, "percentage": 13.01, "elapsed_time": "1:58:39", "remaining_time": "13:13:13"} +{"current_steps": 713, "total_steps": 5472, "loss": 0.2737, "accuracy": 1.0, "learning_rate": 4.986159861444311e-07, "epoch": 0.5209132420091325, "percentage": 13.03, "elapsed_time": "1:58:48", "remaining_time": "13:13:00"} +{"current_steps": 714, "total_steps": 5472, "loss": 0.4349, "accuracy": 0.75, "learning_rate": 4.985991751145348e-07, "epoch": 0.5216438356164383, "percentage": 13.05, "elapsed_time": "1:58:58", "remaining_time": "13:12:47"} +{"current_steps": 715, "total_steps": 5472, "loss": 0.2714, "accuracy": 1.0, "learning_rate": 4.985822628886431e-07, "epoch": 0.5223744292237443, "percentage": 13.07, "elapsed_time": "1:59:07", "remaining_time": "13:12:30"} +{"current_steps": 716, "total_steps": 5472, "loss": 0.3497, "accuracy": 0.875, "learning_rate": 4.985652494736408e-07, "epoch": 0.5231050228310502, "percentage": 13.08, "elapsed_time": "1:59:17", "remaining_time": "13:12:23"} +{"current_steps": 717, "total_steps": 5472, "loss": 0.3901, "accuracy": 0.875, "learning_rate": 4.985481348764533e-07, "epoch": 0.5238356164383562, "percentage": 13.1, "elapsed_time": "1:59:28", "remaining_time": "13:12:20"} +{"current_steps": 718, "total_steps": 5472, "loss": 0.232, "accuracy": 0.875, "learning_rate": 4.985309191040474e-07, "epoch": 0.5245662100456621, "percentage": 13.12, "elapsed_time": "1:59:37", "remaining_time": "13:12:04"} +{"current_steps": 719, "total_steps": 5472, "loss": 0.2906, "accuracy": 0.875, "learning_rate": 4.985136021634311e-07, "epoch": 0.525296803652968, "percentage": 13.14, "elapsed_time": "1:59:47", "remaining_time": "13:11:55"} +{"current_steps": 720, "total_steps": 5472, "loss": 0.5272, "accuracy": 0.75, "learning_rate": 4.984961840616533e-07, "epoch": 0.5260273972602739, "percentage": 13.16, "elapsed_time": "1:59:57", "remaining_time": "13:11:44"} +{"current_steps": 721, "total_steps": 5472, "loss": 0.3179, "accuracy": 1.0, "learning_rate": 4.984786648058044e-07, "epoch": 0.5267579908675799, "percentage": 13.18, "elapsed_time": "2:00:08", "remaining_time": "13:11:42"} +{"current_steps": 722, "total_steps": 5472, "loss": 0.4227, "accuracy": 1.0, "learning_rate": 4.984610444030161e-07, "epoch": 0.5274885844748859, "percentage": 13.19, "elapsed_time": "2:00:20", "remaining_time": "13:11:45"} +{"current_steps": 723, "total_steps": 5472, "loss": 0.3899, "accuracy": 0.75, "learning_rate": 4.984433228604606e-07, "epoch": 0.5282191780821918, "percentage": 13.21, "elapsed_time": "2:00:31", "remaining_time": "13:11:41"} +{"current_steps": 724, "total_steps": 5472, "loss": 0.4478, "accuracy": 0.875, "learning_rate": 4.984255001853521e-07, "epoch": 0.5289497716894977, "percentage": 13.23, "elapsed_time": "2:00:41", "remaining_time": "13:11:27"} +{"current_steps": 725, "total_steps": 5472, "loss": 0.3833, "accuracy": 1.0, "learning_rate": 4.984075763849455e-07, "epoch": 0.5296803652968036, "percentage": 13.25, "elapsed_time": "2:00:50", "remaining_time": "13:11:12"} +{"current_steps": 726, "total_steps": 5472, "loss": 0.449, "accuracy": 0.875, "learning_rate": 4.983895514665368e-07, "epoch": 0.5304109589041096, "percentage": 13.27, "elapsed_time": "2:01:00", "remaining_time": "13:11:00"} +{"current_steps": 727, "total_steps": 5472, "loss": 0.3864, "accuracy": 1.0, "learning_rate": 4.983714254374635e-07, "epoch": 0.5311415525114155, "percentage": 13.29, "elapsed_time": "2:01:09", "remaining_time": "13:10:47"} +{"current_steps": 728, "total_steps": 5472, "loss": 0.5762, "accuracy": 0.625, "learning_rate": 4.983531983051039e-07, "epoch": 0.5318721461187215, "percentage": 13.3, "elapsed_time": "2:01:19", "remaining_time": "13:10:37"} +{"current_steps": 729, "total_steps": 5472, "loss": 0.3736, "accuracy": 0.625, "learning_rate": 4.983348700768778e-07, "epoch": 0.5326027397260275, "percentage": 13.32, "elapsed_time": "2:01:29", "remaining_time": "13:10:26"} +{"current_steps": 730, "total_steps": 5472, "loss": 0.4544, "accuracy": 0.75, "learning_rate": 4.983164407602457e-07, "epoch": 0.5333333333333333, "percentage": 13.34, "elapsed_time": "2:01:38", "remaining_time": "13:10:10"} +{"current_steps": 731, "total_steps": 5472, "loss": 0.653, "accuracy": 0.75, "learning_rate": 4.9829791036271e-07, "epoch": 0.5340639269406393, "percentage": 13.36, "elapsed_time": "2:01:47", "remaining_time": "13:09:56"} +{"current_steps": 732, "total_steps": 5472, "loss": 0.3764, "accuracy": 0.75, "learning_rate": 4.982792788918132e-07, "epoch": 0.5347945205479452, "percentage": 13.38, "elapsed_time": "2:01:58", "remaining_time": "13:09:48"} +{"current_steps": 733, "total_steps": 5472, "loss": 0.3436, "accuracy": 0.875, "learning_rate": 4.9826054635514e-07, "epoch": 0.5355251141552512, "percentage": 13.4, "elapsed_time": "2:02:09", "remaining_time": "13:09:48"} +{"current_steps": 734, "total_steps": 5472, "loss": 0.3857, "accuracy": 0.875, "learning_rate": 4.982417127603156e-07, "epoch": 0.536255707762557, "percentage": 13.41, "elapsed_time": "2:02:18", "remaining_time": "13:09:33"} +{"current_steps": 735, "total_steps": 5472, "loss": 0.4012, "accuracy": 0.875, "learning_rate": 4.982227781150063e-07, "epoch": 0.536986301369863, "percentage": 13.43, "elapsed_time": "2:02:29", "remaining_time": "13:09:27"} +{"current_steps": 736, "total_steps": 5472, "loss": 0.2754, "accuracy": 0.875, "learning_rate": 4.9820374242692e-07, "epoch": 0.5377168949771689, "percentage": 13.45, "elapsed_time": "2:02:38", "remaining_time": "13:09:11"} +{"current_steps": 737, "total_steps": 5472, "loss": 0.6175, "accuracy": 0.5, "learning_rate": 4.981846057038053e-07, "epoch": 0.5384474885844749, "percentage": 13.47, "elapsed_time": "2:02:48", "remaining_time": "13:09:00"} +{"current_steps": 738, "total_steps": 5472, "loss": 0.2576, "accuracy": 1.0, "learning_rate": 4.981653679534522e-07, "epoch": 0.5391780821917809, "percentage": 13.49, "elapsed_time": "2:02:59", "remaining_time": "13:08:56"} +{"current_steps": 739, "total_steps": 5472, "loss": 0.4341, "accuracy": 0.75, "learning_rate": 4.981460291836915e-07, "epoch": 0.5399086757990867, "percentage": 13.51, "elapsed_time": "2:03:09", "remaining_time": "13:08:44"} +{"current_steps": 740, "total_steps": 5472, "loss": 0.4073, "accuracy": 0.75, "learning_rate": 4.981265894023956e-07, "epoch": 0.5406392694063927, "percentage": 13.52, "elapsed_time": "2:03:19", "remaining_time": "13:08:35"} +{"current_steps": 741, "total_steps": 5472, "loss": 0.3626, "accuracy": 0.875, "learning_rate": 4.981070486174777e-07, "epoch": 0.5413698630136986, "percentage": 13.54, "elapsed_time": "2:03:28", "remaining_time": "13:08:20"} +{"current_steps": 742, "total_steps": 5472, "loss": 0.2462, "accuracy": 1.0, "learning_rate": 4.980874068368919e-07, "epoch": 0.5421004566210046, "percentage": 13.56, "elapsed_time": "2:03:38", "remaining_time": "13:08:12"} +{"current_steps": 743, "total_steps": 5472, "loss": 0.2647, "accuracy": 0.875, "learning_rate": 4.980676640686341e-07, "epoch": 0.5428310502283105, "percentage": 13.58, "elapsed_time": "2:03:49", "remaining_time": "13:08:05"} +{"current_steps": 744, "total_steps": 5472, "loss": 0.5279, "accuracy": 0.75, "learning_rate": 4.980478203207406e-07, "epoch": 0.5435616438356164, "percentage": 13.6, "elapsed_time": "2:03:59", "remaining_time": "13:07:57"} +{"current_steps": 745, "total_steps": 5472, "loss": 0.3895, "accuracy": 1.0, "learning_rate": 4.980278756012891e-07, "epoch": 0.5442922374429223, "percentage": 13.61, "elapsed_time": "2:04:09", "remaining_time": "13:07:45"} +{"current_steps": 746, "total_steps": 5472, "loss": 0.4367, "accuracy": 1.0, "learning_rate": 4.980078299183986e-07, "epoch": 0.5450228310502283, "percentage": 13.63, "elapsed_time": "2:04:19", "remaining_time": "13:07:37"} +{"current_steps": 747, "total_steps": 5472, "loss": 0.383, "accuracy": 0.625, "learning_rate": 4.979876832802288e-07, "epoch": 0.5457534246575343, "percentage": 13.65, "elapsed_time": "2:04:28", "remaining_time": "13:07:23"} +{"current_steps": 748, "total_steps": 5472, "loss": 0.4685, "accuracy": 0.75, "learning_rate": 4.979674356949807e-07, "epoch": 0.5464840182648402, "percentage": 13.67, "elapsed_time": "2:04:39", "remaining_time": "13:07:14"} +{"current_steps": 749, "total_steps": 5472, "loss": 0.3326, "accuracy": 0.75, "learning_rate": 4.979470871708964e-07, "epoch": 0.5472146118721462, "percentage": 13.69, "elapsed_time": "2:04:49", "remaining_time": "13:07:04"} +{"current_steps": 750, "total_steps": 5472, "loss": 0.6274, "accuracy": 0.875, "learning_rate": 4.979266377162591e-07, "epoch": 0.547945205479452, "percentage": 13.71, "elapsed_time": "2:05:00", "remaining_time": "13:07:01"} +{"current_steps": 751, "total_steps": 5472, "loss": 0.3656, "accuracy": 1.0, "learning_rate": 4.979060873393931e-07, "epoch": 0.548675799086758, "percentage": 13.72, "elapsed_time": "2:05:12", "remaining_time": "13:07:05"} +{"current_steps": 752, "total_steps": 5472, "loss": 0.4499, "accuracy": 0.625, "learning_rate": 4.978854360486637e-07, "epoch": 0.5494063926940639, "percentage": 13.74, "elapsed_time": "2:05:22", "remaining_time": "13:06:53"} +{"current_steps": 753, "total_steps": 5472, "loss": 0.3236, "accuracy": 0.625, "learning_rate": 4.978646838524772e-07, "epoch": 0.5501369863013699, "percentage": 13.76, "elapsed_time": "2:05:31", "remaining_time": "13:06:40"} +{"current_steps": 754, "total_steps": 5472, "loss": 0.3229, "accuracy": 0.875, "learning_rate": 4.978438307592813e-07, "epoch": 0.5508675799086759, "percentage": 13.78, "elapsed_time": "2:05:41", "remaining_time": "13:06:28"} +{"current_steps": 755, "total_steps": 5472, "loss": 0.4145, "accuracy": 1.0, "learning_rate": 4.978228767775644e-07, "epoch": 0.5515981735159817, "percentage": 13.8, "elapsed_time": "2:05:50", "remaining_time": "13:06:11"} +{"current_steps": 756, "total_steps": 5472, "loss": 0.4459, "accuracy": 0.75, "learning_rate": 4.978018219158561e-07, "epoch": 0.5523287671232877, "percentage": 13.82, "elapsed_time": "2:05:59", "remaining_time": "13:05:59"} +{"current_steps": 757, "total_steps": 5472, "loss": 0.4262, "accuracy": 0.75, "learning_rate": 4.977806661827273e-07, "epoch": 0.5530593607305936, "percentage": 13.83, "elapsed_time": "2:06:10", "remaining_time": "13:05:55"} +{"current_steps": 758, "total_steps": 5472, "loss": 0.3435, "accuracy": 0.75, "learning_rate": 4.977594095867895e-07, "epoch": 0.5537899543378996, "percentage": 13.85, "elapsed_time": "2:06:19", "remaining_time": "13:05:38"} +{"current_steps": 759, "total_steps": 5472, "loss": 0.4761, "accuracy": 0.625, "learning_rate": 4.977380521366959e-07, "epoch": 0.5545205479452054, "percentage": 13.87, "elapsed_time": "2:06:28", "remaining_time": "13:05:21"} +{"current_steps": 760, "total_steps": 5472, "loss": 0.4801, "accuracy": 0.5, "learning_rate": 4.977165938411399e-07, "epoch": 0.5552511415525114, "percentage": 13.89, "elapsed_time": "2:06:37", "remaining_time": "13:05:07"} +{"current_steps": 761, "total_steps": 5472, "loss": 0.2492, "accuracy": 0.875, "learning_rate": 4.976950347088567e-07, "epoch": 0.5559817351598173, "percentage": 13.91, "elapsed_time": "2:06:47", "remaining_time": "13:04:52"} +{"current_steps": 762, "total_steps": 5472, "loss": 0.4797, "accuracy": 0.875, "learning_rate": 4.976733747486221e-07, "epoch": 0.5567123287671233, "percentage": 13.93, "elapsed_time": "2:06:57", "remaining_time": "13:04:41"} +{"current_steps": 763, "total_steps": 5472, "loss": 0.3316, "accuracy": 0.625, "learning_rate": 4.976516139692534e-07, "epoch": 0.5574429223744293, "percentage": 13.94, "elapsed_time": "2:07:06", "remaining_time": "13:04:26"} +{"current_steps": 764, "total_steps": 5472, "loss": 0.261, "accuracy": 0.875, "learning_rate": 4.976297523796083e-07, "epoch": 0.5581735159817351, "percentage": 13.96, "elapsed_time": "2:07:15", "remaining_time": "13:04:12"} +{"current_steps": 765, "total_steps": 5472, "loss": 0.4109, "accuracy": 0.75, "learning_rate": 4.976077899885861e-07, "epoch": 0.5589041095890411, "percentage": 13.98, "elapsed_time": "2:07:26", "remaining_time": "13:04:07"} +{"current_steps": 766, "total_steps": 5472, "loss": 0.4754, "accuracy": 0.75, "learning_rate": 4.975857268051268e-07, "epoch": 0.559634703196347, "percentage": 14.0, "elapsed_time": "2:07:35", "remaining_time": "13:03:53"} +{"current_steps": 767, "total_steps": 5472, "loss": 0.345, "accuracy": 0.875, "learning_rate": 4.975635628382118e-07, "epoch": 0.560365296803653, "percentage": 14.02, "elapsed_time": "2:07:44", "remaining_time": "13:03:36"} +{"current_steps": 768, "total_steps": 5472, "loss": 0.3045, "accuracy": 0.875, "learning_rate": 4.975412980968629e-07, "epoch": 0.5610958904109589, "percentage": 14.04, "elapsed_time": "2:07:54", "remaining_time": "13:03:23"} +{"current_steps": 769, "total_steps": 5472, "loss": 0.3349, "accuracy": 0.875, "learning_rate": 4.975189325901436e-07, "epoch": 0.5618264840182648, "percentage": 14.05, "elapsed_time": "2:08:03", "remaining_time": "13:03:08"} +{"current_steps": 770, "total_steps": 5472, "loss": 0.4029, "accuracy": 1.0, "learning_rate": 4.974964663271579e-07, "epoch": 0.5625570776255707, "percentage": 14.07, "elapsed_time": "2:08:14", "remaining_time": "13:03:05"} +{"current_steps": 771, "total_steps": 5472, "loss": 0.3482, "accuracy": 0.75, "learning_rate": 4.974738993170511e-07, "epoch": 0.5632876712328767, "percentage": 14.09, "elapsed_time": "2:08:24", "remaining_time": "13:02:54"} +{"current_steps": 772, "total_steps": 5472, "loss": 0.3332, "accuracy": 0.75, "learning_rate": 4.974512315690094e-07, "epoch": 0.5640182648401827, "percentage": 14.11, "elapsed_time": "2:08:33", "remaining_time": "13:02:40"} +{"current_steps": 773, "total_steps": 5472, "loss": 0.2952, "accuracy": 1.0, "learning_rate": 4.974284630922603e-07, "epoch": 0.5647488584474886, "percentage": 14.13, "elapsed_time": "2:08:43", "remaining_time": "13:02:29"} +{"current_steps": 774, "total_steps": 5472, "loss": 0.4981, "accuracy": 0.875, "learning_rate": 4.974055938960718e-07, "epoch": 0.5654794520547946, "percentage": 14.14, "elapsed_time": "2:08:52", "remaining_time": "13:02:17"} +{"current_steps": 775, "total_steps": 5472, "loss": 0.2615, "accuracy": 0.875, "learning_rate": 4.973826239897531e-07, "epoch": 0.5662100456621004, "percentage": 14.16, "elapsed_time": "2:09:02", "remaining_time": "13:02:03"} +{"current_steps": 776, "total_steps": 5472, "loss": 0.4026, "accuracy": 0.625, "learning_rate": 4.973595533826545e-07, "epoch": 0.5669406392694064, "percentage": 14.18, "elapsed_time": "2:09:12", "remaining_time": "13:01:53"} +{"current_steps": 777, "total_steps": 5472, "loss": 0.4446, "accuracy": 0.75, "learning_rate": 4.973363820841673e-07, "epoch": 0.5676712328767123, "percentage": 14.2, "elapsed_time": "2:09:22", "remaining_time": "13:01:45"} +{"current_steps": 778, "total_steps": 5472, "loss": 0.3491, "accuracy": 0.875, "learning_rate": 4.973131101037237e-07, "epoch": 0.5684018264840183, "percentage": 14.22, "elapsed_time": "2:09:32", "remaining_time": "13:01:36"} +{"current_steps": 779, "total_steps": 5472, "loss": 0.4368, "accuracy": 0.875, "learning_rate": 4.972897374507969e-07, "epoch": 0.5691324200913243, "percentage": 14.24, "elapsed_time": "2:09:45", "remaining_time": "13:01:43"} +{"current_steps": 780, "total_steps": 5472, "loss": 0.3681, "accuracy": 0.875, "learning_rate": 4.972662641349011e-07, "epoch": 0.5698630136986301, "percentage": 14.25, "elapsed_time": "2:09:55", "remaining_time": "13:01:32"} +{"current_steps": 781, "total_steps": 5472, "loss": 0.4726, "accuracy": 0.625, "learning_rate": 4.972426901655915e-07, "epoch": 0.5705936073059361, "percentage": 14.27, "elapsed_time": "2:10:04", "remaining_time": "13:01:17"} +{"current_steps": 782, "total_steps": 5472, "loss": 0.4667, "accuracy": 0.75, "learning_rate": 4.97219015552464e-07, "epoch": 0.571324200913242, "percentage": 14.29, "elapsed_time": "2:10:15", "remaining_time": "13:01:11"} +{"current_steps": 783, "total_steps": 5472, "loss": 0.3782, "accuracy": 0.875, "learning_rate": 4.971952403051561e-07, "epoch": 0.572054794520548, "percentage": 14.31, "elapsed_time": "2:10:25", "remaining_time": "13:01:04"} +{"current_steps": 784, "total_steps": 5472, "loss": 0.4095, "accuracy": 0.625, "learning_rate": 4.971713644333455e-07, "epoch": 0.5727853881278538, "percentage": 14.33, "elapsed_time": "2:10:36", "remaining_time": "13:00:58"} +{"current_steps": 785, "total_steps": 5472, "loss": 0.4333, "accuracy": 0.75, "learning_rate": 4.971473879467515e-07, "epoch": 0.5735159817351598, "percentage": 14.35, "elapsed_time": "2:10:46", "remaining_time": "13:00:47"} +{"current_steps": 786, "total_steps": 5472, "loss": 0.5071, "accuracy": 0.875, "learning_rate": 4.971233108551339e-07, "epoch": 0.5742465753424657, "percentage": 14.36, "elapsed_time": "2:10:56", "remaining_time": "13:00:40"} +{"current_steps": 787, "total_steps": 5472, "loss": 0.4148, "accuracy": 0.875, "learning_rate": 4.970991331682937e-07, "epoch": 0.5749771689497717, "percentage": 14.38, "elapsed_time": "2:11:06", "remaining_time": "13:00:30"} +{"current_steps": 788, "total_steps": 5472, "loss": 0.291, "accuracy": 0.875, "learning_rate": 4.970748548960728e-07, "epoch": 0.5757077625570777, "percentage": 14.4, "elapsed_time": "2:11:16", "remaining_time": "13:00:20"} +{"current_steps": 789, "total_steps": 5472, "loss": 0.4129, "accuracy": 0.75, "learning_rate": 4.97050476048354e-07, "epoch": 0.5764383561643835, "percentage": 14.42, "elapsed_time": "2:11:25", "remaining_time": "13:00:05"} +{"current_steps": 790, "total_steps": 5472, "loss": 0.5737, "accuracy": 0.75, "learning_rate": 4.970259966350611e-07, "epoch": 0.5771689497716895, "percentage": 14.44, "elapsed_time": "2:11:36", "remaining_time": "12:59:57"} +{"current_steps": 791, "total_steps": 5472, "loss": 0.3679, "accuracy": 0.75, "learning_rate": 4.970014166661588e-07, "epoch": 0.5778995433789954, "percentage": 14.46, "elapsed_time": "2:11:45", "remaining_time": "12:59:43"} +{"current_steps": 792, "total_steps": 5472, "loss": 0.2636, "accuracy": 1.0, "learning_rate": 4.969767361516528e-07, "epoch": 0.5786301369863014, "percentage": 14.47, "elapsed_time": "2:11:55", "remaining_time": "12:59:30"} +{"current_steps": 793, "total_steps": 5472, "loss": 0.4861, "accuracy": 0.875, "learning_rate": 4.969519551015897e-07, "epoch": 0.5793607305936073, "percentage": 14.49, "elapsed_time": "2:12:05", "remaining_time": "12:59:20"} +{"current_steps": 794, "total_steps": 5472, "loss": 0.3662, "accuracy": 0.5, "learning_rate": 4.969270735260568e-07, "epoch": 0.5800913242009132, "percentage": 14.51, "elapsed_time": "2:12:15", "remaining_time": "12:59:12"} +{"current_steps": 795, "total_steps": 5472, "loss": 0.4564, "accuracy": 0.875, "learning_rate": 4.969020914351826e-07, "epoch": 0.5808219178082191, "percentage": 14.53, "elapsed_time": "2:12:26", "remaining_time": "12:59:12"} +{"current_steps": 796, "total_steps": 5472, "loss": 0.2861, "accuracy": 1.0, "learning_rate": 4.968770088391366e-07, "epoch": 0.5815525114155251, "percentage": 14.55, "elapsed_time": "2:12:38", "remaining_time": "12:59:11"} +{"current_steps": 797, "total_steps": 5472, "loss": 0.4376, "accuracy": 0.875, "learning_rate": 4.968518257481288e-07, "epoch": 0.5822831050228311, "percentage": 14.57, "elapsed_time": "2:12:49", "remaining_time": "12:59:06"} +{"current_steps": 798, "total_steps": 5472, "loss": 0.3891, "accuracy": 0.875, "learning_rate": 4.968265421724105e-07, "epoch": 0.583013698630137, "percentage": 14.58, "elapsed_time": "2:12:58", "remaining_time": "12:58:52"} +{"current_steps": 799, "total_steps": 5472, "loss": 0.21, "accuracy": 0.875, "learning_rate": 4.968011581222737e-07, "epoch": 0.583744292237443, "percentage": 14.6, "elapsed_time": "2:13:08", "remaining_time": "12:58:38"} +{"current_steps": 800, "total_steps": 5472, "loss": 0.498, "accuracy": 0.875, "learning_rate": 4.967756736080513e-07, "epoch": 0.5844748858447488, "percentage": 14.62, "elapsed_time": "2:13:16", "remaining_time": "12:58:21"} +{"current_steps": 801, "total_steps": 5472, "loss": 0.4209, "accuracy": 0.5, "learning_rate": 4.967500886401174e-07, "epoch": 0.5852054794520548, "percentage": 14.64, "elapsed_time": "2:13:26", "remaining_time": "12:58:07"} +{"current_steps": 802, "total_steps": 5472, "loss": 0.4755, "accuracy": 0.875, "learning_rate": 4.967244032288864e-07, "epoch": 0.5859360730593607, "percentage": 14.66, "elapsed_time": "2:13:36", "remaining_time": "12:57:58"} +{"current_steps": 803, "total_steps": 5472, "loss": 0.4657, "accuracy": 0.75, "learning_rate": 4.966986173848141e-07, "epoch": 0.5866666666666667, "percentage": 14.67, "elapsed_time": "2:13:48", "remaining_time": "12:57:59"} +{"current_steps": 804, "total_steps": 5472, "loss": 0.3679, "accuracy": 1.0, "learning_rate": 4.96672731118397e-07, "epoch": 0.5873972602739727, "percentage": 14.69, "elapsed_time": "2:13:59", "remaining_time": "12:57:56"} +{"current_steps": 805, "total_steps": 5472, "loss": 0.2868, "accuracy": 0.875, "learning_rate": 4.966467444401726e-07, "epoch": 0.5881278538812785, "percentage": 14.71, "elapsed_time": "2:14:08", "remaining_time": "12:57:43"} +{"current_steps": 806, "total_steps": 5472, "loss": 0.336, "accuracy": 1.0, "learning_rate": 4.96620657360719e-07, "epoch": 0.5888584474885845, "percentage": 14.73, "elapsed_time": "2:14:20", "remaining_time": "12:57:45"} +{"current_steps": 807, "total_steps": 5472, "loss": 0.4015, "accuracy": 0.75, "learning_rate": 4.965944698906554e-07, "epoch": 0.5895890410958904, "percentage": 14.75, "elapsed_time": "2:14:29", "remaining_time": "12:57:28"} +{"current_steps": 808, "total_steps": 5472, "loss": 0.402, "accuracy": 0.75, "learning_rate": 4.965681820406418e-07, "epoch": 0.5903196347031964, "percentage": 14.77, "elapsed_time": "2:14:41", "remaining_time": "12:57:28"} +{"current_steps": 809, "total_steps": 5472, "loss": 0.463, "accuracy": 0.75, "learning_rate": 4.965417938213791e-07, "epoch": 0.5910502283105022, "percentage": 14.78, "elapsed_time": "2:14:51", "remaining_time": "12:57:19"} +{"current_steps": 810, "total_steps": 5472, "loss": 0.2516, "accuracy": 0.875, "learning_rate": 4.965153052436089e-07, "epoch": 0.5917808219178082, "percentage": 14.8, "elapsed_time": "2:15:02", "remaining_time": "12:57:11"} +{"current_steps": 811, "total_steps": 5472, "loss": 0.3159, "accuracy": 0.75, "learning_rate": 4.964887163181139e-07, "epoch": 0.5925114155251141, "percentage": 14.82, "elapsed_time": "2:15:11", "remaining_time": "12:56:56"} +{"current_steps": 812, "total_steps": 5472, "loss": 0.3116, "accuracy": 0.875, "learning_rate": 4.964620270557173e-07, "epoch": 0.5932420091324201, "percentage": 14.84, "elapsed_time": "2:15:20", "remaining_time": "12:56:44"} +{"current_steps": 813, "total_steps": 5472, "loss": 0.4335, "accuracy": 0.875, "learning_rate": 4.964352374672838e-07, "epoch": 0.5939726027397261, "percentage": 14.86, "elapsed_time": "2:15:31", "remaining_time": "12:56:36"} +{"current_steps": 814, "total_steps": 5472, "loss": 0.3135, "accuracy": 0.875, "learning_rate": 4.964083475637179e-07, "epoch": 0.594703196347032, "percentage": 14.88, "elapsed_time": "2:15:41", "remaining_time": "12:56:27"} +{"current_steps": 815, "total_steps": 5472, "loss": 0.3788, "accuracy": 0.75, "learning_rate": 4.963813573559661e-07, "epoch": 0.5954337899543379, "percentage": 14.89, "elapsed_time": "2:15:53", "remaining_time": "12:56:28"} +{"current_steps": 816, "total_steps": 5472, "loss": 0.4126, "accuracy": 0.875, "learning_rate": 4.963542668550149e-07, "epoch": 0.5961643835616438, "percentage": 14.91, "elapsed_time": "2:16:03", "remaining_time": "12:56:17"} +{"current_steps": 817, "total_steps": 5472, "loss": 0.3933, "accuracy": 0.75, "learning_rate": 4.963270760718918e-07, "epoch": 0.5968949771689498, "percentage": 14.93, "elapsed_time": "2:16:12", "remaining_time": "12:56:02"} +{"current_steps": 818, "total_steps": 5472, "loss": 0.35, "accuracy": 0.875, "learning_rate": 4.962997850176655e-07, "epoch": 0.5976255707762557, "percentage": 14.95, "elapsed_time": "2:16:21", "remaining_time": "12:55:50"} +{"current_steps": 819, "total_steps": 5472, "loss": 0.2416, "accuracy": 1.0, "learning_rate": 4.962723937034449e-07, "epoch": 0.5983561643835617, "percentage": 14.97, "elapsed_time": "2:16:32", "remaining_time": "12:55:41"} +{"current_steps": 820, "total_steps": 5472, "loss": 0.2476, "accuracy": 0.875, "learning_rate": 4.962449021403802e-07, "epoch": 0.5990867579908675, "percentage": 14.99, "elapsed_time": "2:16:42", "remaining_time": "12:55:34"} +{"current_steps": 821, "total_steps": 5472, "loss": 0.294, "accuracy": 0.75, "learning_rate": 4.962173103396623e-07, "epoch": 0.5998173515981735, "percentage": 15.0, "elapsed_time": "2:16:52", "remaining_time": "12:55:24"} +{"current_steps": 822, "total_steps": 5472, "loss": 0.2948, "accuracy": 1.0, "learning_rate": 4.961896183125228e-07, "epoch": 0.6005479452054795, "percentage": 15.02, "elapsed_time": "2:17:03", "remaining_time": "12:55:17"} +{"current_steps": 823, "total_steps": 5472, "loss": 0.3077, "accuracy": 0.875, "learning_rate": 4.961618260702342e-07, "epoch": 0.6012785388127854, "percentage": 15.04, "elapsed_time": "2:17:13", "remaining_time": "12:55:08"} +{"current_steps": 824, "total_steps": 5472, "loss": 0.4382, "accuracy": 0.75, "learning_rate": 4.961339336241096e-07, "epoch": 0.6020091324200914, "percentage": 15.06, "elapsed_time": "2:17:22", "remaining_time": "12:54:54"} +{"current_steps": 825, "total_steps": 5472, "loss": 0.2323, "accuracy": 0.875, "learning_rate": 4.961059409855032e-07, "epoch": 0.6027397260273972, "percentage": 15.08, "elapsed_time": "2:17:32", "remaining_time": "12:54:43"} +{"current_steps": 826, "total_steps": 5472, "loss": 0.3866, "accuracy": 0.875, "learning_rate": 4.960778481658098e-07, "epoch": 0.6034703196347032, "percentage": 15.1, "elapsed_time": "2:17:42", "remaining_time": "12:54:31"} +{"current_steps": 827, "total_steps": 5472, "loss": 0.461, "accuracy": 1.0, "learning_rate": 4.960496551764648e-07, "epoch": 0.6042009132420091, "percentage": 15.11, "elapsed_time": "2:17:51", "remaining_time": "12:54:19"} +{"current_steps": 828, "total_steps": 5472, "loss": 0.2361, "accuracy": 0.875, "learning_rate": 4.960213620289449e-07, "epoch": 0.6049315068493151, "percentage": 15.13, "elapsed_time": "2:18:02", "remaining_time": "12:54:13"} +{"current_steps": 829, "total_steps": 5472, "loss": 0.3917, "accuracy": 1.0, "learning_rate": 4.95992968734767e-07, "epoch": 0.605662100456621, "percentage": 15.15, "elapsed_time": "2:18:12", "remaining_time": "12:54:02"} +{"current_steps": 830, "total_steps": 5472, "loss": 0.4987, "accuracy": 1.0, "learning_rate": 4.959644753054891e-07, "epoch": 0.6063926940639269, "percentage": 15.17, "elapsed_time": "2:18:22", "remaining_time": "12:53:53"} +{"current_steps": 831, "total_steps": 5472, "loss": 0.3731, "accuracy": 0.625, "learning_rate": 4.959358817527099e-07, "epoch": 0.6071232876712329, "percentage": 15.19, "elapsed_time": "2:18:32", "remaining_time": "12:53:43"} +{"current_steps": 832, "total_steps": 5472, "loss": 0.3189, "accuracy": 0.875, "learning_rate": 4.959071880880688e-07, "epoch": 0.6078538812785388, "percentage": 15.2, "elapsed_time": "2:18:43", "remaining_time": "12:53:37"} +{"current_steps": 833, "total_steps": 5472, "loss": 0.2994, "accuracy": 0.75, "learning_rate": 4.958783943232459e-07, "epoch": 0.6085844748858448, "percentage": 15.22, "elapsed_time": "2:18:52", "remaining_time": "12:53:21"} +{"current_steps": 834, "total_steps": 5472, "loss": 0.5904, "accuracy": 0.75, "learning_rate": 4.958495004699623e-07, "epoch": 0.6093150684931506, "percentage": 15.24, "elapsed_time": "2:19:01", "remaining_time": "12:53:09"} +{"current_steps": 835, "total_steps": 5472, "loss": 0.2535, "accuracy": 1.0, "learning_rate": 4.958205065399795e-07, "epoch": 0.6100456621004566, "percentage": 15.26, "elapsed_time": "2:19:11", "remaining_time": "12:52:56"} +{"current_steps": 836, "total_steps": 5472, "loss": 0.3833, "accuracy": 0.5, "learning_rate": 4.957914125451002e-07, "epoch": 0.6107762557077625, "percentage": 15.28, "elapsed_time": "2:19:20", "remaining_time": "12:52:42"} +{"current_steps": 837, "total_steps": 5472, "loss": 0.5387, "accuracy": 0.75, "learning_rate": 4.957622184971672e-07, "epoch": 0.6115068493150685, "percentage": 15.3, "elapsed_time": "2:19:29", "remaining_time": "12:52:28"} +{"current_steps": 838, "total_steps": 5472, "loss": 0.4076, "accuracy": 0.875, "learning_rate": 4.957329244080644e-07, "epoch": 0.6122374429223745, "percentage": 15.31, "elapsed_time": "2:19:38", "remaining_time": "12:52:14"} +{"current_steps": 839, "total_steps": 5472, "loss": 0.2571, "accuracy": 0.625, "learning_rate": 4.957035302897167e-07, "epoch": 0.6129680365296803, "percentage": 15.33, "elapsed_time": "2:19:48", "remaining_time": "12:52:02"} +{"current_steps": 840, "total_steps": 5472, "loss": 0.4696, "accuracy": 0.5, "learning_rate": 4.956740361540891e-07, "epoch": 0.6136986301369863, "percentage": 15.35, "elapsed_time": "2:19:58", "remaining_time": "12:51:51"} +{"current_steps": 841, "total_steps": 5472, "loss": 0.3609, "accuracy": 0.875, "learning_rate": 4.956444420131878e-07, "epoch": 0.6144292237442922, "percentage": 15.37, "elapsed_time": "2:20:08", "remaining_time": "12:51:43"} +{"current_steps": 842, "total_steps": 5472, "loss": 0.3805, "accuracy": 0.875, "learning_rate": 4.956147478790595e-07, "epoch": 0.6151598173515982, "percentage": 15.39, "elapsed_time": "2:20:18", "remaining_time": "12:51:34"} +{"current_steps": 843, "total_steps": 5472, "loss": 0.5019, "accuracy": 0.875, "learning_rate": 4.955849537637915e-07, "epoch": 0.6158904109589041, "percentage": 15.41, "elapsed_time": "2:20:28", "remaining_time": "12:51:22"} +{"current_steps": 844, "total_steps": 5472, "loss": 0.3108, "accuracy": 0.875, "learning_rate": 4.955550596795122e-07, "epoch": 0.61662100456621, "percentage": 15.42, "elapsed_time": "2:20:38", "remaining_time": "12:51:12"} +{"current_steps": 845, "total_steps": 5472, "loss": 0.3517, "accuracy": 0.875, "learning_rate": 4.955250656383902e-07, "epoch": 0.617351598173516, "percentage": 15.44, "elapsed_time": "2:20:47", "remaining_time": "12:50:57"} +{"current_steps": 846, "total_steps": 5472, "loss": 0.4353, "accuracy": 0.75, "learning_rate": 4.954949716526352e-07, "epoch": 0.6180821917808219, "percentage": 15.46, "elapsed_time": "2:20:57", "remaining_time": "12:50:43"} +{"current_steps": 847, "total_steps": 5472, "loss": 0.3819, "accuracy": 0.875, "learning_rate": 4.954647777344972e-07, "epoch": 0.6188127853881279, "percentage": 15.48, "elapsed_time": "2:21:06", "remaining_time": "12:50:28"} +{"current_steps": 848, "total_steps": 5472, "loss": 0.3557, "accuracy": 0.5, "learning_rate": 4.954344838962674e-07, "epoch": 0.6195433789954338, "percentage": 15.5, "elapsed_time": "2:21:15", "remaining_time": "12:50:17"} +{"current_steps": 849, "total_steps": 5472, "loss": 0.3794, "accuracy": 0.875, "learning_rate": 4.954040901502771e-07, "epoch": 0.6202739726027398, "percentage": 15.52, "elapsed_time": "2:21:26", "remaining_time": "12:50:09"} +{"current_steps": 850, "total_steps": 5472, "loss": 0.3992, "accuracy": 1.0, "learning_rate": 4.953735965088984e-07, "epoch": 0.6210045662100456, "percentage": 15.53, "elapsed_time": "2:21:35", "remaining_time": "12:49:56"} +{"current_steps": 851, "total_steps": 5472, "loss": 0.3163, "accuracy": 0.75, "learning_rate": 4.953430029845446e-07, "epoch": 0.6217351598173516, "percentage": 15.55, "elapsed_time": "2:21:44", "remaining_time": "12:49:41"} +{"current_steps": 852, "total_steps": 5472, "loss": 0.3345, "accuracy": 0.875, "learning_rate": 4.953123095896689e-07, "epoch": 0.6224657534246575, "percentage": 15.57, "elapsed_time": "2:21:55", "remaining_time": "12:49:34"} +{"current_steps": 853, "total_steps": 5472, "loss": 0.4774, "accuracy": 0.625, "learning_rate": 4.952815163367656e-07, "epoch": 0.6231963470319635, "percentage": 15.59, "elapsed_time": "2:22:05", "remaining_time": "12:49:26"} +{"current_steps": 854, "total_steps": 5472, "loss": 0.2598, "accuracy": 0.875, "learning_rate": 4.952506232383697e-07, "epoch": 0.6239269406392695, "percentage": 15.61, "elapsed_time": "2:22:14", "remaining_time": "12:49:12"} +{"current_steps": 855, "total_steps": 5472, "loss": 0.3876, "accuracy": 0.625, "learning_rate": 4.952196303070565e-07, "epoch": 0.6246575342465753, "percentage": 15.62, "elapsed_time": "2:22:23", "remaining_time": "12:48:55"} +{"current_steps": 856, "total_steps": 5472, "loss": 0.3419, "accuracy": 0.875, "learning_rate": 4.951885375554422e-07, "epoch": 0.6253881278538813, "percentage": 15.64, "elapsed_time": "2:22:32", "remaining_time": "12:48:42"} +{"current_steps": 857, "total_steps": 5472, "loss": 0.3106, "accuracy": 0.75, "learning_rate": 4.951573449961837e-07, "epoch": 0.6261187214611872, "percentage": 15.66, "elapsed_time": "2:22:43", "remaining_time": "12:48:34"} +{"current_steps": 858, "total_steps": 5472, "loss": 0.4626, "accuracy": 1.0, "learning_rate": 4.951260526419781e-07, "epoch": 0.6268493150684932, "percentage": 15.68, "elapsed_time": "2:22:52", "remaining_time": "12:48:22"} +{"current_steps": 859, "total_steps": 5472, "loss": 0.5071, "accuracy": 0.625, "learning_rate": 4.950946605055638e-07, "epoch": 0.627579908675799, "percentage": 15.7, "elapsed_time": "2:23:02", "remaining_time": "12:48:10"} +{"current_steps": 860, "total_steps": 5472, "loss": 0.3669, "accuracy": 1.0, "learning_rate": 4.950631685997191e-07, "epoch": 0.628310502283105, "percentage": 15.72, "elapsed_time": "2:23:11", "remaining_time": "12:47:56"} +{"current_steps": 861, "total_steps": 5472, "loss": 0.3075, "accuracy": 1.0, "learning_rate": 4.950315769372633e-07, "epoch": 0.6290410958904109, "percentage": 15.73, "elapsed_time": "2:23:22", "remaining_time": "12:47:48"} +{"current_steps": 862, "total_steps": 5472, "loss": 0.2738, "accuracy": 0.875, "learning_rate": 4.949998855310565e-07, "epoch": 0.6297716894977169, "percentage": 15.75, "elapsed_time": "2:23:32", "remaining_time": "12:47:41"} +{"current_steps": 863, "total_steps": 5472, "loss": 0.3846, "accuracy": 0.875, "learning_rate": 4.94968094393999e-07, "epoch": 0.6305022831050229, "percentage": 15.77, "elapsed_time": "2:23:42", "remaining_time": "12:47:31"} +{"current_steps": 864, "total_steps": 5472, "loss": 0.4049, "accuracy": 0.875, "learning_rate": 4.949362035390318e-07, "epoch": 0.6312328767123287, "percentage": 15.79, "elapsed_time": "2:23:52", "remaining_time": "12:47:21"} +{"current_steps": 865, "total_steps": 5472, "loss": 0.4936, "accuracy": 0.5, "learning_rate": 4.949042129791366e-07, "epoch": 0.6319634703196347, "percentage": 15.81, "elapsed_time": "2:24:02", "remaining_time": "12:47:07"} +{"current_steps": 866, "total_steps": 5472, "loss": 0.3322, "accuracy": 0.875, "learning_rate": 4.948721227273356e-07, "epoch": 0.6326940639269406, "percentage": 15.83, "elapsed_time": "2:24:12", "remaining_time": "12:47:00"} +{"current_steps": 867, "total_steps": 5472, "loss": 0.2968, "accuracy": 0.875, "learning_rate": 4.948399327966917e-07, "epoch": 0.6334246575342466, "percentage": 15.84, "elapsed_time": "2:24:22", "remaining_time": "12:46:47"} +{"current_steps": 868, "total_steps": 5472, "loss": 0.5096, "accuracy": 0.875, "learning_rate": 4.948076432003081e-07, "epoch": 0.6341552511415525, "percentage": 15.86, "elapsed_time": "2:24:32", "remaining_time": "12:46:40"} +{"current_steps": 869, "total_steps": 5472, "loss": 0.5411, "accuracy": 0.875, "learning_rate": 4.94775253951329e-07, "epoch": 0.6348858447488585, "percentage": 15.88, "elapsed_time": "2:24:42", "remaining_time": "12:46:28"} +{"current_steps": 870, "total_steps": 5472, "loss": 0.3513, "accuracy": 1.0, "learning_rate": 4.947427650629389e-07, "epoch": 0.6356164383561644, "percentage": 15.9, "elapsed_time": "2:24:51", "remaining_time": "12:46:13"} +{"current_steps": 871, "total_steps": 5472, "loss": 0.3951, "accuracy": 0.875, "learning_rate": 4.947101765483626e-07, "epoch": 0.6363470319634703, "percentage": 15.92, "elapsed_time": "2:25:01", "remaining_time": "12:46:02"} +{"current_steps": 872, "total_steps": 5472, "loss": 0.2174, "accuracy": 1.0, "learning_rate": 4.946774884208662e-07, "epoch": 0.6370776255707763, "percentage": 15.94, "elapsed_time": "2:25:09", "remaining_time": "12:45:47"} +{"current_steps": 873, "total_steps": 5472, "loss": 0.6502, "accuracy": 0.25, "learning_rate": 4.946447006937555e-07, "epoch": 0.6378082191780822, "percentage": 15.95, "elapsed_time": "2:25:21", "remaining_time": "12:45:46"} +{"current_steps": 874, "total_steps": 5472, "loss": 0.2814, "accuracy": 1.0, "learning_rate": 4.946118133803774e-07, "epoch": 0.6385388127853882, "percentage": 15.97, "elapsed_time": "2:25:32", "remaining_time": "12:45:40"} +{"current_steps": 875, "total_steps": 5472, "loss": 0.2939, "accuracy": 0.75, "learning_rate": 4.945788264941191e-07, "epoch": 0.639269406392694, "percentage": 15.99, "elapsed_time": "2:25:41", "remaining_time": "12:45:27"} +{"current_steps": 876, "total_steps": 5472, "loss": 0.362, "accuracy": 0.75, "learning_rate": 4.945457400484085e-07, "epoch": 0.64, "percentage": 16.01, "elapsed_time": "2:25:51", "remaining_time": "12:45:14"} +{"current_steps": 877, "total_steps": 5472, "loss": 0.3244, "accuracy": 0.75, "learning_rate": 4.945125540567138e-07, "epoch": 0.6407305936073059, "percentage": 16.03, "elapsed_time": "2:26:02", "remaining_time": "12:45:10"} +{"current_steps": 878, "total_steps": 5472, "loss": 0.3254, "accuracy": 0.875, "learning_rate": 4.94479268532544e-07, "epoch": 0.6414611872146119, "percentage": 16.05, "elapsed_time": "2:26:11", "remaining_time": "12:44:57"} +{"current_steps": 879, "total_steps": 5472, "loss": 0.231, "accuracy": 1.0, "learning_rate": 4.944458834894483e-07, "epoch": 0.6421917808219179, "percentage": 16.06, "elapsed_time": "2:26:22", "remaining_time": "12:44:50"} +{"current_steps": 880, "total_steps": 5472, "loss": 0.3086, "accuracy": 0.875, "learning_rate": 4.944123989410168e-07, "epoch": 0.6429223744292237, "percentage": 16.08, "elapsed_time": "2:26:32", "remaining_time": "12:44:40"} +{"current_steps": 881, "total_steps": 5472, "loss": 0.4087, "accuracy": 1.0, "learning_rate": 4.943788149008798e-07, "epoch": 0.6436529680365297, "percentage": 16.1, "elapsed_time": "2:26:41", "remaining_time": "12:44:27"} +{"current_steps": 882, "total_steps": 5472, "loss": 0.4441, "accuracy": 0.5, "learning_rate": 4.94345131382708e-07, "epoch": 0.6443835616438356, "percentage": 16.12, "elapsed_time": "2:26:50", "remaining_time": "12:44:12"} +{"current_steps": 883, "total_steps": 5472, "loss": 0.3427, "accuracy": 0.625, "learning_rate": 4.94311348400213e-07, "epoch": 0.6451141552511416, "percentage": 16.14, "elapsed_time": "2:26:59", "remaining_time": "12:43:57"} +{"current_steps": 884, "total_steps": 5472, "loss": 0.2782, "accuracy": 0.875, "learning_rate": 4.942774659671465e-07, "epoch": 0.6458447488584474, "percentage": 16.15, "elapsed_time": "2:27:10", "remaining_time": "12:43:49"} +{"current_steps": 885, "total_steps": 5472, "loss": 0.4167, "accuracy": 0.625, "learning_rate": 4.94243484097301e-07, "epoch": 0.6465753424657534, "percentage": 16.17, "elapsed_time": "2:27:20", "remaining_time": "12:43:43"} +{"current_steps": 886, "total_steps": 5472, "loss": 0.4138, "accuracy": 0.625, "learning_rate": 4.942094028045092e-07, "epoch": 0.6473059360730593, "percentage": 16.19, "elapsed_time": "2:27:30", "remaining_time": "12:43:30"} +{"current_steps": 887, "total_steps": 5472, "loss": 1.0507, "accuracy": 1.0, "learning_rate": 4.941752221026445e-07, "epoch": 0.6480365296803653, "percentage": 16.21, "elapsed_time": "2:27:42", "remaining_time": "12:43:30"} +{"current_steps": 888, "total_steps": 5472, "loss": 0.3472, "accuracy": 0.75, "learning_rate": 4.941409420056206e-07, "epoch": 0.6487671232876713, "percentage": 16.23, "elapsed_time": "2:27:52", "remaining_time": "12:43:18"} +{"current_steps": 889, "total_steps": 5472, "loss": 0.4434, "accuracy": 0.875, "learning_rate": 4.941065625273918e-07, "epoch": 0.6494977168949772, "percentage": 16.25, "elapsed_time": "2:28:03", "remaining_time": "12:43:15"} +{"current_steps": 890, "total_steps": 5472, "loss": 0.3226, "accuracy": 0.875, "learning_rate": 4.940720836819527e-07, "epoch": 0.6502283105022831, "percentage": 16.26, "elapsed_time": "2:28:14", "remaining_time": "12:43:10"} +{"current_steps": 891, "total_steps": 5472, "loss": 0.3686, "accuracy": 0.75, "learning_rate": 4.940375054833384e-07, "epoch": 0.650958904109589, "percentage": 16.28, "elapsed_time": "2:28:23", "remaining_time": "12:42:56"} +{"current_steps": 892, "total_steps": 5472, "loss": 0.6962, "accuracy": 0.625, "learning_rate": 4.940028279456246e-07, "epoch": 0.651689497716895, "percentage": 16.3, "elapsed_time": "2:28:32", "remaining_time": "12:42:41"} +{"current_steps": 893, "total_steps": 5472, "loss": 0.3474, "accuracy": 0.625, "learning_rate": 4.939680510829272e-07, "epoch": 0.6524200913242009, "percentage": 16.32, "elapsed_time": "2:28:41", "remaining_time": "12:42:24"} +{"current_steps": 894, "total_steps": 5472, "loss": 0.3259, "accuracy": 0.875, "learning_rate": 4.939331749094026e-07, "epoch": 0.6531506849315069, "percentage": 16.34, "elapsed_time": "2:28:52", "remaining_time": "12:42:21"} +{"current_steps": 895, "total_steps": 5472, "loss": 0.4971, "accuracy": 0.625, "learning_rate": 4.938981994392479e-07, "epoch": 0.6538812785388128, "percentage": 16.36, "elapsed_time": "2:29:03", "remaining_time": "12:42:16"} +{"current_steps": 896, "total_steps": 5472, "loss": 0.3582, "accuracy": 1.0, "learning_rate": 4.938631246867e-07, "epoch": 0.6546118721461187, "percentage": 16.37, "elapsed_time": "2:29:13", "remaining_time": "12:42:05"} +{"current_steps": 897, "total_steps": 5472, "loss": 0.2435, "accuracy": 0.875, "learning_rate": 4.938279506660369e-07, "epoch": 0.6553424657534247, "percentage": 16.39, "elapsed_time": "2:29:22", "remaining_time": "12:41:52"} +{"current_steps": 898, "total_steps": 5472, "loss": 0.5111, "accuracy": 0.625, "learning_rate": 4.937926773915767e-07, "epoch": 0.6560730593607306, "percentage": 16.41, "elapsed_time": "2:29:31", "remaining_time": "12:41:38"} +{"current_steps": 899, "total_steps": 5472, "loss": 0.3676, "accuracy": 0.75, "learning_rate": 4.937573048776777e-07, "epoch": 0.6568036529680366, "percentage": 16.43, "elapsed_time": "2:29:40", "remaining_time": "12:41:23"} +{"current_steps": 900, "total_steps": 5472, "loss": 0.4062, "accuracy": 0.75, "learning_rate": 4.937218331387391e-07, "epoch": 0.6575342465753424, "percentage": 16.45, "elapsed_time": "2:29:50", "remaining_time": "12:41:10"} +{"current_steps": 901, "total_steps": 5472, "loss": 0.4007, "accuracy": 0.75, "learning_rate": 4.936862621891999e-07, "epoch": 0.6582648401826484, "percentage": 16.47, "elapsed_time": "2:29:59", "remaining_time": "12:40:56"} +{"current_steps": 902, "total_steps": 5472, "loss": 0.3194, "accuracy": 0.875, "learning_rate": 4.936505920435401e-07, "epoch": 0.6589954337899543, "percentage": 16.48, "elapsed_time": "2:30:08", "remaining_time": "12:40:43"} +{"current_steps": 903, "total_steps": 5472, "loss": 0.399, "accuracy": 0.75, "learning_rate": 4.936148227162795e-07, "epoch": 0.6597260273972603, "percentage": 16.5, "elapsed_time": "2:30:18", "remaining_time": "12:40:29"} +{"current_steps": 904, "total_steps": 5472, "loss": 0.3241, "accuracy": 0.75, "learning_rate": 4.935789542219787e-07, "epoch": 0.6604566210045663, "percentage": 16.52, "elapsed_time": "2:30:28", "remaining_time": "12:40:22"} +{"current_steps": 905, "total_steps": 5472, "loss": 0.2765, "accuracy": 0.875, "learning_rate": 4.935429865752384e-07, "epoch": 0.6611872146118721, "percentage": 16.54, "elapsed_time": "2:30:38", "remaining_time": "12:40:13"} +{"current_steps": 906, "total_steps": 5472, "loss": 0.4169, "accuracy": 1.0, "learning_rate": 4.935069197906998e-07, "epoch": 0.6619178082191781, "percentage": 16.56, "elapsed_time": "2:30:48", "remaining_time": "12:40:02"} +{"current_steps": 907, "total_steps": 5472, "loss": 0.267, "accuracy": 1.0, "learning_rate": 4.934707538830444e-07, "epoch": 0.662648401826484, "percentage": 16.58, "elapsed_time": "2:30:58", "remaining_time": "12:39:52"} +{"current_steps": 908, "total_steps": 5472, "loss": 0.3565, "accuracy": 0.75, "learning_rate": 4.934344888669941e-07, "epoch": 0.66337899543379, "percentage": 16.59, "elapsed_time": "2:31:09", "remaining_time": "12:39:45"} +{"current_steps": 909, "total_steps": 5472, "loss": 0.408, "accuracy": 0.875, "learning_rate": 4.933981247573112e-07, "epoch": 0.6641095890410958, "percentage": 16.61, "elapsed_time": "2:31:18", "remaining_time": "12:39:31"} +{"current_steps": 910, "total_steps": 5472, "loss": 0.4668, "accuracy": 0.375, "learning_rate": 4.93361661568798e-07, "epoch": 0.6648401826484018, "percentage": 16.63, "elapsed_time": "2:31:29", "remaining_time": "12:39:25"} +{"current_steps": 911, "total_steps": 5472, "loss": 0.551, "accuracy": 0.75, "learning_rate": 4.933250993162977e-07, "epoch": 0.6655707762557077, "percentage": 16.65, "elapsed_time": "2:31:38", "remaining_time": "12:39:14"} +{"current_steps": 912, "total_steps": 5472, "loss": 0.3769, "accuracy": 0.625, "learning_rate": 4.932884380146933e-07, "epoch": 0.6663013698630137, "percentage": 16.67, "elapsed_time": "2:31:49", "remaining_time": "12:39:05"} +{"current_steps": 913, "total_steps": 5472, "loss": 0.4331, "accuracy": 0.75, "learning_rate": 4.932516776789083e-07, "epoch": 0.6670319634703197, "percentage": 16.68, "elapsed_time": "2:31:59", "remaining_time": "12:38:56"} +{"current_steps": 914, "total_steps": 5472, "loss": 0.4872, "accuracy": 0.875, "learning_rate": 4.932148183239067e-07, "epoch": 0.6677625570776256, "percentage": 16.7, "elapsed_time": "2:32:09", "remaining_time": "12:38:48"} +{"current_steps": 915, "total_steps": 5472, "loss": 0.3452, "accuracy": 0.875, "learning_rate": 4.931778599646926e-07, "epoch": 0.6684931506849315, "percentage": 16.72, "elapsed_time": "2:32:19", "remaining_time": "12:38:39"} +{"current_steps": 916, "total_steps": 5472, "loss": 0.2396, "accuracy": 0.875, "learning_rate": 4.931408026163104e-07, "epoch": 0.6692237442922374, "percentage": 16.74, "elapsed_time": "2:32:29", "remaining_time": "12:38:26"} +{"current_steps": 917, "total_steps": 5472, "loss": 0.2789, "accuracy": 0.625, "learning_rate": 4.931036462938449e-07, "epoch": 0.6699543378995434, "percentage": 16.76, "elapsed_time": "2:32:38", "remaining_time": "12:38:13"} +{"current_steps": 918, "total_steps": 5472, "loss": 0.4337, "accuracy": 0.625, "learning_rate": 4.93066391012421e-07, "epoch": 0.6706849315068493, "percentage": 16.78, "elapsed_time": "2:32:48", "remaining_time": "12:38:04"} +{"current_steps": 919, "total_steps": 5472, "loss": 0.4114, "accuracy": 0.75, "learning_rate": 4.930290367872043e-07, "epoch": 0.6714155251141553, "percentage": 16.79, "elapsed_time": "2:32:59", "remaining_time": "12:37:57"} +{"current_steps": 920, "total_steps": 5472, "loss": 0.3479, "accuracy": 0.75, "learning_rate": 4.929915836334001e-07, "epoch": 0.6721461187214612, "percentage": 16.81, "elapsed_time": "2:33:08", "remaining_time": "12:37:45"} +{"current_steps": 921, "total_steps": 5472, "loss": 0.359, "accuracy": 0.75, "learning_rate": 4.929540315662544e-07, "epoch": 0.6728767123287671, "percentage": 16.83, "elapsed_time": "2:33:18", "remaining_time": "12:37:33"} +{"current_steps": 922, "total_steps": 5472, "loss": 0.2818, "accuracy": 0.875, "learning_rate": 4.929163806010533e-07, "epoch": 0.6736073059360731, "percentage": 16.85, "elapsed_time": "2:33:28", "remaining_time": "12:37:21"} +{"current_steps": 923, "total_steps": 5472, "loss": 0.1908, "accuracy": 0.75, "learning_rate": 4.928786307531232e-07, "epoch": 0.674337899543379, "percentage": 16.87, "elapsed_time": "2:33:38", "remaining_time": "12:37:14"} +{"current_steps": 924, "total_steps": 5472, "loss": 0.3224, "accuracy": 0.625, "learning_rate": 4.928407820378307e-07, "epoch": 0.675068493150685, "percentage": 16.89, "elapsed_time": "2:33:47", "remaining_time": "12:36:57"} +{"current_steps": 925, "total_steps": 5472, "loss": 0.2636, "accuracy": 0.875, "learning_rate": 4.928028344705828e-07, "epoch": 0.6757990867579908, "percentage": 16.9, "elapsed_time": "2:33:57", "remaining_time": "12:36:49"} +{"current_steps": 926, "total_steps": 5472, "loss": 0.3641, "accuracy": 1.0, "learning_rate": 4.927647880668265e-07, "epoch": 0.6765296803652968, "percentage": 16.92, "elapsed_time": "2:34:08", "remaining_time": "12:36:41"} +{"current_steps": 927, "total_steps": 5472, "loss": 0.324, "accuracy": 0.875, "learning_rate": 4.927266428420493e-07, "epoch": 0.6772602739726027, "percentage": 16.94, "elapsed_time": "2:34:16", "remaining_time": "12:36:26"} +{"current_steps": 928, "total_steps": 5472, "loss": 0.5474, "accuracy": 0.75, "learning_rate": 4.926883988117785e-07, "epoch": 0.6779908675799087, "percentage": 16.96, "elapsed_time": "2:34:27", "remaining_time": "12:36:16"} +{"current_steps": 929, "total_steps": 5472, "loss": 0.4108, "accuracy": 0.625, "learning_rate": 4.92650055991582e-07, "epoch": 0.6787214611872147, "percentage": 16.98, "elapsed_time": "2:34:36", "remaining_time": "12:36:03"} +{"current_steps": 930, "total_steps": 5472, "loss": 0.3989, "accuracy": 0.875, "learning_rate": 4.926116143970681e-07, "epoch": 0.6794520547945205, "percentage": 17.0, "elapsed_time": "2:34:45", "remaining_time": "12:35:48"} +{"current_steps": 931, "total_steps": 5472, "loss": 0.4159, "accuracy": 0.75, "learning_rate": 4.925730740438847e-07, "epoch": 0.6801826484018265, "percentage": 17.01, "elapsed_time": "2:34:54", "remaining_time": "12:35:36"} +{"current_steps": 932, "total_steps": 5472, "loss": 0.3694, "accuracy": 0.875, "learning_rate": 4.925344349477204e-07, "epoch": 0.6809132420091324, "percentage": 17.03, "elapsed_time": "2:35:04", "remaining_time": "12:35:22"} +{"current_steps": 933, "total_steps": 5472, "loss": 0.3114, "accuracy": 0.625, "learning_rate": 4.924956971243037e-07, "epoch": 0.6816438356164384, "percentage": 17.05, "elapsed_time": "2:35:14", "remaining_time": "12:35:15"} +{"current_steps": 934, "total_steps": 5472, "loss": 0.306, "accuracy": 0.75, "learning_rate": 4.924568605894035e-07, "epoch": 0.6823744292237442, "percentage": 17.07, "elapsed_time": "2:35:24", "remaining_time": "12:35:02"} +{"current_steps": 935, "total_steps": 5472, "loss": 0.3666, "accuracy": 0.875, "learning_rate": 4.924179253588287e-07, "epoch": 0.6831050228310502, "percentage": 17.09, "elapsed_time": "2:35:33", "remaining_time": "12:34:51"} +{"current_steps": 936, "total_steps": 5472, "loss": 0.3314, "accuracy": 0.875, "learning_rate": 4.923788914484287e-07, "epoch": 0.6838356164383562, "percentage": 17.11, "elapsed_time": "2:35:44", "remaining_time": "12:34:43"} +{"current_steps": 937, "total_steps": 5472, "loss": 0.2878, "accuracy": 0.75, "learning_rate": 4.923397588740925e-07, "epoch": 0.6845662100456621, "percentage": 17.12, "elapsed_time": "2:35:53", "remaining_time": "12:34:29"} +{"current_steps": 938, "total_steps": 5472, "loss": 0.2666, "accuracy": 0.875, "learning_rate": 4.923005276517498e-07, "epoch": 0.6852968036529681, "percentage": 17.14, "elapsed_time": "2:36:02", "remaining_time": "12:34:17"} +{"current_steps": 939, "total_steps": 5472, "loss": 0.2921, "accuracy": 0.75, "learning_rate": 4.922611977973702e-07, "epoch": 0.686027397260274, "percentage": 17.16, "elapsed_time": "2:36:12", "remaining_time": "12:34:03"} +{"current_steps": 940, "total_steps": 5472, "loss": 0.5064, "accuracy": 1.0, "learning_rate": 4.922217693269635e-07, "epoch": 0.6867579908675799, "percentage": 17.18, "elapsed_time": "2:36:22", "remaining_time": "12:33:54"} +{"current_steps": 941, "total_steps": 5472, "loss": 0.3237, "accuracy": 0.875, "learning_rate": 4.921822422565796e-07, "epoch": 0.6874885844748858, "percentage": 17.2, "elapsed_time": "2:36:35", "remaining_time": "12:34:00"} +{"current_steps": 942, "total_steps": 5472, "loss": 0.3006, "accuracy": 0.875, "learning_rate": 4.921426166023087e-07, "epoch": 0.6882191780821918, "percentage": 17.21, "elapsed_time": "2:36:46", "remaining_time": "12:33:56"} +{"current_steps": 943, "total_steps": 5472, "loss": 0.368, "accuracy": 0.875, "learning_rate": 4.921028923802809e-07, "epoch": 0.6889497716894977, "percentage": 17.23, "elapsed_time": "2:36:56", "remaining_time": "12:33:45"} +{"current_steps": 944, "total_steps": 5472, "loss": 0.4159, "accuracy": 0.875, "learning_rate": 4.920630696066667e-07, "epoch": 0.6896803652968037, "percentage": 17.25, "elapsed_time": "2:37:07", "remaining_time": "12:33:39"} +{"current_steps": 945, "total_steps": 5472, "loss": 0.255, "accuracy": 0.875, "learning_rate": 4.920231482976763e-07, "epoch": 0.6904109589041096, "percentage": 17.27, "elapsed_time": "2:37:17", "remaining_time": "12:33:30"} +{"current_steps": 946, "total_steps": 5472, "loss": 0.399, "accuracy": 0.875, "learning_rate": 4.919831284695605e-07, "epoch": 0.6911415525114155, "percentage": 17.29, "elapsed_time": "2:37:28", "remaining_time": "12:33:26"} +{"current_steps": 947, "total_steps": 5472, "loss": 0.2486, "accuracy": 0.875, "learning_rate": 4.919430101386097e-07, "epoch": 0.6918721461187215, "percentage": 17.31, "elapsed_time": "2:37:38", "remaining_time": "12:33:16"} +{"current_steps": 948, "total_steps": 5472, "loss": 0.4438, "accuracy": 0.875, "learning_rate": 4.919027933211551e-07, "epoch": 0.6926027397260274, "percentage": 17.32, "elapsed_time": "2:37:47", "remaining_time": "12:33:02"} +{"current_steps": 949, "total_steps": 5472, "loss": 0.2939, "accuracy": 0.875, "learning_rate": 4.91862478033567e-07, "epoch": 0.6933333333333334, "percentage": 17.34, "elapsed_time": "2:38:00", "remaining_time": "12:33:02"} +{"current_steps": 950, "total_steps": 5472, "loss": 0.2796, "accuracy": 0.875, "learning_rate": 4.918220642922568e-07, "epoch": 0.6940639269406392, "percentage": 17.36, "elapsed_time": "2:38:10", "remaining_time": "12:32:55"} +{"current_steps": 951, "total_steps": 5472, "loss": 0.3424, "accuracy": 0.875, "learning_rate": 4.917815521136753e-07, "epoch": 0.6947945205479452, "percentage": 17.38, "elapsed_time": "2:38:19", "remaining_time": "12:32:40"} +{"current_steps": 952, "total_steps": 5472, "loss": 0.4133, "accuracy": 0.75, "learning_rate": 4.917409415143137e-07, "epoch": 0.6955251141552511, "percentage": 17.4, "elapsed_time": "2:38:28", "remaining_time": "12:32:25"} +{"current_steps": 953, "total_steps": 5472, "loss": 0.4109, "accuracy": 0.75, "learning_rate": 4.917002325107029e-07, "epoch": 0.6962557077625571, "percentage": 17.42, "elapsed_time": "2:38:38", "remaining_time": "12:32:13"} +{"current_steps": 954, "total_steps": 5472, "loss": 0.4203, "accuracy": 0.75, "learning_rate": 4.916594251194144e-07, "epoch": 0.6969863013698631, "percentage": 17.43, "elapsed_time": "2:38:48", "remaining_time": "12:32:06"} +{"current_steps": 955, "total_steps": 5472, "loss": 0.3546, "accuracy": 0.875, "learning_rate": 4.916185193570594e-07, "epoch": 0.6977168949771689, "percentage": 17.45, "elapsed_time": "2:38:58", "remaining_time": "12:31:56"} +{"current_steps": 956, "total_steps": 5472, "loss": 0.4035, "accuracy": 1.0, "learning_rate": 4.91577515240289e-07, "epoch": 0.6984474885844749, "percentage": 17.47, "elapsed_time": "2:39:08", "remaining_time": "12:31:46"} +{"current_steps": 957, "total_steps": 5472, "loss": 0.2949, "accuracy": 0.875, "learning_rate": 4.915364127857947e-07, "epoch": 0.6991780821917808, "percentage": 17.49, "elapsed_time": "2:39:17", "remaining_time": "12:31:32"} +{"current_steps": 958, "total_steps": 5472, "loss": 0.5584, "accuracy": 0.5, "learning_rate": 4.914952120103078e-07, "epoch": 0.6999086757990868, "percentage": 17.51, "elapsed_time": "2:39:29", "remaining_time": "12:31:32"} +{"current_steps": 959, "total_steps": 5472, "loss": 0.3367, "accuracy": 0.75, "learning_rate": 4.914539129305998e-07, "epoch": 0.7006392694063927, "percentage": 17.53, "elapsed_time": "2:39:39", "remaining_time": "12:31:18"} +{"current_steps": 960, "total_steps": 5472, "loss": 0.3434, "accuracy": 0.875, "learning_rate": 4.91412515563482e-07, "epoch": 0.7013698630136986, "percentage": 17.54, "elapsed_time": "2:39:49", "remaining_time": "12:31:12"} +{"current_steps": 961, "total_steps": 5472, "loss": 0.4068, "accuracy": 0.375, "learning_rate": 4.913710199258058e-07, "epoch": 0.7021004566210046, "percentage": 17.56, "elapsed_time": "2:39:58", "remaining_time": "12:30:55"} +{"current_steps": 962, "total_steps": 5472, "loss": 0.556, "accuracy": 0.75, "learning_rate": 4.913294260344628e-07, "epoch": 0.7028310502283105, "percentage": 17.58, "elapsed_time": "2:40:09", "remaining_time": "12:30:50"} +{"current_steps": 963, "total_steps": 5472, "loss": 0.36, "accuracy": 1.0, "learning_rate": 4.912877339063843e-07, "epoch": 0.7035616438356165, "percentage": 17.6, "elapsed_time": "2:40:18", "remaining_time": "12:30:37"} +{"current_steps": 964, "total_steps": 5472, "loss": 0.44, "accuracy": 0.875, "learning_rate": 4.912459435585415e-07, "epoch": 0.7042922374429224, "percentage": 17.62, "elapsed_time": "2:40:28", "remaining_time": "12:30:25"} +{"current_steps": 965, "total_steps": 5472, "loss": 0.3748, "accuracy": 0.75, "learning_rate": 4.912040550079461e-07, "epoch": 0.7050228310502283, "percentage": 17.64, "elapsed_time": "2:40:36", "remaining_time": "12:30:09"} +{"current_steps": 966, "total_steps": 5472, "loss": 0.4155, "accuracy": 0.875, "learning_rate": 4.911620682716492e-07, "epoch": 0.7057534246575342, "percentage": 17.65, "elapsed_time": "2:40:46", "remaining_time": "12:29:58"} +{"current_steps": 967, "total_steps": 5472, "loss": 0.3721, "accuracy": 0.625, "learning_rate": 4.911199833667423e-07, "epoch": 0.7064840182648402, "percentage": 17.67, "elapsed_time": "2:40:56", "remaining_time": "12:29:45"} +{"current_steps": 968, "total_steps": 5472, "loss": 0.1792, "accuracy": 0.875, "learning_rate": 4.910778003103566e-07, "epoch": 0.7072146118721461, "percentage": 17.69, "elapsed_time": "2:41:07", "remaining_time": "12:29:41"} +{"current_steps": 969, "total_steps": 5472, "loss": 0.2517, "accuracy": 0.75, "learning_rate": 4.910355191196633e-07, "epoch": 0.707945205479452, "percentage": 17.71, "elapsed_time": "2:41:18", "remaining_time": "12:29:35"} +{"current_steps": 970, "total_steps": 5472, "loss": 0.4089, "accuracy": 0.75, "learning_rate": 4.909931398118738e-07, "epoch": 0.708675799086758, "percentage": 17.73, "elapsed_time": "2:41:27", "remaining_time": "12:29:23"} +{"current_steps": 971, "total_steps": 5472, "loss": 0.4153, "accuracy": 0.875, "learning_rate": 4.909506624042391e-07, "epoch": 0.7094063926940639, "percentage": 17.74, "elapsed_time": "2:41:37", "remaining_time": "12:29:10"} +{"current_steps": 972, "total_steps": 5472, "loss": 0.4067, "accuracy": 0.75, "learning_rate": 4.909080869140501e-07, "epoch": 0.7101369863013699, "percentage": 17.76, "elapsed_time": "2:41:46", "remaining_time": "12:28:58"} +{"current_steps": 973, "total_steps": 5472, "loss": 0.5908, "accuracy": 0.625, "learning_rate": 4.90865413358638e-07, "epoch": 0.7108675799086758, "percentage": 17.78, "elapsed_time": "2:41:58", "remaining_time": "12:28:56"} +{"current_steps": 974, "total_steps": 5472, "loss": 0.2929, "accuracy": 0.75, "learning_rate": 4.908226417553737e-07, "epoch": 0.7115981735159818, "percentage": 17.8, "elapsed_time": "2:42:10", "remaining_time": "12:28:58"} +{"current_steps": 975, "total_steps": 5472, "loss": 0.4642, "accuracy": 0.5, "learning_rate": 4.907797721216679e-07, "epoch": 0.7123287671232876, "percentage": 17.82, "elapsed_time": "2:42:19", "remaining_time": "12:28:43"} +{"current_steps": 976, "total_steps": 5472, "loss": 0.3242, "accuracy": 0.875, "learning_rate": 4.907368044749715e-07, "epoch": 0.7130593607305936, "percentage": 17.84, "elapsed_time": "2:42:31", "remaining_time": "12:28:40"} +{"current_steps": 977, "total_steps": 5472, "loss": 0.3766, "accuracy": 0.875, "learning_rate": 4.906937388327749e-07, "epoch": 0.7137899543378995, "percentage": 17.85, "elapsed_time": "2:42:40", "remaining_time": "12:28:27"} +{"current_steps": 978, "total_steps": 5472, "loss": 0.4237, "accuracy": 0.75, "learning_rate": 4.906505752126087e-07, "epoch": 0.7145205479452055, "percentage": 17.87, "elapsed_time": "2:42:49", "remaining_time": "12:28:13"} +{"current_steps": 979, "total_steps": 5472, "loss": 0.398, "accuracy": 0.875, "learning_rate": 4.906073136320435e-07, "epoch": 0.7152511415525115, "percentage": 17.89, "elapsed_time": "2:43:01", "remaining_time": "12:28:09"} +{"current_steps": 980, "total_steps": 5472, "loss": 0.3511, "accuracy": 0.875, "learning_rate": 4.905639541086892e-07, "epoch": 0.7159817351598173, "percentage": 17.91, "elapsed_time": "2:43:11", "remaining_time": "12:28:00"} +{"current_steps": 981, "total_steps": 5472, "loss": 0.3356, "accuracy": 0.875, "learning_rate": 4.90520496660196e-07, "epoch": 0.7167123287671233, "percentage": 17.93, "elapsed_time": "2:43:21", "remaining_time": "12:27:49"} +{"current_steps": 982, "total_steps": 5472, "loss": 0.3811, "accuracy": 0.875, "learning_rate": 4.904769413042542e-07, "epoch": 0.7174429223744292, "percentage": 17.95, "elapsed_time": "2:43:32", "remaining_time": "12:27:43"} +{"current_steps": 983, "total_steps": 5472, "loss": 0.3075, "accuracy": 0.75, "learning_rate": 4.904332880585934e-07, "epoch": 0.7181735159817352, "percentage": 17.96, "elapsed_time": "2:43:42", "remaining_time": "12:27:33"} +{"current_steps": 984, "total_steps": 5472, "loss": 0.3908, "accuracy": 0.875, "learning_rate": 4.903895369409835e-07, "epoch": 0.718904109589041, "percentage": 17.98, "elapsed_time": "2:43:51", "remaining_time": "12:27:19"} +{"current_steps": 985, "total_steps": 5472, "loss": 0.287, "accuracy": 0.875, "learning_rate": 4.903456879692338e-07, "epoch": 0.719634703196347, "percentage": 18.0, "elapsed_time": "2:44:02", "remaining_time": "12:27:17"} +{"current_steps": 986, "total_steps": 5472, "loss": 0.2958, "accuracy": 0.875, "learning_rate": 4.903017411611938e-07, "epoch": 0.720365296803653, "percentage": 18.02, "elapsed_time": "2:44:11", "remaining_time": "12:27:01"} +{"current_steps": 987, "total_steps": 5472, "loss": 0.3208, "accuracy": 0.75, "learning_rate": 4.902576965347528e-07, "epoch": 0.7210958904109589, "percentage": 18.04, "elapsed_time": "2:44:20", "remaining_time": "12:26:46"} +{"current_steps": 988, "total_steps": 5472, "loss": 0.3543, "accuracy": 1.0, "learning_rate": 4.902135541078396e-07, "epoch": 0.7218264840182649, "percentage": 18.06, "elapsed_time": "2:44:30", "remaining_time": "12:26:37"} +{"current_steps": 989, "total_steps": 5472, "loss": 0.2547, "accuracy": 1.0, "learning_rate": 4.901693138984232e-07, "epoch": 0.7225570776255708, "percentage": 18.07, "elapsed_time": "2:44:39", "remaining_time": "12:26:22"} +{"current_steps": 990, "total_steps": 5472, "loss": 0.3838, "accuracy": 0.75, "learning_rate": 4.901249759245123e-07, "epoch": 0.7232876712328767, "percentage": 18.09, "elapsed_time": "2:44:48", "remaining_time": "12:26:08"} +{"current_steps": 991, "total_steps": 5472, "loss": 0.2991, "accuracy": 1.0, "learning_rate": 4.900805402041551e-07, "epoch": 0.7240182648401826, "percentage": 18.11, "elapsed_time": "2:44:59", "remaining_time": "12:26:01"} +{"current_steps": 992, "total_steps": 5472, "loss": 0.311, "accuracy": 1.0, "learning_rate": 4.900360067554399e-07, "epoch": 0.7247488584474886, "percentage": 18.13, "elapsed_time": "2:45:08", "remaining_time": "12:25:45"} +{"current_steps": 993, "total_steps": 5472, "loss": 0.3792, "accuracy": 0.625, "learning_rate": 4.899913755964948e-07, "epoch": 0.7254794520547945, "percentage": 18.15, "elapsed_time": "2:45:17", "remaining_time": "12:25:34"} +{"current_steps": 994, "total_steps": 5472, "loss": 0.2866, "accuracy": 0.75, "learning_rate": 4.899466467454875e-07, "epoch": 0.7262100456621005, "percentage": 18.17, "elapsed_time": "2:45:27", "remaining_time": "12:25:21"} +{"current_steps": 995, "total_steps": 5472, "loss": 0.5185, "accuracy": 0.875, "learning_rate": 4.899018202206257e-07, "epoch": 0.7269406392694064, "percentage": 18.18, "elapsed_time": "2:45:36", "remaining_time": "12:25:08"} +{"current_steps": 996, "total_steps": 5472, "loss": 0.2768, "accuracy": 0.625, "learning_rate": 4.898568960401565e-07, "epoch": 0.7276712328767123, "percentage": 18.2, "elapsed_time": "2:45:45", "remaining_time": "12:24:56"} +{"current_steps": 997, "total_steps": 5472, "loss": 0.4522, "accuracy": 0.75, "learning_rate": 4.89811874222367e-07, "epoch": 0.7284018264840183, "percentage": 18.22, "elapsed_time": "2:45:55", "remaining_time": "12:24:46"} +{"current_steps": 998, "total_steps": 5472, "loss": 0.4102, "accuracy": 0.75, "learning_rate": 4.897667547855841e-07, "epoch": 0.7291324200913242, "percentage": 18.24, "elapsed_time": "2:46:05", "remaining_time": "12:24:36"} +{"current_steps": 999, "total_steps": 5472, "loss": 0.2297, "accuracy": 0.875, "learning_rate": 4.897215377481742e-07, "epoch": 0.7298630136986302, "percentage": 18.26, "elapsed_time": "2:46:15", "remaining_time": "12:24:25"} +{"current_steps": 1000, "total_steps": 5472, "loss": 0.4507, "accuracy": 0.875, "learning_rate": 4.896762231285437e-07, "epoch": 0.730593607305936, "percentage": 18.27, "elapsed_time": "2:46:24", "remaining_time": "12:24:12"} +{"current_steps": 1001, "total_steps": 5472, "loss": 0.4142, "accuracy": 1.0, "learning_rate": 4.896308109451385e-07, "epoch": 0.731324200913242, "percentage": 18.29, "elapsed_time": "2:46:36", "remaining_time": "12:24:08"} +{"current_steps": 1002, "total_steps": 5472, "loss": 0.4448, "accuracy": 0.875, "learning_rate": 4.895853012164442e-07, "epoch": 0.7320547945205479, "percentage": 18.31, "elapsed_time": "2:46:47", "remaining_time": "12:24:05"} +{"current_steps": 1003, "total_steps": 5472, "loss": 0.2703, "accuracy": 0.625, "learning_rate": 4.895396939609866e-07, "epoch": 0.7327853881278539, "percentage": 18.33, "elapsed_time": "2:46:56", "remaining_time": "12:23:51"} +{"current_steps": 1004, "total_steps": 5472, "loss": 0.3589, "accuracy": 0.625, "learning_rate": 4.894939891973304e-07, "epoch": 0.7335159817351599, "percentage": 18.35, "elapsed_time": "2:47:05", "remaining_time": "12:23:36"} +{"current_steps": 1005, "total_steps": 5472, "loss": 0.4635, "accuracy": 0.625, "learning_rate": 4.894481869440806e-07, "epoch": 0.7342465753424657, "percentage": 18.37, "elapsed_time": "2:47:16", "remaining_time": "12:23:29"} +{"current_steps": 1006, "total_steps": 5472, "loss": 0.6144, "accuracy": 0.75, "learning_rate": 4.894022872198817e-07, "epoch": 0.7349771689497717, "percentage": 18.38, "elapsed_time": "2:47:25", "remaining_time": "12:23:15"} +{"current_steps": 1007, "total_steps": 5472, "loss": 0.4272, "accuracy": 0.75, "learning_rate": 4.893562900434177e-07, "epoch": 0.7357077625570776, "percentage": 18.4, "elapsed_time": "2:47:34", "remaining_time": "12:23:02"} +{"current_steps": 1008, "total_steps": 5472, "loss": 0.4334, "accuracy": 1.0, "learning_rate": 4.893101954334127e-07, "epoch": 0.7364383561643836, "percentage": 18.42, "elapsed_time": "2:47:44", "remaining_time": "12:22:50"} +{"current_steps": 1009, "total_steps": 5472, "loss": 0.4143, "accuracy": 0.875, "learning_rate": 4.8926400340863e-07, "epoch": 0.7371689497716895, "percentage": 18.44, "elapsed_time": "2:47:53", "remaining_time": "12:22:37"} +{"current_steps": 1010, "total_steps": 5472, "loss": 0.289, "accuracy": 0.875, "learning_rate": 4.892177139878727e-07, "epoch": 0.7378995433789954, "percentage": 18.46, "elapsed_time": "2:48:03", "remaining_time": "12:22:28"} +{"current_steps": 1011, "total_steps": 5472, "loss": 0.4014, "accuracy": 1.0, "learning_rate": 4.891713271899837e-07, "epoch": 0.7386301369863014, "percentage": 18.48, "elapsed_time": "2:48:12", "remaining_time": "12:22:14"} +{"current_steps": 1012, "total_steps": 5472, "loss": 0.4699, "accuracy": 0.75, "learning_rate": 4.891248430338456e-07, "epoch": 0.7393607305936073, "percentage": 18.49, "elapsed_time": "2:48:21", "remaining_time": "12:22:00"} +{"current_steps": 1013, "total_steps": 5472, "loss": 0.4184, "accuracy": 0.75, "learning_rate": 4.890782615383802e-07, "epoch": 0.7400913242009133, "percentage": 18.51, "elapsed_time": "2:48:32", "remaining_time": "12:21:52"} +{"current_steps": 1014, "total_steps": 5472, "loss": 0.4225, "accuracy": 0.75, "learning_rate": 4.890315827225493e-07, "epoch": 0.7408219178082192, "percentage": 18.53, "elapsed_time": "2:48:43", "remaining_time": "12:21:46"} +{"current_steps": 1015, "total_steps": 5472, "loss": 0.5331, "accuracy": 0.625, "learning_rate": 4.889848066053543e-07, "epoch": 0.7415525114155251, "percentage": 18.55, "elapsed_time": "2:48:54", "remaining_time": "12:21:43"} +{"current_steps": 1016, "total_steps": 5472, "loss": 0.3031, "accuracy": 0.875, "learning_rate": 4.889379332058358e-07, "epoch": 0.742283105022831, "percentage": 18.57, "elapsed_time": "2:49:04", "remaining_time": "12:21:30"} +{"current_steps": 1017, "total_steps": 5472, "loss": 0.4886, "accuracy": 0.75, "learning_rate": 4.888909625430747e-07, "epoch": 0.743013698630137, "percentage": 18.59, "elapsed_time": "2:49:13", "remaining_time": "12:21:18"} +{"current_steps": 1018, "total_steps": 5472, "loss": 0.2618, "accuracy": 0.75, "learning_rate": 4.88843894636191e-07, "epoch": 0.7437442922374429, "percentage": 18.6, "elapsed_time": "2:49:23", "remaining_time": "12:21:08"} +{"current_steps": 1019, "total_steps": 5472, "loss": 0.2415, "accuracy": 0.625, "learning_rate": 4.887967295043441e-07, "epoch": 0.7444748858447489, "percentage": 18.62, "elapsed_time": "2:49:32", "remaining_time": "12:20:53"} +{"current_steps": 1020, "total_steps": 5472, "loss": 0.5847, "accuracy": 0.625, "learning_rate": 4.887494671667337e-07, "epoch": 0.7452054794520548, "percentage": 18.64, "elapsed_time": "2:49:42", "remaining_time": "12:20:42"} +{"current_steps": 1021, "total_steps": 5472, "loss": 0.3929, "accuracy": 1.0, "learning_rate": 4.887021076425985e-07, "epoch": 0.7459360730593607, "percentage": 18.66, "elapsed_time": "2:49:52", "remaining_time": "12:20:35"} +{"current_steps": 1022, "total_steps": 5472, "loss": 0.2809, "accuracy": 0.75, "learning_rate": 4.886546509512166e-07, "epoch": 0.7466666666666667, "percentage": 18.68, "elapsed_time": "2:50:01", "remaining_time": "12:20:20"} +{"current_steps": 1023, "total_steps": 5472, "loss": 0.306, "accuracy": 1.0, "learning_rate": 4.886070971119064e-07, "epoch": 0.7473972602739726, "percentage": 18.7, "elapsed_time": "2:50:12", "remaining_time": "12:20:14"} +{"current_steps": 1024, "total_steps": 5472, "loss": 0.2649, "accuracy": 1.0, "learning_rate": 4.885594461440251e-07, "epoch": 0.7481278538812786, "percentage": 18.71, "elapsed_time": "2:50:22", "remaining_time": "12:20:05"} +{"current_steps": 1025, "total_steps": 5472, "loss": 0.3637, "accuracy": 0.75, "learning_rate": 4.885116980669698e-07, "epoch": 0.7488584474885844, "percentage": 18.73, "elapsed_time": "2:50:32", "remaining_time": "12:19:55"} +{"current_steps": 1026, "total_steps": 5472, "loss": 0.3673, "accuracy": 1.0, "learning_rate": 4.884638529001771e-07, "epoch": 0.7495890410958904, "percentage": 18.75, "elapsed_time": "2:50:44", "remaining_time": "12:19:51"} +{"current_steps": 1027, "total_steps": 5472, "loss": 0.2435, "accuracy": 0.75, "learning_rate": 4.884159106631231e-07, "epoch": 0.7503196347031963, "percentage": 18.77, "elapsed_time": "2:50:53", "remaining_time": "12:19:39"} +{"current_steps": 1028, "total_steps": 5472, "loss": 0.3042, "accuracy": 0.875, "learning_rate": 4.883678713753235e-07, "epoch": 0.7510502283105023, "percentage": 18.79, "elapsed_time": "2:51:02", "remaining_time": "12:19:25"} +{"current_steps": 1029, "total_steps": 5472, "loss": 0.3125, "accuracy": 0.625, "learning_rate": 4.88319735056333e-07, "epoch": 0.7517808219178083, "percentage": 18.8, "elapsed_time": "2:51:11", "remaining_time": "12:19:10"} +{"current_steps": 1030, "total_steps": 5472, "loss": 0.3336, "accuracy": 0.625, "learning_rate": 4.882715017257467e-07, "epoch": 0.7525114155251141, "percentage": 18.82, "elapsed_time": "2:51:22", "remaining_time": "12:19:03"} +{"current_steps": 1031, "total_steps": 5472, "loss": 0.4116, "accuracy": 0.75, "learning_rate": 4.882231714031985e-07, "epoch": 0.7532420091324201, "percentage": 18.84, "elapsed_time": "2:51:31", "remaining_time": "12:18:49"} +{"current_steps": 1032, "total_steps": 5472, "loss": 0.343, "accuracy": 0.75, "learning_rate": 4.881747441083619e-07, "epoch": 0.753972602739726, "percentage": 18.86, "elapsed_time": "2:51:41", "remaining_time": "12:18:38"} +{"current_steps": 1033, "total_steps": 5472, "loss": 0.215, "accuracy": 1.0, "learning_rate": 4.881262198609501e-07, "epoch": 0.754703196347032, "percentage": 18.88, "elapsed_time": "2:51:50", "remaining_time": "12:18:25"} +{"current_steps": 1034, "total_steps": 5472, "loss": 0.3954, "accuracy": 1.0, "learning_rate": 4.880775986807154e-07, "epoch": 0.7554337899543379, "percentage": 18.9, "elapsed_time": "2:52:00", "remaining_time": "12:18:14"} +{"current_steps": 1035, "total_steps": 5472, "loss": 0.3247, "accuracy": 0.875, "learning_rate": 4.8802888058745e-07, "epoch": 0.7561643835616438, "percentage": 18.91, "elapsed_time": "2:52:08", "remaining_time": "12:17:59"} +{"current_steps": 1036, "total_steps": 5472, "loss": 0.4434, "accuracy": 0.75, "learning_rate": 4.879800656009853e-07, "epoch": 0.7568949771689498, "percentage": 18.93, "elapsed_time": "2:52:17", "remaining_time": "12:17:44"} +{"current_steps": 1037, "total_steps": 5472, "loss": 0.4581, "accuracy": 1.0, "learning_rate": 4.87931153741192e-07, "epoch": 0.7576255707762557, "percentage": 18.95, "elapsed_time": "2:52:27", "remaining_time": "12:17:34"} +{"current_steps": 1038, "total_steps": 5472, "loss": 0.2968, "accuracy": 0.75, "learning_rate": 4.878821450279805e-07, "epoch": 0.7583561643835617, "percentage": 18.97, "elapsed_time": "2:52:39", "remaining_time": "12:17:31"} +{"current_steps": 1039, "total_steps": 5472, "loss": 0.2711, "accuracy": 0.75, "learning_rate": 4.878330394813005e-07, "epoch": 0.7590867579908676, "percentage": 18.99, "elapsed_time": "2:52:47", "remaining_time": "12:17:15"} +{"current_steps": 1040, "total_steps": 5472, "loss": 0.3808, "accuracy": 0.875, "learning_rate": 4.877838371211412e-07, "epoch": 0.7598173515981735, "percentage": 19.01, "elapsed_time": "2:52:56", "remaining_time": "12:17:01"} +{"current_steps": 1041, "total_steps": 5472, "loss": 0.326, "accuracy": 0.75, "learning_rate": 4.877345379675311e-07, "epoch": 0.7605479452054794, "percentage": 19.02, "elapsed_time": "2:53:05", "remaining_time": "12:16:46"} +{"current_steps": 1042, "total_steps": 5472, "loss": 0.3288, "accuracy": 0.75, "learning_rate": 4.876851420405383e-07, "epoch": 0.7612785388127854, "percentage": 19.04, "elapsed_time": "2:53:14", "remaining_time": "12:16:33"} +{"current_steps": 1043, "total_steps": 5472, "loss": 0.2973, "accuracy": 0.875, "learning_rate": 4.876356493602699e-07, "epoch": 0.7620091324200913, "percentage": 19.06, "elapsed_time": "2:53:23", "remaining_time": "12:16:18"} +{"current_steps": 1044, "total_steps": 5472, "loss": 0.4221, "accuracy": 0.5, "learning_rate": 4.875860599468729e-07, "epoch": 0.7627397260273973, "percentage": 19.08, "elapsed_time": "2:53:34", "remaining_time": "12:16:11"} +{"current_steps": 1045, "total_steps": 5472, "loss": 0.3055, "accuracy": 0.875, "learning_rate": 4.875363738205331e-07, "epoch": 0.7634703196347032, "percentage": 19.1, "elapsed_time": "2:53:44", "remaining_time": "12:16:03"} +{"current_steps": 1046, "total_steps": 5472, "loss": 0.2983, "accuracy": 0.875, "learning_rate": 4.874865910014762e-07, "epoch": 0.7642009132420091, "percentage": 19.12, "elapsed_time": "2:53:55", "remaining_time": "12:15:55"} +{"current_steps": 1047, "total_steps": 5472, "loss": 0.4341, "accuracy": 1.0, "learning_rate": 4.87436711509967e-07, "epoch": 0.7649315068493151, "percentage": 19.13, "elapsed_time": "2:54:05", "remaining_time": "12:15:46"} +{"current_steps": 1048, "total_steps": 5472, "loss": 0.4007, "accuracy": 0.875, "learning_rate": 4.873867353663097e-07, "epoch": 0.765662100456621, "percentage": 19.15, "elapsed_time": "2:54:14", "remaining_time": "12:15:33"} +{"current_steps": 1049, "total_steps": 5472, "loss": 0.3636, "accuracy": 0.75, "learning_rate": 4.873366625908478e-07, "epoch": 0.766392694063927, "percentage": 19.17, "elapsed_time": "2:54:24", "remaining_time": "12:15:22"} +{"current_steps": 1050, "total_steps": 5472, "loss": 0.2995, "accuracy": 1.0, "learning_rate": 4.872864932039642e-07, "epoch": 0.7671232876712328, "percentage": 19.19, "elapsed_time": "2:54:33", "remaining_time": "12:15:09"} +{"current_steps": 1051, "total_steps": 5472, "loss": 0.5559, "accuracy": 0.75, "learning_rate": 4.87236227226081e-07, "epoch": 0.7678538812785388, "percentage": 19.21, "elapsed_time": "2:54:44", "remaining_time": "12:15:03"} +{"current_steps": 1052, "total_steps": 5472, "loss": 0.2236, "accuracy": 0.875, "learning_rate": 4.871858646776599e-07, "epoch": 0.7685844748858448, "percentage": 19.23, "elapsed_time": "2:54:53", "remaining_time": "12:14:49"} +{"current_steps": 1053, "total_steps": 5472, "loss": 0.3163, "accuracy": 1.0, "learning_rate": 4.871354055792015e-07, "epoch": 0.7693150684931507, "percentage": 19.24, "elapsed_time": "2:55:04", "remaining_time": "12:14:43"} +{"current_steps": 1054, "total_steps": 5472, "loss": 0.331, "accuracy": 0.875, "learning_rate": 4.87084849951246e-07, "epoch": 0.7700456621004567, "percentage": 19.26, "elapsed_time": "2:55:13", "remaining_time": "12:14:30"} +{"current_steps": 1055, "total_steps": 5472, "loss": 0.3241, "accuracy": 1.0, "learning_rate": 4.87034197814373e-07, "epoch": 0.7707762557077625, "percentage": 19.28, "elapsed_time": "2:55:24", "remaining_time": "12:14:22"} +{"current_steps": 1056, "total_steps": 5472, "loss": 0.5854, "accuracy": 0.75, "learning_rate": 4.86983449189201e-07, "epoch": 0.7715068493150685, "percentage": 19.3, "elapsed_time": "2:55:33", "remaining_time": "12:14:09"} +{"current_steps": 1057, "total_steps": 5472, "loss": 0.2115, "accuracy": 0.875, "learning_rate": 4.86932604096388e-07, "epoch": 0.7722374429223744, "percentage": 19.32, "elapsed_time": "2:55:42", "remaining_time": "12:13:56"} +{"current_steps": 1058, "total_steps": 5472, "loss": 0.3407, "accuracy": 1.0, "learning_rate": 4.868816625566313e-07, "epoch": 0.7729680365296804, "percentage": 19.33, "elapsed_time": "2:55:51", "remaining_time": "12:13:42"} +{"current_steps": 1059, "total_steps": 5472, "loss": 0.3866, "accuracy": 0.875, "learning_rate": 4.868306245906675e-07, "epoch": 0.7736986301369863, "percentage": 19.35, "elapsed_time": "2:56:01", "remaining_time": "12:13:29"} +{"current_steps": 1060, "total_steps": 5472, "loss": 0.343, "accuracy": 1.0, "learning_rate": 4.867794902192722e-07, "epoch": 0.7744292237442922, "percentage": 19.37, "elapsed_time": "2:56:10", "remaining_time": "12:13:15"} +{"current_steps": 1061, "total_steps": 5472, "loss": 0.4006, "accuracy": 0.875, "learning_rate": 4.867282594632605e-07, "epoch": 0.7751598173515982, "percentage": 19.39, "elapsed_time": "2:56:19", "remaining_time": "12:13:03"} +{"current_steps": 1062, "total_steps": 5472, "loss": 0.3455, "accuracy": 0.625, "learning_rate": 4.866769323434866e-07, "epoch": 0.7758904109589041, "percentage": 19.41, "elapsed_time": "2:56:28", "remaining_time": "12:12:48"} +{"current_steps": 1063, "total_steps": 5472, "loss": 0.4286, "accuracy": 0.875, "learning_rate": 4.866255088808441e-07, "epoch": 0.7766210045662101, "percentage": 19.43, "elapsed_time": "2:56:38", "remaining_time": "12:12:37"} +{"current_steps": 1064, "total_steps": 5472, "loss": 0.3258, "accuracy": 0.875, "learning_rate": 4.865739890962654e-07, "epoch": 0.777351598173516, "percentage": 19.44, "elapsed_time": "2:56:47", "remaining_time": "12:12:24"} +{"current_steps": 1065, "total_steps": 5472, "loss": 0.479, "accuracy": 0.875, "learning_rate": 4.865223730107228e-07, "epoch": 0.7780821917808219, "percentage": 19.46, "elapsed_time": "2:56:56", "remaining_time": "12:12:11"} +{"current_steps": 1066, "total_steps": 5472, "loss": 0.3288, "accuracy": 1.0, "learning_rate": 4.86470660645227e-07, "epoch": 0.7788127853881278, "percentage": 19.48, "elapsed_time": "2:57:06", "remaining_time": "12:12:02"} +{"current_steps": 1067, "total_steps": 5472, "loss": 0.2885, "accuracy": 1.0, "learning_rate": 4.864188520208285e-07, "epoch": 0.7795433789954338, "percentage": 19.5, "elapsed_time": "2:57:16", "remaining_time": "12:11:51"} +{"current_steps": 1068, "total_steps": 5472, "loss": 0.3599, "accuracy": 1.0, "learning_rate": 4.863669471586167e-07, "epoch": 0.7802739726027397, "percentage": 19.52, "elapsed_time": "2:57:25", "remaining_time": "12:11:39"} +{"current_steps": 1069, "total_steps": 5472, "loss": 0.2733, "accuracy": 0.875, "learning_rate": 4.863149460797204e-07, "epoch": 0.7810045662100457, "percentage": 19.54, "elapsed_time": "2:57:35", "remaining_time": "12:11:26"} +{"current_steps": 1070, "total_steps": 5472, "loss": 0.3496, "accuracy": 1.0, "learning_rate": 4.862628488053072e-07, "epoch": 0.7817351598173516, "percentage": 19.55, "elapsed_time": "2:57:44", "remaining_time": "12:11:12"} +{"current_steps": 1071, "total_steps": 5472, "loss": 0.3096, "accuracy": 0.75, "learning_rate": 4.862106553565841e-07, "epoch": 0.7824657534246575, "percentage": 19.57, "elapsed_time": "2:57:54", "remaining_time": "12:11:05"} +{"current_steps": 1072, "total_steps": 5472, "loss": 0.4091, "accuracy": 0.625, "learning_rate": 4.861583657547974e-07, "epoch": 0.7831963470319635, "percentage": 19.59, "elapsed_time": "2:58:04", "remaining_time": "12:10:52"} +{"current_steps": 1073, "total_steps": 5472, "loss": 0.3152, "accuracy": 0.875, "learning_rate": 4.861059800212322e-07, "epoch": 0.7839269406392694, "percentage": 19.61, "elapsed_time": "2:58:17", "remaining_time": "12:10:57"} +{"current_steps": 1074, "total_steps": 5472, "loss": 0.3416, "accuracy": 0.75, "learning_rate": 4.860534981772129e-07, "epoch": 0.7846575342465754, "percentage": 19.63, "elapsed_time": "2:58:26", "remaining_time": "12:10:42"} +{"current_steps": 1075, "total_steps": 5472, "loss": 0.3977, "accuracy": 0.625, "learning_rate": 4.860009202441032e-07, "epoch": 0.7853881278538812, "percentage": 19.65, "elapsed_time": "2:58:38", "remaining_time": "12:10:40"} +{"current_steps": 1076, "total_steps": 5472, "loss": 0.5064, "accuracy": 0.625, "learning_rate": 4.859482462433054e-07, "epoch": 0.7861187214611872, "percentage": 19.66, "elapsed_time": "2:58:47", "remaining_time": "12:10:29"} +{"current_steps": 1077, "total_steps": 5472, "loss": 0.3041, "accuracy": 0.75, "learning_rate": 4.858954761962615e-07, "epoch": 0.7868493150684932, "percentage": 19.68, "elapsed_time": "2:58:59", "remaining_time": "12:10:23"} +{"current_steps": 1078, "total_steps": 5472, "loss": 0.3172, "accuracy": 0.875, "learning_rate": 4.858426101244523e-07, "epoch": 0.7875799086757991, "percentage": 19.7, "elapsed_time": "2:59:09", "remaining_time": "12:10:13"} +{"current_steps": 1079, "total_steps": 5472, "loss": 0.3391, "accuracy": 0.75, "learning_rate": 4.857896480493976e-07, "epoch": 0.7883105022831051, "percentage": 19.72, "elapsed_time": "2:59:19", "remaining_time": "12:10:05"} +{"current_steps": 1080, "total_steps": 5472, "loss": 0.4856, "accuracy": 0.5, "learning_rate": 4.857365899926565e-07, "epoch": 0.7890410958904109, "percentage": 19.74, "elapsed_time": "2:59:29", "remaining_time": "12:09:54"} +{"current_steps": 1081, "total_steps": 5472, "loss": 0.3138, "accuracy": 1.0, "learning_rate": 4.85683435975827e-07, "epoch": 0.7897716894977169, "percentage": 19.76, "elapsed_time": "2:59:40", "remaining_time": "12:09:48"} +{"current_steps": 1082, "total_steps": 5472, "loss": 0.2862, "accuracy": 0.875, "learning_rate": 4.856301860205462e-07, "epoch": 0.7905022831050228, "percentage": 19.77, "elapsed_time": "2:59:49", "remaining_time": "12:09:37"} +{"current_steps": 1083, "total_steps": 5472, "loss": 0.4496, "accuracy": 0.375, "learning_rate": 4.855768401484906e-07, "epoch": 0.7912328767123288, "percentage": 19.79, "elapsed_time": "2:59:59", "remaining_time": "12:09:24"} +{"current_steps": 1084, "total_steps": 5472, "loss": 0.3529, "accuracy": 0.75, "learning_rate": 4.855233983813751e-07, "epoch": 0.7919634703196347, "percentage": 19.81, "elapsed_time": "3:00:07", "remaining_time": "12:09:10"} +{"current_steps": 1085, "total_steps": 5472, "loss": 0.4343, "accuracy": 0.875, "learning_rate": 4.85469860740954e-07, "epoch": 0.7926940639269406, "percentage": 19.83, "elapsed_time": "3:00:17", "remaining_time": "12:08:57"} +{"current_steps": 1086, "total_steps": 5472, "loss": 0.3892, "accuracy": 0.75, "learning_rate": 4.854162272490207e-07, "epoch": 0.7934246575342466, "percentage": 19.85, "elapsed_time": "3:00:25", "remaining_time": "12:08:41"} +{"current_steps": 1087, "total_steps": 5472, "loss": 0.4184, "accuracy": 0.875, "learning_rate": 4.853624979274075e-07, "epoch": 0.7941552511415525, "percentage": 19.86, "elapsed_time": "3:00:35", "remaining_time": "12:08:28"} +{"current_steps": 1088, "total_steps": 5472, "loss": 0.4313, "accuracy": 0.625, "learning_rate": 4.853086727979857e-07, "epoch": 0.7948858447488585, "percentage": 19.88, "elapsed_time": "3:00:43", "remaining_time": "12:08:14"} +{"current_steps": 1089, "total_steps": 5472, "loss": 0.2978, "accuracy": 0.875, "learning_rate": 4.852547518826655e-07, "epoch": 0.7956164383561644, "percentage": 19.9, "elapsed_time": "3:00:52", "remaining_time": "12:08:01"} +{"current_steps": 1090, "total_steps": 5472, "loss": 0.2418, "accuracy": 1.0, "learning_rate": 4.852007352033965e-07, "epoch": 0.7963470319634703, "percentage": 19.92, "elapsed_time": "3:01:04", "remaining_time": "12:07:56"} +{"current_steps": 1091, "total_steps": 5472, "loss": 0.3027, "accuracy": 0.625, "learning_rate": 4.851466227821667e-07, "epoch": 0.7970776255707762, "percentage": 19.94, "elapsed_time": "3:01:13", "remaining_time": "12:07:41"} +{"current_steps": 1092, "total_steps": 5472, "loss": 0.2652, "accuracy": 1.0, "learning_rate": 4.850924146410034e-07, "epoch": 0.7978082191780822, "percentage": 19.96, "elapsed_time": "3:01:22", "remaining_time": "12:07:31"} +{"current_steps": 1093, "total_steps": 5472, "loss": 0.2083, "accuracy": 0.875, "learning_rate": 4.850381108019731e-07, "epoch": 0.7985388127853881, "percentage": 19.97, "elapsed_time": "3:01:32", "remaining_time": "12:07:19"} +{"current_steps": 1094, "total_steps": 5472, "loss": 0.5082, "accuracy": 0.5, "learning_rate": 4.849837112871807e-07, "epoch": 0.7992694063926941, "percentage": 19.99, "elapsed_time": "3:01:41", "remaining_time": "12:07:06"} +{"current_steps": 1095, "total_steps": 5472, "loss": 0.375, "accuracy": 0.625, "learning_rate": 4.849292161187704e-07, "epoch": 0.8, "percentage": 20.01, "elapsed_time": "3:01:53", "remaining_time": "12:07:03"} +{"current_steps": 1096, "total_steps": 5472, "loss": 0.3811, "accuracy": 0.75, "learning_rate": 4.848746253189253e-07, "epoch": 0.8007305936073059, "percentage": 20.03, "elapsed_time": "3:02:02", "remaining_time": "12:06:50"} +{"current_steps": 1097, "total_steps": 5472, "loss": 0.3085, "accuracy": 0.75, "learning_rate": 4.848199389098674e-07, "epoch": 0.8014611872146119, "percentage": 20.05, "elapsed_time": "3:02:11", "remaining_time": "12:06:37"} +{"current_steps": 1098, "total_steps": 5472, "loss": 0.3244, "accuracy": 0.875, "learning_rate": 4.847651569138577e-07, "epoch": 0.8021917808219178, "percentage": 20.07, "elapsed_time": "3:02:21", "remaining_time": "12:06:25"} +{"current_steps": 1099, "total_steps": 5472, "loss": 0.1772, "accuracy": 1.0, "learning_rate": 4.84710279353196e-07, "epoch": 0.8029223744292238, "percentage": 20.08, "elapsed_time": "3:02:29", "remaining_time": "12:06:10"} +{"current_steps": 1100, "total_steps": 5472, "loss": 0.4531, "accuracy": 0.75, "learning_rate": 4.846553062502208e-07, "epoch": 0.8036529680365296, "percentage": 20.1, "elapsed_time": "3:02:40", "remaining_time": "12:06:02"} +{"current_steps": 1101, "total_steps": 5472, "loss": 0.2901, "accuracy": 0.875, "learning_rate": 4.8460023762731e-07, "epoch": 0.8043835616438356, "percentage": 20.12, "elapsed_time": "3:02:49", "remaining_time": "12:05:48"} +{"current_steps": 1102, "total_steps": 5472, "loss": 0.3591, "accuracy": 0.875, "learning_rate": 4.845450735068799e-07, "epoch": 0.8051141552511416, "percentage": 20.14, "elapsed_time": "3:02:58", "remaining_time": "12:05:34"} +{"current_steps": 1103, "total_steps": 5472, "loss": 0.3737, "accuracy": 1.0, "learning_rate": 4.84489813911386e-07, "epoch": 0.8058447488584475, "percentage": 20.16, "elapsed_time": "3:03:08", "remaining_time": "12:05:24"} +{"current_steps": 1104, "total_steps": 5472, "loss": 0.321, "accuracy": 1.0, "learning_rate": 4.844344588633226e-07, "epoch": 0.8065753424657535, "percentage": 20.18, "elapsed_time": "3:03:19", "remaining_time": "12:05:20"} +{"current_steps": 1105, "total_steps": 5472, "loss": 0.3441, "accuracy": 0.75, "learning_rate": 4.843790083852226e-07, "epoch": 0.8073059360730593, "percentage": 20.19, "elapsed_time": "3:03:28", "remaining_time": "12:05:07"} +{"current_steps": 1106, "total_steps": 5472, "loss": 0.3823, "accuracy": 0.875, "learning_rate": 4.843234624996581e-07, "epoch": 0.8080365296803653, "percentage": 20.21, "elapsed_time": "3:03:40", "remaining_time": "12:05:03"} +{"current_steps": 1107, "total_steps": 5472, "loss": 0.4886, "accuracy": 0.75, "learning_rate": 4.842678212292399e-07, "epoch": 0.8087671232876712, "percentage": 20.23, "elapsed_time": "3:03:49", "remaining_time": "12:04:51"} +{"current_steps": 1108, "total_steps": 5472, "loss": 0.3487, "accuracy": 0.75, "learning_rate": 4.842120845966174e-07, "epoch": 0.8094977168949772, "percentage": 20.25, "elapsed_time": "3:03:58", "remaining_time": "12:04:38"} +{"current_steps": 1109, "total_steps": 5472, "loss": 0.3807, "accuracy": 0.625, "learning_rate": 4.841562526244792e-07, "epoch": 0.8102283105022831, "percentage": 20.27, "elapsed_time": "3:04:07", "remaining_time": "12:04:23"} +{"current_steps": 1110, "total_steps": 5472, "loss": 0.3135, "accuracy": 0.875, "learning_rate": 4.841003253355526e-07, "epoch": 0.810958904109589, "percentage": 20.29, "elapsed_time": "3:04:17", "remaining_time": "12:04:13"} +{"current_steps": 1111, "total_steps": 5472, "loss": 0.3943, "accuracy": 1.0, "learning_rate": 4.840443027526034e-07, "epoch": 0.811689497716895, "percentage": 20.3, "elapsed_time": "3:04:26", "remaining_time": "12:03:58"} +{"current_steps": 1112, "total_steps": 5472, "loss": 0.4074, "accuracy": 0.875, "learning_rate": 4.839881848984366e-07, "epoch": 0.8124200913242009, "percentage": 20.32, "elapsed_time": "3:04:35", "remaining_time": "12:03:43"} +{"current_steps": 1113, "total_steps": 5472, "loss": 0.4688, "accuracy": 0.625, "learning_rate": 4.839319717958957e-07, "epoch": 0.8131506849315069, "percentage": 20.34, "elapsed_time": "3:04:43", "remaining_time": "12:03:29"} +{"current_steps": 1114, "total_steps": 5472, "loss": 0.3382, "accuracy": 0.875, "learning_rate": 4.838756634678633e-07, "epoch": 0.8138812785388128, "percentage": 20.36, "elapsed_time": "3:04:53", "remaining_time": "12:03:18"} +{"current_steps": 1115, "total_steps": 5472, "loss": 0.3399, "accuracy": 0.875, "learning_rate": 4.838192599372603e-07, "epoch": 0.8146118721461187, "percentage": 20.38, "elapsed_time": "3:05:03", "remaining_time": "12:03:07"} +{"current_steps": 1116, "total_steps": 5472, "loss": 0.3559, "accuracy": 0.875, "learning_rate": 4.837627612270467e-07, "epoch": 0.8153424657534246, "percentage": 20.39, "elapsed_time": "3:05:12", "remaining_time": "12:02:53"} +{"current_steps": 1117, "total_steps": 5472, "loss": 0.4999, "accuracy": 0.75, "learning_rate": 4.837061673602211e-07, "epoch": 0.8160730593607306, "percentage": 20.41, "elapsed_time": "3:05:20", "remaining_time": "12:02:38"} +{"current_steps": 1118, "total_steps": 5472, "loss": 0.413, "accuracy": 0.75, "learning_rate": 4.83649478359821e-07, "epoch": 0.8168036529680365, "percentage": 20.43, "elapsed_time": "3:05:31", "remaining_time": "12:02:29"} +{"current_steps": 1119, "total_steps": 5472, "loss": 0.2627, "accuracy": 0.875, "learning_rate": 4.835926942489223e-07, "epoch": 0.8175342465753425, "percentage": 20.45, "elapsed_time": "3:05:40", "remaining_time": "12:02:16"} +{"current_steps": 1120, "total_steps": 5472, "loss": 0.2739, "accuracy": 1.0, "learning_rate": 4.8353581505064e-07, "epoch": 0.8182648401826484, "percentage": 20.47, "elapsed_time": "3:05:50", "remaining_time": "12:02:06"} +{"current_steps": 1121, "total_steps": 5472, "loss": 0.2964, "accuracy": 0.875, "learning_rate": 4.834788407881275e-07, "epoch": 0.8189954337899543, "percentage": 20.49, "elapsed_time": "3:05:59", "remaining_time": "12:01:54"} +{"current_steps": 1122, "total_steps": 5472, "loss": 0.3167, "accuracy": 1.0, "learning_rate": 4.834217714845772e-07, "epoch": 0.8197260273972603, "percentage": 20.5, "elapsed_time": "3:06:09", "remaining_time": "12:01:43"} +{"current_steps": 1123, "total_steps": 5472, "loss": 0.2015, "accuracy": 1.0, "learning_rate": 4.833646071632197e-07, "epoch": 0.8204566210045662, "percentage": 20.52, "elapsed_time": "3:06:20", "remaining_time": "12:01:38"} +{"current_steps": 1124, "total_steps": 5472, "loss": 0.2383, "accuracy": 0.5, "learning_rate": 4.833073478473248e-07, "epoch": 0.8211872146118722, "percentage": 20.54, "elapsed_time": "3:06:29", "remaining_time": "12:01:26"} +{"current_steps": 1125, "total_steps": 5472, "loss": 0.4043, "accuracy": 0.625, "learning_rate": 4.832499935602008e-07, "epoch": 0.821917808219178, "percentage": 20.56, "elapsed_time": "3:06:41", "remaining_time": "12:01:20"} +{"current_steps": 1126, "total_steps": 5472, "loss": 0.2842, "accuracy": 1.0, "learning_rate": 4.831925443251945e-07, "epoch": 0.822648401826484, "percentage": 20.58, "elapsed_time": "3:06:51", "remaining_time": "12:01:13"} +{"current_steps": 1127, "total_steps": 5472, "loss": 0.3165, "accuracy": 0.75, "learning_rate": 4.831350001656916e-07, "epoch": 0.82337899543379, "percentage": 20.6, "elapsed_time": "3:07:00", "remaining_time": "12:01:00"} +{"current_steps": 1128, "total_steps": 5472, "loss": 0.3467, "accuracy": 0.875, "learning_rate": 4.830773611051161e-07, "epoch": 0.8241095890410959, "percentage": 20.61, "elapsed_time": "3:07:10", "remaining_time": "12:00:47"} +{"current_steps": 1129, "total_steps": 5472, "loss": 0.3262, "accuracy": 1.0, "learning_rate": 4.83019627166931e-07, "epoch": 0.8248401826484019, "percentage": 20.63, "elapsed_time": "3:07:18", "remaining_time": "12:00:33"} +{"current_steps": 1130, "total_steps": 5472, "loss": 0.4122, "accuracy": 0.75, "learning_rate": 4.829617983746377e-07, "epoch": 0.8255707762557077, "percentage": 20.65, "elapsed_time": "3:07:28", "remaining_time": "12:00:22"} +{"current_steps": 1131, "total_steps": 5472, "loss": 0.3931, "accuracy": 0.75, "learning_rate": 4.829038747517763e-07, "epoch": 0.8263013698630137, "percentage": 20.67, "elapsed_time": "3:07:37", "remaining_time": "12:00:08"} +{"current_steps": 1132, "total_steps": 5472, "loss": 0.3662, "accuracy": 1.0, "learning_rate": 4.828458563219254e-07, "epoch": 0.8270319634703196, "percentage": 20.69, "elapsed_time": "3:07:47", "remaining_time": "11:59:57"} +{"current_steps": 1133, "total_steps": 5472, "loss": 0.3551, "accuracy": 1.0, "learning_rate": 4.827877431087025e-07, "epoch": 0.8277625570776256, "percentage": 20.71, "elapsed_time": "3:07:56", "remaining_time": "11:59:45"} +{"current_steps": 1134, "total_steps": 5472, "loss": 0.28, "accuracy": 1.0, "learning_rate": 4.82729535135763e-07, "epoch": 0.8284931506849315, "percentage": 20.72, "elapsed_time": "3:08:06", "remaining_time": "11:59:33"} +{"current_steps": 1135, "total_steps": 5472, "loss": 0.2965, "accuracy": 1.0, "learning_rate": 4.826712324268018e-07, "epoch": 0.8292237442922374, "percentage": 20.74, "elapsed_time": "3:08:16", "remaining_time": "11:59:25"} +{"current_steps": 1136, "total_steps": 5472, "loss": 0.515, "accuracy": 0.5, "learning_rate": 4.826128350055515e-07, "epoch": 0.8299543378995434, "percentage": 20.76, "elapsed_time": "3:08:25", "remaining_time": "11:59:13"} +{"current_steps": 1137, "total_steps": 5472, "loss": 0.3678, "accuracy": 0.75, "learning_rate": 4.825543428957839e-07, "epoch": 0.8306849315068493, "percentage": 20.78, "elapsed_time": "3:08:36", "remaining_time": "11:59:04"} +{"current_steps": 1138, "total_steps": 5472, "loss": 0.4893, "accuracy": 1.0, "learning_rate": 4.824957561213091e-07, "epoch": 0.8314155251141553, "percentage": 20.8, "elapsed_time": "3:08:48", "remaining_time": "11:59:02"} +{"current_steps": 1139, "total_steps": 5472, "loss": 0.4957, "accuracy": 0.875, "learning_rate": 4.824370747059755e-07, "epoch": 0.8321461187214612, "percentage": 20.82, "elapsed_time": "3:08:58", "remaining_time": "11:58:54"} +{"current_steps": 1140, "total_steps": 5472, "loss": 0.3644, "accuracy": 0.75, "learning_rate": 4.823782986736704e-07, "epoch": 0.8328767123287671, "percentage": 20.83, "elapsed_time": "3:09:08", "remaining_time": "11:58:42"} +{"current_steps": 1141, "total_steps": 5472, "loss": 0.294, "accuracy": 0.75, "learning_rate": 4.823194280483194e-07, "epoch": 0.833607305936073, "percentage": 20.85, "elapsed_time": "3:09:18", "remaining_time": "11:58:34"} +{"current_steps": 1142, "total_steps": 5472, "loss": 0.3645, "accuracy": 0.75, "learning_rate": 4.822604628538867e-07, "epoch": 0.834337899543379, "percentage": 20.87, "elapsed_time": "3:09:29", "remaining_time": "11:58:28"} +{"current_steps": 1143, "total_steps": 5472, "loss": 0.3304, "accuracy": 0.875, "learning_rate": 4.82201403114375e-07, "epoch": 0.8350684931506849, "percentage": 20.89, "elapsed_time": "3:09:39", "remaining_time": "11:58:17"} +{"current_steps": 1144, "total_steps": 5472, "loss": 0.3277, "accuracy": 0.875, "learning_rate": 4.821422488538254e-07, "epoch": 0.8357990867579909, "percentage": 20.91, "elapsed_time": "3:09:48", "remaining_time": "11:58:04"} +{"current_steps": 1145, "total_steps": 5472, "loss": 0.3981, "accuracy": 0.75, "learning_rate": 4.820830000963175e-07, "epoch": 0.8365296803652968, "percentage": 20.92, "elapsed_time": "3:09:59", "remaining_time": "11:57:57"} +{"current_steps": 1146, "total_steps": 5472, "loss": 0.3927, "accuracy": 0.75, "learning_rate": 4.820236568659693e-07, "epoch": 0.8372602739726027, "percentage": 20.94, "elapsed_time": "3:10:08", "remaining_time": "11:57:46"} +{"current_steps": 1147, "total_steps": 5472, "loss": 0.3764, "accuracy": 0.625, "learning_rate": 4.819642191869374e-07, "epoch": 0.8379908675799087, "percentage": 20.96, "elapsed_time": "3:10:18", "remaining_time": "11:57:36"} +{"current_steps": 1148, "total_steps": 5472, "loss": 0.2333, "accuracy": 0.75, "learning_rate": 4.81904687083417e-07, "epoch": 0.8387214611872146, "percentage": 20.98, "elapsed_time": "3:10:29", "remaining_time": "11:57:28"} +{"current_steps": 1149, "total_steps": 5472, "loss": 0.3252, "accuracy": 0.875, "learning_rate": 4.818450605796413e-07, "epoch": 0.8394520547945206, "percentage": 21.0, "elapsed_time": "3:10:38", "remaining_time": "11:57:14"} +{"current_steps": 1150, "total_steps": 5472, "loss": 0.375, "accuracy": 1.0, "learning_rate": 4.817853396998823e-07, "epoch": 0.8401826484018264, "percentage": 21.02, "elapsed_time": "3:10:49", "remaining_time": "11:57:08"} +{"current_steps": 1151, "total_steps": 5472, "loss": 0.3544, "accuracy": 0.875, "learning_rate": 4.817255244684501e-07, "epoch": 0.8409132420091324, "percentage": 21.03, "elapsed_time": "3:10:59", "remaining_time": "11:56:59"} +{"current_steps": 1152, "total_steps": 5472, "loss": 0.3362, "accuracy": 0.875, "learning_rate": 4.816656149096936e-07, "epoch": 0.8416438356164384, "percentage": 21.05, "elapsed_time": "3:11:09", "remaining_time": "11:56:49"} +{"current_steps": 1153, "total_steps": 5472, "loss": 0.3688, "accuracy": 1.0, "learning_rate": 4.816056110479997e-07, "epoch": 0.8423744292237443, "percentage": 21.07, "elapsed_time": "3:11:19", "remaining_time": "11:56:42"} +{"current_steps": 1154, "total_steps": 5472, "loss": 0.5907, "accuracy": 0.875, "learning_rate": 4.815455129077939e-07, "epoch": 0.8431050228310503, "percentage": 21.09, "elapsed_time": "3:11:30", "remaining_time": "11:56:35"} +{"current_steps": 1155, "total_steps": 5472, "loss": 0.2956, "accuracy": 0.875, "learning_rate": 4.814853205135401e-07, "epoch": 0.8438356164383561, "percentage": 21.11, "elapsed_time": "3:11:39", "remaining_time": "11:56:20"} +{"current_steps": 1156, "total_steps": 5472, "loss": 0.3714, "accuracy": 0.625, "learning_rate": 4.814250338897405e-07, "epoch": 0.8445662100456621, "percentage": 21.13, "elapsed_time": "3:11:49", "remaining_time": "11:56:10"} +{"current_steps": 1157, "total_steps": 5472, "loss": 0.262, "accuracy": 1.0, "learning_rate": 4.813646530609355e-07, "epoch": 0.845296803652968, "percentage": 21.14, "elapsed_time": "3:11:59", "remaining_time": "11:56:01"} +{"current_steps": 1158, "total_steps": 5472, "loss": 0.5702, "accuracy": 0.875, "learning_rate": 4.813041780517043e-07, "epoch": 0.846027397260274, "percentage": 21.16, "elapsed_time": "3:12:08", "remaining_time": "11:55:49"} +{"current_steps": 1159, "total_steps": 5472, "loss": 0.276, "accuracy": 1.0, "learning_rate": 4.812436088866641e-07, "epoch": 0.8467579908675799, "percentage": 21.18, "elapsed_time": "3:12:18", "remaining_time": "11:55:38"} +{"current_steps": 1160, "total_steps": 5472, "loss": 0.3904, "accuracy": 0.875, "learning_rate": 4.811829455904702e-07, "epoch": 0.8474885844748858, "percentage": 21.2, "elapsed_time": "3:12:28", "remaining_time": "11:55:29"} +{"current_steps": 1161, "total_steps": 5472, "loss": 0.4661, "accuracy": 0.875, "learning_rate": 4.811221881878167e-07, "epoch": 0.8482191780821918, "percentage": 21.22, "elapsed_time": "3:12:38", "remaining_time": "11:55:19"} +{"current_steps": 1162, "total_steps": 5472, "loss": 0.3484, "accuracy": 0.875, "learning_rate": 4.810613367034358e-07, "epoch": 0.8489497716894977, "percentage": 21.24, "elapsed_time": "3:12:51", "remaining_time": "11:55:18"} +{"current_steps": 1163, "total_steps": 5472, "loss": 0.4167, "accuracy": 0.875, "learning_rate": 4.810003911620981e-07, "epoch": 0.8496803652968037, "percentage": 21.25, "elapsed_time": "3:13:00", "remaining_time": "11:55:07"} +{"current_steps": 1164, "total_steps": 5472, "loss": 0.3984, "accuracy": 0.875, "learning_rate": 4.809393515886122e-07, "epoch": 0.8504109589041096, "percentage": 21.27, "elapsed_time": "3:13:09", "remaining_time": "11:54:52"} +{"current_steps": 1165, "total_steps": 5472, "loss": 0.4189, "accuracy": 0.625, "learning_rate": 4.808782180078253e-07, "epoch": 0.8511415525114155, "percentage": 21.29, "elapsed_time": "3:13:18", "remaining_time": "11:54:40"} +{"current_steps": 1166, "total_steps": 5472, "loss": 0.3663, "accuracy": 0.875, "learning_rate": 4.808169904446228e-07, "epoch": 0.8518721461187214, "percentage": 21.31, "elapsed_time": "3:13:28", "remaining_time": "11:54:30"} +{"current_steps": 1167, "total_steps": 5472, "loss": 0.2957, "accuracy": 1.0, "learning_rate": 4.80755668923928e-07, "epoch": 0.8526027397260274, "percentage": 21.33, "elapsed_time": "3:13:37", "remaining_time": "11:54:17"} +{"current_steps": 1168, "total_steps": 5472, "loss": 0.2896, "accuracy": 0.625, "learning_rate": 4.80694253470703e-07, "epoch": 0.8533333333333334, "percentage": 21.35, "elapsed_time": "3:13:47", "remaining_time": "11:54:06"} +{"current_steps": 1169, "total_steps": 5472, "loss": 0.346, "accuracy": 0.75, "learning_rate": 4.806327441099477e-07, "epoch": 0.8540639269406393, "percentage": 21.36, "elapsed_time": "3:13:57", "remaining_time": "11:53:55"} +{"current_steps": 1170, "total_steps": 5472, "loss": 0.5529, "accuracy": 0.625, "learning_rate": 4.805711408667006e-07, "epoch": 0.8547945205479452, "percentage": 21.38, "elapsed_time": "3:14:06", "remaining_time": "11:53:43"} +{"current_steps": 1171, "total_steps": 5472, "loss": 0.4066, "accuracy": 0.875, "learning_rate": 4.805094437660381e-07, "epoch": 0.8555251141552511, "percentage": 21.4, "elapsed_time": "3:14:15", "remaining_time": "11:53:31"} +{"current_steps": 1172, "total_steps": 5472, "loss": 0.4006, "accuracy": 0.75, "learning_rate": 4.80447652833075e-07, "epoch": 0.8562557077625571, "percentage": 21.42, "elapsed_time": "3:14:25", "remaining_time": "11:53:20"} +{"current_steps": 1173, "total_steps": 5472, "loss": 0.5627, "accuracy": 0.75, "learning_rate": 4.803857680929639e-07, "epoch": 0.856986301369863, "percentage": 21.44, "elapsed_time": "3:14:35", "remaining_time": "11:53:08"} +{"current_steps": 1174, "total_steps": 5472, "loss": 0.2796, "accuracy": 0.75, "learning_rate": 4.803237895708964e-07, "epoch": 0.857716894977169, "percentage": 21.45, "elapsed_time": "3:14:44", "remaining_time": "11:52:55"} +{"current_steps": 1175, "total_steps": 5472, "loss": 0.2717, "accuracy": 0.75, "learning_rate": 4.802617172921015e-07, "epoch": 0.8584474885844748, "percentage": 21.47, "elapsed_time": "3:14:55", "remaining_time": "11:52:52"} +{"current_steps": 1176, "total_steps": 5472, "loss": 0.2616, "accuracy": 0.75, "learning_rate": 4.801995512818467e-07, "epoch": 0.8591780821917808, "percentage": 21.49, "elapsed_time": "3:15:05", "remaining_time": "11:52:40"} +{"current_steps": 1177, "total_steps": 5472, "loss": 0.4115, "accuracy": 0.75, "learning_rate": 4.801372915654374e-07, "epoch": 0.8599086757990868, "percentage": 21.51, "elapsed_time": "3:15:16", "remaining_time": "11:52:36"} +{"current_steps": 1178, "total_steps": 5472, "loss": 0.2654, "accuracy": 0.875, "learning_rate": 4.800749381682177e-07, "epoch": 0.8606392694063927, "percentage": 21.53, "elapsed_time": "3:15:26", "remaining_time": "11:52:23"} +{"current_steps": 1179, "total_steps": 5472, "loss": 0.282, "accuracy": 1.0, "learning_rate": 4.800124911155692e-07, "epoch": 0.8613698630136987, "percentage": 21.55, "elapsed_time": "3:15:36", "remaining_time": "11:52:13"} +{"current_steps": 1180, "total_steps": 5472, "loss": 0.3958, "accuracy": 0.75, "learning_rate": 4.799499504329121e-07, "epoch": 0.8621004566210045, "percentage": 21.56, "elapsed_time": "3:15:46", "remaining_time": "11:52:05"} +{"current_steps": 1181, "total_steps": 5472, "loss": 0.2873, "accuracy": 0.875, "learning_rate": 4.798873161457045e-07, "epoch": 0.8628310502283105, "percentage": 21.58, "elapsed_time": "3:15:56", "remaining_time": "11:51:54"} +{"current_steps": 1182, "total_steps": 5472, "loss": 0.5664, "accuracy": 0.75, "learning_rate": 4.798245882794423e-07, "epoch": 0.8635616438356164, "percentage": 21.6, "elapsed_time": "3:16:06", "remaining_time": "11:51:46"} +{"current_steps": 1183, "total_steps": 5472, "loss": 0.2793, "accuracy": 1.0, "learning_rate": 4.797617668596603e-07, "epoch": 0.8642922374429224, "percentage": 21.62, "elapsed_time": "3:16:16", "remaining_time": "11:51:36"} +{"current_steps": 1184, "total_steps": 5472, "loss": 0.6376, "accuracy": 0.75, "learning_rate": 4.796988519119305e-07, "epoch": 0.8650228310502283, "percentage": 21.64, "elapsed_time": "3:16:25", "remaining_time": "11:51:21"} +{"current_steps": 1185, "total_steps": 5472, "loss": 0.6434, "accuracy": 0.75, "learning_rate": 4.796358434618635e-07, "epoch": 0.8657534246575342, "percentage": 21.66, "elapsed_time": "3:16:36", "remaining_time": "11:51:17"} +{"current_steps": 1186, "total_steps": 5472, "loss": 0.5072, "accuracy": 0.75, "learning_rate": 4.795727415351079e-07, "epoch": 0.8664840182648402, "percentage": 21.67, "elapsed_time": "3:16:46", "remaining_time": "11:51:08"} +{"current_steps": 1187, "total_steps": 5472, "loss": 0.2549, "accuracy": 1.0, "learning_rate": 4.795095461573503e-07, "epoch": 0.8672146118721461, "percentage": 21.69, "elapsed_time": "3:16:56", "remaining_time": "11:50:58"} +{"current_steps": 1188, "total_steps": 5472, "loss": 0.5321, "accuracy": 0.75, "learning_rate": 4.794462573543151e-07, "epoch": 0.8679452054794521, "percentage": 21.71, "elapsed_time": "3:17:07", "remaining_time": "11:50:49"} +{"current_steps": 1189, "total_steps": 5472, "loss": 0.5174, "accuracy": 0.625, "learning_rate": 4.793828751517652e-07, "epoch": 0.868675799086758, "percentage": 21.73, "elapsed_time": "3:17:17", "remaining_time": "11:50:39"} +{"current_steps": 1190, "total_steps": 5472, "loss": 0.2769, "accuracy": 0.875, "learning_rate": 4.79319399575501e-07, "epoch": 0.869406392694064, "percentage": 21.75, "elapsed_time": "3:17:27", "remaining_time": "11:50:29"} +{"current_steps": 1191, "total_steps": 5472, "loss": 0.4155, "accuracy": 0.75, "learning_rate": 4.792558306513615e-07, "epoch": 0.8701369863013698, "percentage": 21.77, "elapsed_time": "3:17:37", "remaining_time": "11:50:21"} +{"current_steps": 1192, "total_steps": 5472, "loss": 0.4031, "accuracy": 0.875, "learning_rate": 4.791921684052232e-07, "epoch": 0.8708675799086758, "percentage": 21.78, "elapsed_time": "3:17:48", "remaining_time": "11:50:15"} +{"current_steps": 1193, "total_steps": 5472, "loss": 0.3807, "accuracy": 0.875, "learning_rate": 4.791284128630007e-07, "epoch": 0.8715981735159818, "percentage": 21.8, "elapsed_time": "3:17:59", "remaining_time": "11:50:09"} +{"current_steps": 1194, "total_steps": 5472, "loss": 0.3768, "accuracy": 0.75, "learning_rate": 4.790645640506467e-07, "epoch": 0.8723287671232877, "percentage": 21.82, "elapsed_time": "3:18:09", "remaining_time": "11:49:58"} +{"current_steps": 1195, "total_steps": 5472, "loss": 0.5199, "accuracy": 1.0, "learning_rate": 4.79000621994152e-07, "epoch": 0.8730593607305936, "percentage": 21.84, "elapsed_time": "3:18:18", "remaining_time": "11:49:45"} +{"current_steps": 1196, "total_steps": 5472, "loss": 0.3463, "accuracy": 0.875, "learning_rate": 4.789365867195449e-07, "epoch": 0.8737899543378995, "percentage": 21.86, "elapsed_time": "3:18:27", "remaining_time": "11:49:33"} +{"current_steps": 1197, "total_steps": 5472, "loss": 0.4101, "accuracy": 1.0, "learning_rate": 4.78872458252892e-07, "epoch": 0.8745205479452055, "percentage": 21.88, "elapsed_time": "3:18:40", "remaining_time": "11:49:32"} +{"current_steps": 1198, "total_steps": 5472, "loss": 0.5757, "accuracy": 0.625, "learning_rate": 4.788082366202978e-07, "epoch": 0.8752511415525114, "percentage": 21.89, "elapsed_time": "3:18:49", "remaining_time": "11:49:21"} +{"current_steps": 1199, "total_steps": 5472, "loss": 0.4406, "accuracy": 0.75, "learning_rate": 4.787439218479046e-07, "epoch": 0.8759817351598174, "percentage": 21.91, "elapsed_time": "3:19:01", "remaining_time": "11:49:18"} +{"current_steps": 1200, "total_steps": 5472, "loss": 0.2799, "accuracy": 0.875, "learning_rate": 4.786795139618927e-07, "epoch": 0.8767123287671232, "percentage": 21.93, "elapsed_time": "3:19:10", "remaining_time": "11:49:03"} +{"current_steps": 1201, "total_steps": 5472, "loss": 0.5696, "accuracy": 0.875, "learning_rate": 4.786150129884802e-07, "epoch": 0.8774429223744292, "percentage": 21.95, "elapsed_time": "3:19:20", "remaining_time": "11:48:52"} +{"current_steps": 1202, "total_steps": 5472, "loss": 0.4585, "accuracy": 0.625, "learning_rate": 4.785504189539234e-07, "epoch": 0.8781735159817352, "percentage": 21.97, "elapsed_time": "3:19:29", "remaining_time": "11:48:40"} +{"current_steps": 1203, "total_steps": 5472, "loss": 0.2838, "accuracy": 0.875, "learning_rate": 4.784857318845162e-07, "epoch": 0.8789041095890411, "percentage": 21.98, "elapsed_time": "3:19:38", "remaining_time": "11:48:27"} +{"current_steps": 1204, "total_steps": 5472, "loss": 0.2824, "accuracy": 0.875, "learning_rate": 4.784209518065903e-07, "epoch": 0.8796347031963471, "percentage": 22.0, "elapsed_time": "3:19:47", "remaining_time": "11:48:14"} +{"current_steps": 1205, "total_steps": 5472, "loss": 0.3944, "accuracy": 1.0, "learning_rate": 4.783560787465155e-07, "epoch": 0.8803652968036529, "percentage": 22.02, "elapsed_time": "3:19:57", "remaining_time": "11:48:05"} +{"current_steps": 1206, "total_steps": 5472, "loss": 0.3288, "accuracy": 0.875, "learning_rate": 4.782911127306993e-07, "epoch": 0.8810958904109589, "percentage": 22.04, "elapsed_time": "3:20:07", "remaining_time": "11:47:53"} +{"current_steps": 1207, "total_steps": 5472, "loss": 0.3664, "accuracy": 0.625, "learning_rate": 4.782260537855873e-07, "epoch": 0.8818264840182648, "percentage": 22.06, "elapsed_time": "3:20:16", "remaining_time": "11:47:40"} +{"current_steps": 1208, "total_steps": 5472, "loss": 0.4206, "accuracy": 0.875, "learning_rate": 4.781609019376623e-07, "epoch": 0.8825570776255708, "percentage": 22.08, "elapsed_time": "3:20:27", "remaining_time": "11:47:35"} +{"current_steps": 1209, "total_steps": 5472, "loss": 0.3881, "accuracy": 0.5, "learning_rate": 4.780956572134456e-07, "epoch": 0.8832876712328767, "percentage": 22.09, "elapsed_time": "3:20:37", "remaining_time": "11:47:23"} +{"current_steps": 1210, "total_steps": 5472, "loss": 0.3716, "accuracy": 1.0, "learning_rate": 4.780303196394959e-07, "epoch": 0.8840182648401826, "percentage": 22.11, "elapsed_time": "3:20:46", "remaining_time": "11:47:11"} +{"current_steps": 1211, "total_steps": 5472, "loss": 0.3421, "accuracy": 1.0, "learning_rate": 4.7796488924241e-07, "epoch": 0.8847488584474886, "percentage": 22.13, "elapsed_time": "3:20:55", "remaining_time": "11:46:57"} +{"current_steps": 1212, "total_steps": 5472, "loss": 0.33, "accuracy": 0.875, "learning_rate": 4.778993660488223e-07, "epoch": 0.8854794520547945, "percentage": 22.15, "elapsed_time": "3:21:05", "remaining_time": "11:46:47"} +{"current_steps": 1213, "total_steps": 5472, "loss": 0.315, "accuracy": 0.75, "learning_rate": 4.778337500854048e-07, "epoch": 0.8862100456621005, "percentage": 22.17, "elapsed_time": "3:21:16", "remaining_time": "11:46:40"} +{"current_steps": 1214, "total_steps": 5472, "loss": 0.4414, "accuracy": 0.75, "learning_rate": 4.777680413788676e-07, "epoch": 0.8869406392694064, "percentage": 22.19, "elapsed_time": "3:21:25", "remaining_time": "11:46:27"} +{"current_steps": 1215, "total_steps": 5472, "loss": 0.3792, "accuracy": 0.875, "learning_rate": 4.777022399559584e-07, "epoch": 0.8876712328767123, "percentage": 22.2, "elapsed_time": "3:21:34", "remaining_time": "11:46:14"} +{"current_steps": 1216, "total_steps": 5472, "loss": 0.3225, "accuracy": 1.0, "learning_rate": 4.776363458434627e-07, "epoch": 0.8884018264840182, "percentage": 22.22, "elapsed_time": "3:21:45", "remaining_time": "11:46:07"} +{"current_steps": 1217, "total_steps": 5472, "loss": 0.2943, "accuracy": 0.875, "learning_rate": 4.775703590682036e-07, "epoch": 0.8891324200913242, "percentage": 22.24, "elapsed_time": "3:21:54", "remaining_time": "11:45:56"} +{"current_steps": 1218, "total_steps": 5472, "loss": 0.4333, "accuracy": 0.75, "learning_rate": 4.77504279657042e-07, "epoch": 0.8898630136986302, "percentage": 22.26, "elapsed_time": "3:22:03", "remaining_time": "11:45:42"} +{"current_steps": 1219, "total_steps": 5472, "loss": 0.2632, "accuracy": 0.875, "learning_rate": 4.774381076368765e-07, "epoch": 0.8905936073059361, "percentage": 22.28, "elapsed_time": "3:22:13", "remaining_time": "11:45:34"} +{"current_steps": 1220, "total_steps": 5472, "loss": 0.3764, "accuracy": 0.75, "learning_rate": 4.773718430346434e-07, "epoch": 0.891324200913242, "percentage": 22.3, "elapsed_time": "3:22:23", "remaining_time": "11:45:24"} +{"current_steps": 1221, "total_steps": 5472, "loss": 0.2986, "accuracy": 1.0, "learning_rate": 4.773054858773168e-07, "epoch": 0.8920547945205479, "percentage": 22.31, "elapsed_time": "3:22:33", "remaining_time": "11:45:14"} +{"current_steps": 1222, "total_steps": 5472, "loss": 0.1751, "accuracy": 0.875, "learning_rate": 4.772390361919082e-07, "epoch": 0.8927853881278539, "percentage": 22.33, "elapsed_time": "3:22:42", "remaining_time": "11:45:00"} +{"current_steps": 1223, "total_steps": 5472, "loss": 0.5956, "accuracy": 0.625, "learning_rate": 4.771724940054671e-07, "epoch": 0.8935159817351598, "percentage": 22.35, "elapsed_time": "3:22:51", "remaining_time": "11:44:46"} +{"current_steps": 1224, "total_steps": 5472, "loss": 0.3334, "accuracy": 0.875, "learning_rate": 4.771058593450804e-07, "epoch": 0.8942465753424658, "percentage": 22.37, "elapsed_time": "3:23:00", "remaining_time": "11:44:34"} +{"current_steps": 1225, "total_steps": 5472, "loss": 0.4465, "accuracy": 0.75, "learning_rate": 4.770391322378727e-07, "epoch": 0.8949771689497716, "percentage": 22.39, "elapsed_time": "3:23:10", "remaining_time": "11:44:25"} +{"current_steps": 1226, "total_steps": 5472, "loss": 0.3345, "accuracy": 0.875, "learning_rate": 4.769723127110063e-07, "epoch": 0.8957077625570776, "percentage": 22.4, "elapsed_time": "3:23:22", "remaining_time": "11:44:19"} +{"current_steps": 1227, "total_steps": 5472, "loss": 0.5138, "accuracy": 0.75, "learning_rate": 4.769054007916811e-07, "epoch": 0.8964383561643836, "percentage": 22.42, "elapsed_time": "3:23:31", "remaining_time": "11:44:06"} +{"current_steps": 1228, "total_steps": 5472, "loss": 0.4624, "accuracy": 0.875, "learning_rate": 4.768383965071346e-07, "epoch": 0.8971689497716895, "percentage": 22.44, "elapsed_time": "3:23:41", "remaining_time": "11:43:56"} +{"current_steps": 1229, "total_steps": 5472, "loss": 0.2426, "accuracy": 0.75, "learning_rate": 4.767712998846419e-07, "epoch": 0.8978995433789955, "percentage": 22.46, "elapsed_time": "3:23:50", "remaining_time": "11:43:43"} +{"current_steps": 1230, "total_steps": 5472, "loss": 0.3635, "accuracy": 0.625, "learning_rate": 4.767041109515156e-07, "epoch": 0.8986301369863013, "percentage": 22.48, "elapsed_time": "3:23:59", "remaining_time": "11:43:31"} +{"current_steps": 1231, "total_steps": 5472, "loss": 0.5164, "accuracy": 1.0, "learning_rate": 4.76636829735106e-07, "epoch": 0.8993607305936073, "percentage": 22.5, "elapsed_time": "3:24:09", "remaining_time": "11:43:22"} +{"current_steps": 1232, "total_steps": 5472, "loss": 0.429, "accuracy": 0.75, "learning_rate": 4.76569456262801e-07, "epoch": 0.9000913242009132, "percentage": 22.51, "elapsed_time": "3:24:20", "remaining_time": "11:43:16"} +{"current_steps": 1233, "total_steps": 5472, "loss": 0.2609, "accuracy": 1.0, "learning_rate": 4.7650199056202577e-07, "epoch": 0.9008219178082192, "percentage": 22.53, "elapsed_time": "3:24:31", "remaining_time": "11:43:10"} +{"current_steps": 1234, "total_steps": 5472, "loss": 0.3482, "accuracy": 0.875, "learning_rate": 4.764344326602435e-07, "epoch": 0.9015525114155251, "percentage": 22.55, "elapsed_time": "3:24:41", "remaining_time": "11:43:00"} +{"current_steps": 1235, "total_steps": 5472, "loss": 0.3179, "accuracy": 0.875, "learning_rate": 4.7636678258495444e-07, "epoch": 0.902283105022831, "percentage": 22.57, "elapsed_time": "3:24:51", "remaining_time": "11:42:48"} +{"current_steps": 1236, "total_steps": 5472, "loss": 0.3961, "accuracy": 0.75, "learning_rate": 4.7629904036369663e-07, "epoch": 0.903013698630137, "percentage": 22.59, "elapsed_time": "3:25:01", "remaining_time": "11:42:40"} +{"current_steps": 1237, "total_steps": 5472, "loss": 0.3817, "accuracy": 1.0, "learning_rate": 4.7623120602404547e-07, "epoch": 0.9037442922374429, "percentage": 22.61, "elapsed_time": "3:25:11", "remaining_time": "11:42:30"} +{"current_steps": 1238, "total_steps": 5472, "loss": 0.3571, "accuracy": 0.75, "learning_rate": 4.761632795936141e-07, "epoch": 0.9044748858447489, "percentage": 22.62, "elapsed_time": "3:25:21", "remaining_time": "11:42:18"} +{"current_steps": 1239, "total_steps": 5472, "loss": 0.4627, "accuracy": 0.75, "learning_rate": 4.7609526110005285e-07, "epoch": 0.9052054794520548, "percentage": 22.64, "elapsed_time": "3:25:30", "remaining_time": "11:42:06"} +{"current_steps": 1240, "total_steps": 5472, "loss": 0.5385, "accuracy": 0.875, "learning_rate": 4.760271505710497e-07, "epoch": 0.9059360730593607, "percentage": 22.66, "elapsed_time": "3:25:41", "remaining_time": "11:42:01"} +{"current_steps": 1241, "total_steps": 5472, "loss": 0.3981, "accuracy": 0.625, "learning_rate": 4.7595894803433006e-07, "epoch": 0.9066666666666666, "percentage": 22.68, "elapsed_time": "3:25:51", "remaining_time": "11:41:52"} +{"current_steps": 1242, "total_steps": 5472, "loss": 0.3381, "accuracy": 0.875, "learning_rate": 4.7589065351765677e-07, "epoch": 0.9073972602739726, "percentage": 22.7, "elapsed_time": "3:26:01", "remaining_time": "11:41:39"} +{"current_steps": 1243, "total_steps": 5472, "loss": 0.4251, "accuracy": 0.875, "learning_rate": 4.7582226704883023e-07, "epoch": 0.9081278538812786, "percentage": 22.72, "elapsed_time": "3:26:10", "remaining_time": "11:41:28"} +{"current_steps": 1244, "total_steps": 5472, "loss": 0.4931, "accuracy": 0.625, "learning_rate": 4.757537886556879e-07, "epoch": 0.9088584474885845, "percentage": 22.73, "elapsed_time": "3:26:20", "remaining_time": "11:41:17"} +{"current_steps": 1245, "total_steps": 5472, "loss": 0.4054, "accuracy": 0.875, "learning_rate": 4.7568521836610533e-07, "epoch": 0.9095890410958904, "percentage": 22.75, "elapsed_time": "3:26:29", "remaining_time": "11:41:05"} +{"current_steps": 1246, "total_steps": 5472, "loss": 0.3691, "accuracy": 0.75, "learning_rate": 4.7561655620799473e-07, "epoch": 0.9103196347031963, "percentage": 22.77, "elapsed_time": "3:26:38", "remaining_time": "11:40:51"} +{"current_steps": 1247, "total_steps": 5472, "loss": 0.489, "accuracy": 0.875, "learning_rate": 4.7554780220930625e-07, "epoch": 0.9110502283105023, "percentage": 22.79, "elapsed_time": "3:26:48", "remaining_time": "11:40:40"} +{"current_steps": 1248, "total_steps": 5472, "loss": 0.3252, "accuracy": 1.0, "learning_rate": 4.7547895639802707e-07, "epoch": 0.9117808219178082, "percentage": 22.81, "elapsed_time": "3:26:57", "remaining_time": "11:40:27"} +{"current_steps": 1249, "total_steps": 5472, "loss": 0.4256, "accuracy": 0.75, "learning_rate": 4.7541001880218213e-07, "epoch": 0.9125114155251142, "percentage": 22.83, "elapsed_time": "3:27:06", "remaining_time": "11:40:16"} +{"current_steps": 1250, "total_steps": 5472, "loss": 0.3909, "accuracy": 0.5, "learning_rate": 4.7534098944983327e-07, "epoch": 0.91324200913242, "percentage": 22.84, "elapsed_time": "3:27:16", "remaining_time": "11:40:05"} +{"current_steps": 1251, "total_steps": 5472, "loss": 0.2643, "accuracy": 1.0, "learning_rate": 4.7527186836908e-07, "epoch": 0.913972602739726, "percentage": 22.86, "elapsed_time": "3:27:25", "remaining_time": "11:39:52"} +{"current_steps": 1252, "total_steps": 5472, "loss": 0.5859, "accuracy": 0.875, "learning_rate": 4.7520265558805915e-07, "epoch": 0.914703196347032, "percentage": 22.88, "elapsed_time": "3:27:34", "remaining_time": "11:39:40"} +{"current_steps": 1253, "total_steps": 5472, "loss": 0.495, "accuracy": 0.75, "learning_rate": 4.751333511349448e-07, "epoch": 0.9154337899543379, "percentage": 22.9, "elapsed_time": "3:27:44", "remaining_time": "11:39:30"} +{"current_steps": 1254, "total_steps": 5472, "loss": 0.375, "accuracy": 0.875, "learning_rate": 4.7506395503794826e-07, "epoch": 0.9161643835616439, "percentage": 22.92, "elapsed_time": "3:27:54", "remaining_time": "11:39:20"} +{"current_steps": 1255, "total_steps": 5472, "loss": 0.3279, "accuracy": 0.75, "learning_rate": 4.7499446732531835e-07, "epoch": 0.9168949771689497, "percentage": 22.93, "elapsed_time": "3:28:04", "remaining_time": "11:39:09"} +{"current_steps": 1256, "total_steps": 5472, "loss": 0.4653, "accuracy": 0.875, "learning_rate": 4.7492488802534097e-07, "epoch": 0.9176255707762557, "percentage": 22.95, "elapsed_time": "3:28:13", "remaining_time": "11:38:56"} +{"current_steps": 1257, "total_steps": 5472, "loss": 0.5679, "accuracy": 0.875, "learning_rate": 4.748552171663395e-07, "epoch": 0.9183561643835616, "percentage": 22.97, "elapsed_time": "3:28:23", "remaining_time": "11:38:47"} +{"current_steps": 1258, "total_steps": 5472, "loss": 0.2993, "accuracy": 1.0, "learning_rate": 4.7478545477667453e-07, "epoch": 0.9190867579908676, "percentage": 22.99, "elapsed_time": "3:28:33", "remaining_time": "11:38:37"} +{"current_steps": 1259, "total_steps": 5472, "loss": 0.2409, "accuracy": 0.875, "learning_rate": 4.747156008847438e-07, "epoch": 0.9198173515981735, "percentage": 23.01, "elapsed_time": "3:28:43", "remaining_time": "11:38:26"} +{"current_steps": 1260, "total_steps": 5472, "loss": 0.2847, "accuracy": 0.625, "learning_rate": 4.746456555189824e-07, "epoch": 0.9205479452054794, "percentage": 23.03, "elapsed_time": "3:28:52", "remaining_time": "11:38:13"} +{"current_steps": 1261, "total_steps": 5472, "loss": 0.3332, "accuracy": 1.0, "learning_rate": 4.7457561870786257e-07, "epoch": 0.9212785388127854, "percentage": 23.04, "elapsed_time": "3:29:01", "remaining_time": "11:38:00"} +{"current_steps": 1262, "total_steps": 5472, "loss": 0.3766, "accuracy": 1.0, "learning_rate": 4.7450549047989396e-07, "epoch": 0.9220091324200913, "percentage": 23.06, "elapsed_time": "3:29:10", "remaining_time": "11:37:48"} +{"current_steps": 1263, "total_steps": 5472, "loss": 0.5492, "accuracy": 0.625, "learning_rate": 4.7443527086362325e-07, "epoch": 0.9227397260273973, "percentage": 23.08, "elapsed_time": "3:29:20", "remaining_time": "11:37:38"} +{"current_steps": 1264, "total_steps": 5472, "loss": 0.7275, "accuracy": 0.625, "learning_rate": 4.7436495988763437e-07, "epoch": 0.9234703196347032, "percentage": 23.1, "elapsed_time": "3:29:31", "remaining_time": "11:37:32"} +{"current_steps": 1265, "total_steps": 5472, "loss": 0.3536, "accuracy": 0.75, "learning_rate": 4.742945575805485e-07, "epoch": 0.9242009132420091, "percentage": 23.12, "elapsed_time": "3:29:41", "remaining_time": "11:37:22"} +{"current_steps": 1266, "total_steps": 5472, "loss": 0.3218, "accuracy": 0.875, "learning_rate": 4.742240639710239e-07, "epoch": 0.924931506849315, "percentage": 23.14, "elapsed_time": "3:29:50", "remaining_time": "11:37:07"} +{"current_steps": 1267, "total_steps": 5472, "loss": 0.3208, "accuracy": 1.0, "learning_rate": 4.741534790877559e-07, "epoch": 0.925662100456621, "percentage": 23.15, "elapsed_time": "3:29:59", "remaining_time": "11:36:55"} +{"current_steps": 1268, "total_steps": 5472, "loss": 0.2981, "accuracy": 1.0, "learning_rate": 4.7408280295947744e-07, "epoch": 0.926392694063927, "percentage": 23.17, "elapsed_time": "3:30:08", "remaining_time": "11:36:42"} +{"current_steps": 1269, "total_steps": 5472, "loss": 0.4439, "accuracy": 0.875, "learning_rate": 4.740120356149581e-07, "epoch": 0.9271232876712329, "percentage": 23.19, "elapsed_time": "3:30:19", "remaining_time": "11:36:35"} +{"current_steps": 1270, "total_steps": 5472, "loss": 0.4871, "accuracy": 0.75, "learning_rate": 4.739411770830048e-07, "epoch": 0.9278538812785389, "percentage": 23.21, "elapsed_time": "3:30:28", "remaining_time": "11:36:22"} +{"current_steps": 1271, "total_steps": 5472, "loss": 0.3326, "accuracy": 0.875, "learning_rate": 4.738702273924615e-07, "epoch": 0.9285844748858447, "percentage": 23.23, "elapsed_time": "3:30:37", "remaining_time": "11:36:10"} +{"current_steps": 1272, "total_steps": 5472, "loss": 0.4282, "accuracy": 1.0, "learning_rate": 4.7379918657220954e-07, "epoch": 0.9293150684931507, "percentage": 23.25, "elapsed_time": "3:30:47", "remaining_time": "11:35:59"} +{"current_steps": 1273, "total_steps": 5472, "loss": 0.4795, "accuracy": 0.75, "learning_rate": 4.737280546511669e-07, "epoch": 0.9300456621004566, "percentage": 23.26, "elapsed_time": "3:30:56", "remaining_time": "11:35:49"} +{"current_steps": 1274, "total_steps": 5472, "loss": 0.353, "accuracy": 1.0, "learning_rate": 4.73656831658289e-07, "epoch": 0.9307762557077626, "percentage": 23.28, "elapsed_time": "3:31:06", "remaining_time": "11:35:39"} +{"current_steps": 1275, "total_steps": 5472, "loss": 0.4084, "accuracy": 1.0, "learning_rate": 4.735855176225682e-07, "epoch": 0.9315068493150684, "percentage": 23.3, "elapsed_time": "3:31:18", "remaining_time": "11:35:34"} +{"current_steps": 1276, "total_steps": 5472, "loss": 0.3887, "accuracy": 0.875, "learning_rate": 4.73514112573034e-07, "epoch": 0.9322374429223744, "percentage": 23.32, "elapsed_time": "3:31:32", "remaining_time": "11:35:39"} +{"current_steps": 1277, "total_steps": 5472, "loss": 0.294, "accuracy": 0.75, "learning_rate": 4.734426165387527e-07, "epoch": 0.9329680365296804, "percentage": 23.34, "elapsed_time": "3:31:42", "remaining_time": "11:35:27"} +{"current_steps": 1278, "total_steps": 5472, "loss": 0.2588, "accuracy": 0.875, "learning_rate": 4.7337102954882815e-07, "epoch": 0.9336986301369863, "percentage": 23.36, "elapsed_time": "3:31:53", "remaining_time": "11:35:21"} +{"current_steps": 1279, "total_steps": 5472, "loss": 0.2603, "accuracy": 0.875, "learning_rate": 4.7329935163240053e-07, "epoch": 0.9344292237442923, "percentage": 23.37, "elapsed_time": "3:32:04", "remaining_time": "11:35:14"} +{"current_steps": 1280, "total_steps": 5472, "loss": 0.4611, "accuracy": 0.875, "learning_rate": 4.7322758281864773e-07, "epoch": 0.9351598173515981, "percentage": 23.39, "elapsed_time": "3:32:13", "remaining_time": "11:35:03"} +{"current_steps": 1281, "total_steps": 5472, "loss": 0.3371, "accuracy": 0.875, "learning_rate": 4.731557231367841e-07, "epoch": 0.9358904109589041, "percentage": 23.41, "elapsed_time": "3:32:23", "remaining_time": "11:34:53"} +{"current_steps": 1282, "total_steps": 5472, "loss": 0.3007, "accuracy": 1.0, "learning_rate": 4.7308377261606127e-07, "epoch": 0.93662100456621, "percentage": 23.43, "elapsed_time": "3:32:33", "remaining_time": "11:34:42"} +{"current_steps": 1283, "total_steps": 5472, "loss": 0.4258, "accuracy": 0.75, "learning_rate": 4.7301173128576774e-07, "epoch": 0.937351598173516, "percentage": 23.45, "elapsed_time": "3:32:43", "remaining_time": "11:34:33"} +{"current_steps": 1284, "total_steps": 5472, "loss": 0.4405, "accuracy": 0.75, "learning_rate": 4.7293959917522907e-07, "epoch": 0.938082191780822, "percentage": 23.46, "elapsed_time": "3:32:53", "remaining_time": "11:34:22"} +{"current_steps": 1285, "total_steps": 5472, "loss": 0.454, "accuracy": 0.875, "learning_rate": 4.7286737631380764e-07, "epoch": 0.9388127853881278, "percentage": 23.48, "elapsed_time": "3:33:02", "remaining_time": "11:34:08"} +{"current_steps": 1286, "total_steps": 5472, "loss": 0.4262, "accuracy": 0.875, "learning_rate": 4.7279506273090286e-07, "epoch": 0.9395433789954338, "percentage": 23.5, "elapsed_time": "3:33:13", "remaining_time": "11:34:03"} +{"current_steps": 1287, "total_steps": 5472, "loss": 0.3049, "accuracy": 0.875, "learning_rate": 4.7272265845595103e-07, "epoch": 0.9402739726027397, "percentage": 23.52, "elapsed_time": "3:33:23", "remaining_time": "11:33:53"} +{"current_steps": 1288, "total_steps": 5472, "loss": 0.3673, "accuracy": 0.625, "learning_rate": 4.7265016351842545e-07, "epoch": 0.9410045662100457, "percentage": 23.54, "elapsed_time": "3:33:32", "remaining_time": "11:33:42"} +{"current_steps": 1289, "total_steps": 5472, "loss": 0.4509, "accuracy": 0.625, "learning_rate": 4.7257757794783623e-07, "epoch": 0.9417351598173516, "percentage": 23.56, "elapsed_time": "3:33:44", "remaining_time": "11:33:36"} +{"current_steps": 1290, "total_steps": 5472, "loss": 0.4482, "accuracy": 0.875, "learning_rate": 4.725049017737304e-07, "epoch": 0.9424657534246575, "percentage": 23.57, "elapsed_time": "3:33:54", "remaining_time": "11:33:26"} +{"current_steps": 1291, "total_steps": 5472, "loss": 0.3817, "accuracy": 0.875, "learning_rate": 4.724321350256919e-07, "epoch": 0.9431963470319634, "percentage": 23.59, "elapsed_time": "3:34:02", "remaining_time": "11:33:12"} +{"current_steps": 1292, "total_steps": 5472, "loss": 0.4454, "accuracy": 0.25, "learning_rate": 4.723592777333415e-07, "epoch": 0.9439269406392694, "percentage": 23.61, "elapsed_time": "3:34:12", "remaining_time": "11:33:01"} +{"current_steps": 1293, "total_steps": 5472, "loss": 0.3018, "accuracy": 0.625, "learning_rate": 4.7228632992633686e-07, "epoch": 0.9446575342465754, "percentage": 23.63, "elapsed_time": "3:34:22", "remaining_time": "11:32:50"} +{"current_steps": 1294, "total_steps": 5472, "loss": 0.3622, "accuracy": 0.875, "learning_rate": 4.7221329163437245e-07, "epoch": 0.9453881278538813, "percentage": 23.65, "elapsed_time": "3:34:32", "remaining_time": "11:32:41"} +{"current_steps": 1295, "total_steps": 5472, "loss": 0.3107, "accuracy": 0.75, "learning_rate": 4.721401628871796e-07, "epoch": 0.9461187214611873, "percentage": 23.67, "elapsed_time": "3:34:41", "remaining_time": "11:32:29"} +{"current_steps": 1296, "total_steps": 5472, "loss": 0.4038, "accuracy": 1.0, "learning_rate": 4.720669437145265e-07, "epoch": 0.9468493150684931, "percentage": 23.68, "elapsed_time": "3:34:51", "remaining_time": "11:32:20"} +{"current_steps": 1297, "total_steps": 5472, "loss": 0.4037, "accuracy": 0.625, "learning_rate": 4.7199363414621793e-07, "epoch": 0.9475799086757991, "percentage": 23.7, "elapsed_time": "3:35:01", "remaining_time": "11:32:08"} +{"current_steps": 1298, "total_steps": 5472, "loss": 0.3517, "accuracy": 0.625, "learning_rate": 4.7192023421209595e-07, "epoch": 0.948310502283105, "percentage": 23.72, "elapsed_time": "3:35:10", "remaining_time": "11:31:57"} +{"current_steps": 1299, "total_steps": 5472, "loss": 0.4357, "accuracy": 0.875, "learning_rate": 4.7184674394203883e-07, "epoch": 0.949041095890411, "percentage": 23.74, "elapsed_time": "3:35:19", "remaining_time": "11:31:43"} +{"current_steps": 1300, "total_steps": 5472, "loss": 0.4645, "accuracy": 0.75, "learning_rate": 4.7177316336596194e-07, "epoch": 0.9497716894977168, "percentage": 23.76, "elapsed_time": "3:35:29", "remaining_time": "11:31:32"} +{"current_steps": 1301, "total_steps": 5472, "loss": 0.348, "accuracy": 0.75, "learning_rate": 4.7169949251381736e-07, "epoch": 0.9505022831050228, "percentage": 23.78, "elapsed_time": "3:35:40", "remaining_time": "11:31:27"} +{"current_steps": 1302, "total_steps": 5472, "loss": 0.357, "accuracy": 0.75, "learning_rate": 4.7162573141559404e-07, "epoch": 0.9512328767123288, "percentage": 23.79, "elapsed_time": "3:35:50", "remaining_time": "11:31:16"} +{"current_steps": 1303, "total_steps": 5472, "loss": 0.1858, "accuracy": 0.625, "learning_rate": 4.715518801013173e-07, "epoch": 0.9519634703196347, "percentage": 23.81, "elapsed_time": "3:35:59", "remaining_time": "11:31:04"} +{"current_steps": 1304, "total_steps": 5472, "loss": 0.3897, "accuracy": 0.75, "learning_rate": 4.714779386010496e-07, "epoch": 0.9526940639269407, "percentage": 23.83, "elapsed_time": "3:36:11", "remaining_time": "11:31:02"} +{"current_steps": 1305, "total_steps": 5472, "loss": 0.4794, "accuracy": 0.75, "learning_rate": 4.7140390694488985e-07, "epoch": 0.9534246575342465, "percentage": 23.85, "elapsed_time": "3:36:22", "remaining_time": "11:30:53"} +{"current_steps": 1306, "total_steps": 5472, "loss": 0.3127, "accuracy": 0.75, "learning_rate": 4.7132978516297373e-07, "epoch": 0.9541552511415525, "percentage": 23.87, "elapsed_time": "3:36:31", "remaining_time": "11:30:41"} +{"current_steps": 1307, "total_steps": 5472, "loss": 0.3802, "accuracy": 0.75, "learning_rate": 4.712555732854737e-07, "epoch": 0.9548858447488584, "percentage": 23.89, "elapsed_time": "3:36:40", "remaining_time": "11:30:28"} +{"current_steps": 1308, "total_steps": 5472, "loss": 0.4081, "accuracy": 0.5, "learning_rate": 4.7118127134259864e-07, "epoch": 0.9556164383561644, "percentage": 23.9, "elapsed_time": "3:36:51", "remaining_time": "11:30:20"} +{"current_steps": 1309, "total_steps": 5472, "loss": 0.2796, "accuracy": 1.0, "learning_rate": 4.711068793645945e-07, "epoch": 0.9563470319634704, "percentage": 23.92, "elapsed_time": "3:36:59", "remaining_time": "11:30:06"} +{"current_steps": 1310, "total_steps": 5472, "loss": 0.4824, "accuracy": 0.625, "learning_rate": 4.7103239738174337e-07, "epoch": 0.9570776255707762, "percentage": 23.94, "elapsed_time": "3:37:09", "remaining_time": "11:29:57"} +{"current_steps": 1311, "total_steps": 5472, "loss": 0.2854, "accuracy": 0.875, "learning_rate": 4.709578254243645e-07, "epoch": 0.9578082191780822, "percentage": 23.96, "elapsed_time": "3:37:19", "remaining_time": "11:29:46"} +{"current_steps": 1312, "total_steps": 5472, "loss": 0.4987, "accuracy": 0.75, "learning_rate": 4.7088316352281333e-07, "epoch": 0.9585388127853881, "percentage": 23.98, "elapsed_time": "3:37:31", "remaining_time": "11:29:41"} +{"current_steps": 1313, "total_steps": 5472, "loss": 0.1975, "accuracy": 1.0, "learning_rate": 4.708084117074822e-07, "epoch": 0.9592694063926941, "percentage": 23.99, "elapsed_time": "3:37:40", "remaining_time": "11:29:28"} +{"current_steps": 1314, "total_steps": 5472, "loss": 0.3748, "accuracy": 0.75, "learning_rate": 4.7073357000879994e-07, "epoch": 0.96, "percentage": 24.01, "elapsed_time": "3:37:50", "remaining_time": "11:29:19"} +{"current_steps": 1315, "total_steps": 5472, "loss": 0.3492, "accuracy": 0.875, "learning_rate": 4.70658638457232e-07, "epoch": 0.960730593607306, "percentage": 24.03, "elapsed_time": "3:37:59", "remaining_time": "11:29:08"} +{"current_steps": 1316, "total_steps": 5472, "loss": 0.5712, "accuracy": 0.875, "learning_rate": 4.705836170832802e-07, "epoch": 0.9614611872146118, "percentage": 24.05, "elapsed_time": "3:38:09", "remaining_time": "11:28:57"} +{"current_steps": 1317, "total_steps": 5472, "loss": 0.2325, "accuracy": 0.875, "learning_rate": 4.7050850591748335e-07, "epoch": 0.9621917808219178, "percentage": 24.07, "elapsed_time": "3:38:19", "remaining_time": "11:28:46"} +{"current_steps": 1318, "total_steps": 5472, "loss": 0.4686, "accuracy": 0.75, "learning_rate": 4.7043330499041644e-07, "epoch": 0.9629223744292238, "percentage": 24.09, "elapsed_time": "3:38:29", "remaining_time": "11:28:36"} +{"current_steps": 1319, "total_steps": 5472, "loss": 0.3278, "accuracy": 1.0, "learning_rate": 4.703580143326912e-07, "epoch": 0.9636529680365297, "percentage": 24.1, "elapsed_time": "3:38:39", "remaining_time": "11:28:27"} +{"current_steps": 1320, "total_steps": 5472, "loss": 0.2367, "accuracy": 0.875, "learning_rate": 4.7028263397495575e-07, "epoch": 0.9643835616438357, "percentage": 24.12, "elapsed_time": "3:38:49", "remaining_time": "11:28:18"} +{"current_steps": 1321, "total_steps": 5472, "loss": 0.3359, "accuracy": 0.875, "learning_rate": 4.7020716394789483e-07, "epoch": 0.9651141552511415, "percentage": 24.14, "elapsed_time": "3:38:59", "remaining_time": "11:28:07"} +{"current_steps": 1322, "total_steps": 5472, "loss": 0.2633, "accuracy": 0.875, "learning_rate": 4.701316042822295e-07, "epoch": 0.9658447488584475, "percentage": 24.16, "elapsed_time": "3:39:08", "remaining_time": "11:27:56"} +{"current_steps": 1323, "total_steps": 5472, "loss": 0.301, "accuracy": 0.75, "learning_rate": 4.700559550087177e-07, "epoch": 0.9665753424657534, "percentage": 24.18, "elapsed_time": "3:39:18", "remaining_time": "11:27:47"} +{"current_steps": 1324, "total_steps": 5472, "loss": 0.4055, "accuracy": 1.0, "learning_rate": 4.699802161581534e-07, "epoch": 0.9673059360730594, "percentage": 24.2, "elapsed_time": "3:39:29", "remaining_time": "11:27:39"} +{"current_steps": 1325, "total_steps": 5472, "loss": 0.4264, "accuracy": 0.75, "learning_rate": 4.6990438776136724e-07, "epoch": 0.9680365296803652, "percentage": 24.21, "elapsed_time": "3:39:40", "remaining_time": "11:27:31"} +{"current_steps": 1326, "total_steps": 5472, "loss": 0.3002, "accuracy": 0.625, "learning_rate": 4.698284698492264e-07, "epoch": 0.9687671232876712, "percentage": 24.23, "elapsed_time": "3:39:49", "remaining_time": "11:27:20"} +{"current_steps": 1327, "total_steps": 5472, "loss": 0.3052, "accuracy": 0.875, "learning_rate": 4.6975246245263426e-07, "epoch": 0.9694977168949772, "percentage": 24.25, "elapsed_time": "3:39:58", "remaining_time": "11:27:08"} +{"current_steps": 1328, "total_steps": 5472, "loss": 0.3505, "accuracy": 1.0, "learning_rate": 4.6967636560253086e-07, "epoch": 0.9702283105022831, "percentage": 24.27, "elapsed_time": "3:40:09", "remaining_time": "11:26:58"} +{"current_steps": 1329, "total_steps": 5472, "loss": 0.397, "accuracy": 0.75, "learning_rate": 4.696001793298926e-07, "epoch": 0.9709589041095891, "percentage": 24.29, "elapsed_time": "3:40:17", "remaining_time": "11:26:45"} +{"current_steps": 1330, "total_steps": 5472, "loss": 0.3194, "accuracy": 1.0, "learning_rate": 4.695239036657321e-07, "epoch": 0.971689497716895, "percentage": 24.31, "elapsed_time": "3:40:27", "remaining_time": "11:26:32"} +{"current_steps": 1331, "total_steps": 5472, "loss": 0.395, "accuracy": 0.875, "learning_rate": 4.6944753864109867e-07, "epoch": 0.9724200913242009, "percentage": 24.32, "elapsed_time": "3:40:37", "remaining_time": "11:26:25"} +{"current_steps": 1332, "total_steps": 5472, "loss": 0.4361, "accuracy": 0.625, "learning_rate": 4.693710842870776e-07, "epoch": 0.9731506849315068, "percentage": 24.34, "elapsed_time": "3:40:48", "remaining_time": "11:26:17"} +{"current_steps": 1333, "total_steps": 5472, "loss": 0.4022, "accuracy": 0.625, "learning_rate": 4.69294540634791e-07, "epoch": 0.9738812785388128, "percentage": 24.36, "elapsed_time": "3:40:58", "remaining_time": "11:26:08"} +{"current_steps": 1334, "total_steps": 5472, "loss": 0.2265, "accuracy": 0.875, "learning_rate": 4.6921790771539693e-07, "epoch": 0.9746118721461188, "percentage": 24.38, "elapsed_time": "3:41:10", "remaining_time": "11:26:03"} +{"current_steps": 1335, "total_steps": 5472, "loss": 0.4632, "accuracy": 0.75, "learning_rate": 4.691411855600901e-07, "epoch": 0.9753424657534246, "percentage": 24.4, "elapsed_time": "3:41:19", "remaining_time": "11:25:52"} +{"current_steps": 1336, "total_steps": 5472, "loss": 0.3716, "accuracy": 0.875, "learning_rate": 4.6906437420010135e-07, "epoch": 0.9760730593607306, "percentage": 24.42, "elapsed_time": "3:41:28", "remaining_time": "11:25:38"} +{"current_steps": 1337, "total_steps": 5472, "loss": 0.3991, "accuracy": 0.875, "learning_rate": 4.6898747366669784e-07, "epoch": 0.9768036529680365, "percentage": 24.43, "elapsed_time": "3:41:38", "remaining_time": "11:25:28"} +{"current_steps": 1338, "total_steps": 5472, "loss": 0.4646, "accuracy": 0.625, "learning_rate": 4.6891048399118317e-07, "epoch": 0.9775342465753425, "percentage": 24.45, "elapsed_time": "3:41:48", "remaining_time": "11:25:18"} +{"current_steps": 1339, "total_steps": 5472, "loss": 0.3705, "accuracy": 0.875, "learning_rate": 4.68833405204897e-07, "epoch": 0.9782648401826484, "percentage": 24.47, "elapsed_time": "3:41:57", "remaining_time": "11:25:06"} +{"current_steps": 1340, "total_steps": 5472, "loss": 0.2306, "accuracy": 0.875, "learning_rate": 4.6875623733921555e-07, "epoch": 0.9789954337899544, "percentage": 24.49, "elapsed_time": "3:42:06", "remaining_time": "11:24:53"} +{"current_steps": 1341, "total_steps": 5472, "loss": 0.3908, "accuracy": 0.75, "learning_rate": 4.686789804255511e-07, "epoch": 0.9797260273972602, "percentage": 24.51, "elapsed_time": "3:42:17", "remaining_time": "11:24:46"} +{"current_steps": 1342, "total_steps": 5472, "loss": 0.3036, "accuracy": 1.0, "learning_rate": 4.6860163449535217e-07, "epoch": 0.9804566210045662, "percentage": 24.52, "elapsed_time": "3:42:27", "remaining_time": "11:24:35"} +{"current_steps": 1343, "total_steps": 5472, "loss": 0.3932, "accuracy": 0.875, "learning_rate": 4.685241995801036e-07, "epoch": 0.9811872146118722, "percentage": 24.54, "elapsed_time": "3:42:36", "remaining_time": "11:24:24"} +{"current_steps": 1344, "total_steps": 5472, "loss": 0.3583, "accuracy": 0.625, "learning_rate": 4.6844667571132646e-07, "epoch": 0.9819178082191781, "percentage": 24.56, "elapsed_time": "3:42:47", "remaining_time": "11:24:17"} +{"current_steps": 1345, "total_steps": 5472, "loss": 0.3198, "accuracy": 0.875, "learning_rate": 4.683690629205779e-07, "epoch": 0.982648401826484, "percentage": 24.58, "elapsed_time": "3:42:56", "remaining_time": "11:24:05"} +{"current_steps": 1346, "total_steps": 5472, "loss": 0.3433, "accuracy": 0.75, "learning_rate": 4.6829136123945143e-07, "epoch": 0.9833789954337899, "percentage": 24.6, "elapsed_time": "3:43:06", "remaining_time": "11:23:53"} +{"current_steps": 1347, "total_steps": 5472, "loss": 0.3606, "accuracy": 0.875, "learning_rate": 4.682135706995768e-07, "epoch": 0.9841095890410959, "percentage": 24.62, "elapsed_time": "3:43:16", "remaining_time": "11:23:44"} +{"current_steps": 1348, "total_steps": 5472, "loss": 0.3496, "accuracy": 0.875, "learning_rate": 4.681356913326196e-07, "epoch": 0.9848401826484018, "percentage": 24.63, "elapsed_time": "3:43:24", "remaining_time": "11:23:30"} +{"current_steps": 1349, "total_steps": 5472, "loss": 0.2614, "accuracy": 0.875, "learning_rate": 4.680577231702819e-07, "epoch": 0.9855707762557078, "percentage": 24.65, "elapsed_time": "3:43:35", "remaining_time": "11:23:23"} +{"current_steps": 1350, "total_steps": 5472, "loss": 0.4096, "accuracy": 0.75, "learning_rate": 4.6797966624430176e-07, "epoch": 0.9863013698630136, "percentage": 24.67, "elapsed_time": "3:43:45", "remaining_time": "11:23:11"} +{"current_steps": 1351, "total_steps": 5472, "loss": 0.2969, "accuracy": 0.875, "learning_rate": 4.679015205864534e-07, "epoch": 0.9870319634703196, "percentage": 24.69, "elapsed_time": "3:43:54", "remaining_time": "11:22:59"} +{"current_steps": 1352, "total_steps": 5472, "loss": 0.3634, "accuracy": 1.0, "learning_rate": 4.6782328622854714e-07, "epoch": 0.9877625570776256, "percentage": 24.71, "elapsed_time": "3:44:03", "remaining_time": "11:22:46"} +{"current_steps": 1353, "total_steps": 5472, "loss": 0.3451, "accuracy": 0.875, "learning_rate": 4.6774496320242963e-07, "epoch": 0.9884931506849315, "percentage": 24.73, "elapsed_time": "3:44:13", "remaining_time": "11:22:37"} +{"current_steps": 1354, "total_steps": 5472, "loss": 0.3045, "accuracy": 0.875, "learning_rate": 4.6766655153998323e-07, "epoch": 0.9892237442922375, "percentage": 24.74, "elapsed_time": "3:44:24", "remaining_time": "11:22:30"} +{"current_steps": 1355, "total_steps": 5472, "loss": 0.3915, "accuracy": 0.625, "learning_rate": 4.675880512731266e-07, "epoch": 0.9899543378995433, "percentage": 24.76, "elapsed_time": "3:44:33", "remaining_time": "11:22:17"} +{"current_steps": 1356, "total_steps": 5472, "loss": 0.354, "accuracy": 0.875, "learning_rate": 4.675094624338146e-07, "epoch": 0.9906849315068493, "percentage": 24.78, "elapsed_time": "3:44:43", "remaining_time": "11:22:06"} +{"current_steps": 1357, "total_steps": 5472, "loss": 0.4496, "accuracy": 0.625, "learning_rate": 4.674307850540378e-07, "epoch": 0.9914155251141552, "percentage": 24.8, "elapsed_time": "3:44:53", "remaining_time": "11:21:56"} +{"current_steps": 1358, "total_steps": 5472, "loss": 0.3448, "accuracy": 0.875, "learning_rate": 4.67352019165823e-07, "epoch": 0.9921461187214612, "percentage": 24.82, "elapsed_time": "3:45:02", "remaining_time": "11:21:44"} +{"current_steps": 1359, "total_steps": 5472, "loss": 0.4076, "accuracy": 0.875, "learning_rate": 4.6727316480123315e-07, "epoch": 0.9928767123287672, "percentage": 24.84, "elapsed_time": "3:45:13", "remaining_time": "11:21:37"} +{"current_steps": 1360, "total_steps": 5472, "loss": 0.3532, "accuracy": 0.875, "learning_rate": 4.67194221992367e-07, "epoch": 0.993607305936073, "percentage": 24.85, "elapsed_time": "3:45:22", "remaining_time": "11:21:25"} +{"current_steps": 1361, "total_steps": 5472, "loss": 0.2665, "accuracy": 0.75, "learning_rate": 4.6711519077135943e-07, "epoch": 0.994337899543379, "percentage": 24.87, "elapsed_time": "3:45:31", "remaining_time": "11:21:14"} +{"current_steps": 1362, "total_steps": 5472, "loss": 0.2979, "accuracy": 1.0, "learning_rate": 4.6703607117038133e-07, "epoch": 0.9950684931506849, "percentage": 24.89, "elapsed_time": "3:45:41", "remaining_time": "11:21:01"} +{"current_steps": 1363, "total_steps": 5472, "loss": 0.3446, "accuracy": 0.75, "learning_rate": 4.669568632216394e-07, "epoch": 0.9957990867579909, "percentage": 24.91, "elapsed_time": "3:45:51", "remaining_time": "11:20:52"} +{"current_steps": 1364, "total_steps": 5472, "loss": 0.3951, "accuracy": 0.875, "learning_rate": 4.668775669573765e-07, "epoch": 0.9965296803652968, "percentage": 24.93, "elapsed_time": "3:46:00", "remaining_time": "11:20:41"} +{"current_steps": 1365, "total_steps": 5472, "loss": 0.3877, "accuracy": 0.625, "learning_rate": 4.6679818240987135e-07, "epoch": 0.9972602739726028, "percentage": 24.95, "elapsed_time": "3:46:09", "remaining_time": "11:20:28"} +{"current_steps": 1366, "total_steps": 5472, "loss": 0.3762, "accuracy": 0.875, "learning_rate": 4.6671870961143853e-07, "epoch": 0.9979908675799086, "percentage": 24.96, "elapsed_time": "3:46:19", "remaining_time": "11:20:18"} +{"current_steps": 1367, "total_steps": 5472, "loss": 0.2315, "accuracy": 0.75, "learning_rate": 4.666391485944287e-07, "epoch": 0.9987214611872146, "percentage": 24.98, "elapsed_time": "3:46:29", "remaining_time": "11:20:07"} +{"current_steps": 1368, "total_steps": 5472, "loss": 0.3646, "accuracy": 0.75, "learning_rate": 4.665594993912284e-07, "epoch": 0.9994520547945206, "percentage": 25.0, "elapsed_time": "3:46:37", "remaining_time": "11:19:53"} +{"current_steps": 1368, "total_steps": 5472, "eval_loss": 0.34227442741394043, "epoch": 0.9994520547945206, "percentage": 25.0, "elapsed_time": "3:46:59", "remaining_time": "11:20:58"} +{"current_steps": 1369, "total_steps": 5472, "loss": 0.2227, "accuracy": 1.0, "learning_rate": 4.6647976203425985e-07, "epoch": 1.0001826484018266, "percentage": 25.02, "elapsed_time": "3:47:25", "remaining_time": "11:21:35"} +{"current_steps": 1370, "total_steps": 5472, "loss": 0.2006, "accuracy": 0.75, "learning_rate": 4.6639993655598155e-07, "epoch": 1.0009132420091325, "percentage": 25.04, "elapsed_time": "3:47:34", "remaining_time": "11:21:24"} +{"current_steps": 1371, "total_steps": 5472, "loss": 0.1559, "accuracy": 1.0, "learning_rate": 4.663200229888875e-07, "epoch": 1.0016438356164383, "percentage": 25.05, "elapsed_time": "3:47:44", "remaining_time": "11:21:12"} +{"current_steps": 1372, "total_steps": 5472, "loss": 0.2307, "accuracy": 0.875, "learning_rate": 4.6624002136550773e-07, "epoch": 1.0023744292237442, "percentage": 25.07, "elapsed_time": "3:47:54", "remaining_time": "11:21:03"} +{"current_steps": 1373, "total_steps": 5472, "loss": 0.1801, "accuracy": 1.0, "learning_rate": 4.661599317184082e-07, "epoch": 1.0031050228310503, "percentage": 25.09, "elapsed_time": "3:48:04", "remaining_time": "11:20:53"} +{"current_steps": 1374, "total_steps": 5472, "loss": 0.3806, "accuracy": 0.75, "learning_rate": 4.660797540801904e-07, "epoch": 1.0038356164383562, "percentage": 25.11, "elapsed_time": "3:48:15", "remaining_time": "11:20:46"} +{"current_steps": 1375, "total_steps": 5472, "loss": 0.1084, "accuracy": 1.0, "learning_rate": 4.659994884834919e-07, "epoch": 1.004566210045662, "percentage": 25.13, "elapsed_time": "3:48:25", "remaining_time": "11:20:37"} +{"current_steps": 1376, "total_steps": 5472, "loss": 0.1489, "accuracy": 1.0, "learning_rate": 4.659191349609861e-07, "epoch": 1.0052968036529681, "percentage": 25.15, "elapsed_time": "3:48:34", "remaining_time": "11:20:24"} +{"current_steps": 1377, "total_steps": 5472, "loss": 0.1757, "accuracy": 0.875, "learning_rate": 4.658386935453821e-07, "epoch": 1.006027397260274, "percentage": 25.16, "elapsed_time": "3:48:44", "remaining_time": "11:20:15"} +{"current_steps": 1378, "total_steps": 5472, "loss": 0.1387, "accuracy": 0.875, "learning_rate": 4.657581642694246e-07, "epoch": 1.0067579908675799, "percentage": 25.18, "elapsed_time": "3:48:54", "remaining_time": "11:20:03"} +{"current_steps": 1379, "total_steps": 5472, "loss": 0.232, "accuracy": 0.75, "learning_rate": 4.656775471658945e-07, "epoch": 1.0074885844748858, "percentage": 25.2, "elapsed_time": "3:49:03", "remaining_time": "11:19:50"} +{"current_steps": 1380, "total_steps": 5472, "loss": 0.2855, "accuracy": 0.625, "learning_rate": 4.6559684226760785e-07, "epoch": 1.0082191780821919, "percentage": 25.22, "elapsed_time": "3:49:13", "remaining_time": "11:19:40"} +{"current_steps": 1381, "total_steps": 5472, "loss": 0.1364, "accuracy": 1.0, "learning_rate": 4.6551604960741714e-07, "epoch": 1.0089497716894977, "percentage": 25.24, "elapsed_time": "3:49:22", "remaining_time": "11:19:29"} +{"current_steps": 1382, "total_steps": 5472, "loss": 0.1986, "accuracy": 1.0, "learning_rate": 4.6543516921821e-07, "epoch": 1.0096803652968036, "percentage": 25.26, "elapsed_time": "3:49:32", "remaining_time": "11:19:18"} +{"current_steps": 1383, "total_steps": 5472, "loss": 0.1581, "accuracy": 1.0, "learning_rate": 4.653542011329101e-07, "epoch": 1.0104109589041095, "percentage": 25.27, "elapsed_time": "3:49:44", "remaining_time": "11:19:14"} +{"current_steps": 1384, "total_steps": 5472, "loss": 0.2672, "accuracy": 1.0, "learning_rate": 4.652731453844766e-07, "epoch": 1.0111415525114156, "percentage": 25.29, "elapsed_time": "3:49:55", "remaining_time": "11:19:07"} +{"current_steps": 1385, "total_steps": 5472, "loss": 0.2885, "accuracy": 1.0, "learning_rate": 4.6519200200590457e-07, "epoch": 1.0118721461187214, "percentage": 25.31, "elapsed_time": "3:50:04", "remaining_time": "11:18:55"} +{"current_steps": 1386, "total_steps": 5472, "loss": 0.083, "accuracy": 1.0, "learning_rate": 4.651107710302246e-07, "epoch": 1.0126027397260273, "percentage": 25.33, "elapsed_time": "3:50:15", "remaining_time": "11:18:49"} +{"current_steps": 1387, "total_steps": 5472, "loss": 0.213, "accuracy": 0.875, "learning_rate": 4.6502945249050286e-07, "epoch": 1.0133333333333334, "percentage": 25.35, "elapsed_time": "3:50:27", "remaining_time": "11:18:43"} +{"current_steps": 1388, "total_steps": 5472, "loss": 0.2252, "accuracy": 1.0, "learning_rate": 4.649480464198413e-07, "epoch": 1.0140639269406393, "percentage": 25.37, "elapsed_time": "3:50:37", "remaining_time": "11:18:33"} +{"current_steps": 1389, "total_steps": 5472, "loss": 0.114, "accuracy": 1.0, "learning_rate": 4.6486655285137764e-07, "epoch": 1.0147945205479452, "percentage": 25.38, "elapsed_time": "3:50:45", "remaining_time": "11:18:20"} +{"current_steps": 1390, "total_steps": 5472, "loss": 0.2136, "accuracy": 0.875, "learning_rate": 4.647849718182849e-07, "epoch": 1.015525114155251, "percentage": 25.4, "elapsed_time": "3:50:55", "remaining_time": "11:18:10"} +{"current_steps": 1391, "total_steps": 5472, "loss": 0.2874, "accuracy": 0.75, "learning_rate": 4.647033033537719e-07, "epoch": 1.0162557077625571, "percentage": 25.42, "elapsed_time": "3:51:06", "remaining_time": "11:18:02"} +{"current_steps": 1392, "total_steps": 5472, "loss": 0.1958, "accuracy": 1.0, "learning_rate": 4.6462154749108296e-07, "epoch": 1.016986301369863, "percentage": 25.44, "elapsed_time": "3:51:16", "remaining_time": "11:17:53"} +{"current_steps": 1393, "total_steps": 5472, "loss": 0.275, "accuracy": 0.875, "learning_rate": 4.6453970426349807e-07, "epoch": 1.0177168949771689, "percentage": 25.46, "elapsed_time": "3:51:27", "remaining_time": "11:17:45"} +{"current_steps": 1394, "total_steps": 5472, "loss": 0.1926, "accuracy": 1.0, "learning_rate": 4.644577737043327e-07, "epoch": 1.018447488584475, "percentage": 25.48, "elapsed_time": "3:51:36", "remaining_time": "11:17:34"} +{"current_steps": 1395, "total_steps": 5472, "loss": 0.1927, "accuracy": 1.0, "learning_rate": 4.64375755846938e-07, "epoch": 1.0191780821917809, "percentage": 25.49, "elapsed_time": "3:51:46", "remaining_time": "11:17:23"} +{"current_steps": 1396, "total_steps": 5472, "loss": 0.27, "accuracy": 0.875, "learning_rate": 4.642936507247004e-07, "epoch": 1.0199086757990867, "percentage": 25.51, "elapsed_time": "3:51:55", "remaining_time": "11:17:10"} +{"current_steps": 1397, "total_steps": 5472, "loss": 0.2033, "accuracy": 0.875, "learning_rate": 4.6421145837104214e-07, "epoch": 1.0206392694063926, "percentage": 25.53, "elapsed_time": "3:52:05", "remaining_time": "11:16:59"} +{"current_steps": 1398, "total_steps": 5472, "loss": 0.1004, "accuracy": 1.0, "learning_rate": 4.6412917881942083e-07, "epoch": 1.0213698630136987, "percentage": 25.55, "elapsed_time": "3:52:14", "remaining_time": "11:16:46"} +{"current_steps": 1399, "total_steps": 5472, "loss": 0.2927, "accuracy": 0.875, "learning_rate": 4.6404681210332945e-07, "epoch": 1.0221004566210046, "percentage": 25.57, "elapsed_time": "3:52:24", "remaining_time": "11:16:37"} +{"current_steps": 1400, "total_steps": 5472, "loss": 0.3423, "accuracy": 0.75, "learning_rate": 4.639643582562968e-07, "epoch": 1.0228310502283104, "percentage": 25.58, "elapsed_time": "3:52:35", "remaining_time": "11:16:29"} +{"current_steps": 1401, "total_steps": 5472, "loss": 0.1896, "accuracy": 1.0, "learning_rate": 4.638818173118868e-07, "epoch": 1.0235616438356165, "percentage": 25.6, "elapsed_time": "3:52:45", "remaining_time": "11:16:21"} +{"current_steps": 1402, "total_steps": 5472, "loss": 0.0954, "accuracy": 1.0, "learning_rate": 4.63799189303699e-07, "epoch": 1.0242922374429224, "percentage": 25.62, "elapsed_time": "3:52:54", "remaining_time": "11:16:09"} +{"current_steps": 1403, "total_steps": 5472, "loss": 0.1504, "accuracy": 0.75, "learning_rate": 4.6371647426536843e-07, "epoch": 1.0250228310502283, "percentage": 25.64, "elapsed_time": "3:53:04", "remaining_time": "11:15:58"} +{"current_steps": 1404, "total_steps": 5472, "loss": 0.2099, "accuracy": 0.875, "learning_rate": 4.636336722305654e-07, "epoch": 1.0257534246575342, "percentage": 25.66, "elapsed_time": "3:53:14", "remaining_time": "11:15:49"} +{"current_steps": 1405, "total_steps": 5472, "loss": 0.1912, "accuracy": 1.0, "learning_rate": 4.6355078323299566e-07, "epoch": 1.0264840182648403, "percentage": 25.68, "elapsed_time": "3:53:24", "remaining_time": "11:15:37"} +{"current_steps": 1406, "total_steps": 5472, "loss": 0.195, "accuracy": 0.875, "learning_rate": 4.6346780730640056e-07, "epoch": 1.0272146118721461, "percentage": 25.69, "elapsed_time": "3:53:33", "remaining_time": "11:15:26"} +{"current_steps": 1407, "total_steps": 5472, "loss": 0.2512, "accuracy": 1.0, "learning_rate": 4.6338474448455665e-07, "epoch": 1.027945205479452, "percentage": 25.71, "elapsed_time": "3:53:44", "remaining_time": "11:15:17"} +{"current_steps": 1408, "total_steps": 5472, "loss": 0.2481, "accuracy": 0.75, "learning_rate": 4.633015948012758e-07, "epoch": 1.0286757990867579, "percentage": 25.73, "elapsed_time": "3:53:54", "remaining_time": "11:15:08"} +{"current_steps": 1409, "total_steps": 5472, "loss": 0.1556, "accuracy": 1.0, "learning_rate": 4.6321835829040537e-07, "epoch": 1.029406392694064, "percentage": 25.75, "elapsed_time": "3:54:04", "remaining_time": "11:14:58"} +{"current_steps": 1410, "total_steps": 5472, "loss": 0.2059, "accuracy": 1.0, "learning_rate": 4.6313503498582807e-07, "epoch": 1.0301369863013699, "percentage": 25.77, "elapsed_time": "3:54:14", "remaining_time": "11:14:47"} +{"current_steps": 1411, "total_steps": 5472, "loss": 0.2861, "accuracy": 0.75, "learning_rate": 4.6305162492146175e-07, "epoch": 1.0308675799086757, "percentage": 25.79, "elapsed_time": "3:54:23", "remaining_time": "11:14:35"} +{"current_steps": 1412, "total_steps": 5472, "loss": 0.1983, "accuracy": 0.875, "learning_rate": 4.6296812813125994e-07, "epoch": 1.0315981735159818, "percentage": 25.8, "elapsed_time": "3:54:32", "remaining_time": "11:14:22"} +{"current_steps": 1413, "total_steps": 5472, "loss": 0.1462, "accuracy": 1.0, "learning_rate": 4.628845446492111e-07, "epoch": 1.0323287671232877, "percentage": 25.82, "elapsed_time": "3:54:41", "remaining_time": "11:14:10"} +{"current_steps": 1414, "total_steps": 5472, "loss": 0.3007, "accuracy": 0.875, "learning_rate": 4.6280087450933916e-07, "epoch": 1.0330593607305936, "percentage": 25.84, "elapsed_time": "3:54:52", "remaining_time": "11:14:02"} +{"current_steps": 1415, "total_steps": 5472, "loss": 0.2574, "accuracy": 1.0, "learning_rate": 4.6271711774570327e-07, "epoch": 1.0337899543378994, "percentage": 25.86, "elapsed_time": "3:55:03", "remaining_time": "11:13:56"} +{"current_steps": 1416, "total_steps": 5472, "loss": 0.2141, "accuracy": 0.875, "learning_rate": 4.6263327439239783e-07, "epoch": 1.0345205479452055, "percentage": 25.88, "elapsed_time": "3:55:12", "remaining_time": "11:13:43"} +{"current_steps": 1417, "total_steps": 5472, "loss": 0.1841, "accuracy": 0.875, "learning_rate": 4.625493444835527e-07, "epoch": 1.0352511415525114, "percentage": 25.9, "elapsed_time": "3:55:22", "remaining_time": "11:13:32"} +{"current_steps": 1418, "total_steps": 5472, "loss": 0.245, "accuracy": 0.75, "learning_rate": 4.624653280533327e-07, "epoch": 1.0359817351598173, "percentage": 25.91, "elapsed_time": "3:55:32", "remaining_time": "11:13:24"} +{"current_steps": 1419, "total_steps": 5472, "loss": 0.235, "accuracy": 0.75, "learning_rate": 4.623812251359379e-07, "epoch": 1.0367123287671234, "percentage": 25.93, "elapsed_time": "3:55:41", "remaining_time": "11:13:11"} +{"current_steps": 1420, "total_steps": 5472, "loss": 0.2348, "accuracy": 0.875, "learning_rate": 4.622970357656037e-07, "epoch": 1.0374429223744293, "percentage": 25.95, "elapsed_time": "3:55:50", "remaining_time": "11:12:58"} +{"current_steps": 1421, "total_steps": 5472, "loss": 0.2508, "accuracy": 1.0, "learning_rate": 4.622127599766006e-07, "epoch": 1.0381735159817351, "percentage": 25.97, "elapsed_time": "3:55:59", "remaining_time": "11:12:46"} +{"current_steps": 1422, "total_steps": 5472, "loss": 0.2243, "accuracy": 1.0, "learning_rate": 4.6212839780323444e-07, "epoch": 1.038904109589041, "percentage": 25.99, "elapsed_time": "3:56:08", "remaining_time": "11:12:34"} +{"current_steps": 1423, "total_steps": 5472, "loss": 0.1067, "accuracy": 1.0, "learning_rate": 4.62043949279846e-07, "epoch": 1.039634703196347, "percentage": 26.01, "elapsed_time": "3:56:18", "remaining_time": "11:12:23"} +{"current_steps": 1424, "total_steps": 5472, "loss": 0.1217, "accuracy": 1.0, "learning_rate": 4.619594144408113e-07, "epoch": 1.040365296803653, "percentage": 26.02, "elapsed_time": "3:56:28", "remaining_time": "11:12:12"} +{"current_steps": 1425, "total_steps": 5472, "loss": 0.1763, "accuracy": 1.0, "learning_rate": 4.618747933205415e-07, "epoch": 1.0410958904109588, "percentage": 26.04, "elapsed_time": "3:56:37", "remaining_time": "11:12:01"} +{"current_steps": 1426, "total_steps": 5472, "loss": 0.26, "accuracy": 1.0, "learning_rate": 4.617900859534829e-07, "epoch": 1.041826484018265, "percentage": 26.06, "elapsed_time": "3:56:47", "remaining_time": "11:11:50"} +{"current_steps": 1427, "total_steps": 5472, "loss": 0.1203, "accuracy": 1.0, "learning_rate": 4.617052923741169e-07, "epoch": 1.0425570776255708, "percentage": 26.08, "elapsed_time": "3:56:56", "remaining_time": "11:11:38"} +{"current_steps": 1428, "total_steps": 5472, "loss": 0.2243, "accuracy": 0.875, "learning_rate": 4.6162041261696004e-07, "epoch": 1.0432876712328767, "percentage": 26.1, "elapsed_time": "3:57:05", "remaining_time": "11:11:25"} +{"current_steps": 1429, "total_steps": 5472, "loss": 0.2021, "accuracy": 0.875, "learning_rate": 4.6153544671656387e-07, "epoch": 1.0440182648401826, "percentage": 26.11, "elapsed_time": "3:57:14", "remaining_time": "11:11:12"} +{"current_steps": 1430, "total_steps": 5472, "loss": 0.2315, "accuracy": 0.875, "learning_rate": 4.614503947075149e-07, "epoch": 1.0447488584474887, "percentage": 26.13, "elapsed_time": "3:57:25", "remaining_time": "11:11:06"} +{"current_steps": 1431, "total_steps": 5472, "loss": 0.2473, "accuracy": 1.0, "learning_rate": 4.6136525662443497e-07, "epoch": 1.0454794520547945, "percentage": 26.15, "elapsed_time": "3:57:37", "remaining_time": "11:11:00"} +{"current_steps": 1432, "total_steps": 5472, "loss": 0.2013, "accuracy": 0.875, "learning_rate": 4.6128003250198076e-07, "epoch": 1.0462100456621004, "percentage": 26.17, "elapsed_time": "3:57:47", "remaining_time": "11:10:50"} +{"current_steps": 1433, "total_steps": 5472, "loss": 0.2781, "accuracy": 1.0, "learning_rate": 4.6119472237484405e-07, "epoch": 1.0469406392694065, "percentage": 26.19, "elapsed_time": "3:57:56", "remaining_time": "11:10:39"} +{"current_steps": 1434, "total_steps": 5472, "loss": 0.1616, "accuracy": 1.0, "learning_rate": 4.6110932627775144e-07, "epoch": 1.0476712328767124, "percentage": 26.21, "elapsed_time": "3:58:09", "remaining_time": "11:10:37"} +{"current_steps": 1435, "total_steps": 5472, "loss": 0.2524, "accuracy": 1.0, "learning_rate": 4.6102384424546486e-07, "epoch": 1.0484018264840183, "percentage": 26.22, "elapsed_time": "3:58:18", "remaining_time": "11:10:25"} +{"current_steps": 1436, "total_steps": 5472, "loss": 0.1929, "accuracy": 1.0, "learning_rate": 4.6093827631278093e-07, "epoch": 1.0491324200913241, "percentage": 26.24, "elapsed_time": "3:58:27", "remaining_time": "11:10:13"} +{"current_steps": 1437, "total_steps": 5472, "loss": 0.1644, "accuracy": 1.0, "learning_rate": 4.608526225145315e-07, "epoch": 1.0498630136986302, "percentage": 26.26, "elapsed_time": "3:58:37", "remaining_time": "11:10:02"} +{"current_steps": 1438, "total_steps": 5472, "loss": 0.1968, "accuracy": 1.0, "learning_rate": 4.607668828855831e-07, "epoch": 1.050593607305936, "percentage": 26.28, "elapsed_time": "3:58:47", "remaining_time": "11:09:53"} +{"current_steps": 1439, "total_steps": 5472, "loss": 0.1938, "accuracy": 0.875, "learning_rate": 4.606810574608373e-07, "epoch": 1.051324200913242, "percentage": 26.3, "elapsed_time": "3:58:56", "remaining_time": "11:09:40"} +{"current_steps": 1440, "total_steps": 5472, "loss": 0.2666, "accuracy": 1.0, "learning_rate": 4.6059514627523065e-07, "epoch": 1.0520547945205478, "percentage": 26.32, "elapsed_time": "3:59:05", "remaining_time": "11:09:28"} +{"current_steps": 1441, "total_steps": 5472, "loss": 0.2442, "accuracy": 0.875, "learning_rate": 4.6050914936373466e-07, "epoch": 1.052785388127854, "percentage": 26.33, "elapsed_time": "3:59:15", "remaining_time": "11:09:16"} +{"current_steps": 1442, "total_steps": 5472, "loss": 0.2647, "accuracy": 1.0, "learning_rate": 4.604230667613555e-07, "epoch": 1.0535159817351598, "percentage": 26.35, "elapsed_time": "3:59:24", "remaining_time": "11:09:03"} +{"current_steps": 1443, "total_steps": 5472, "loss": 0.2337, "accuracy": 1.0, "learning_rate": 4.6033689850313453e-07, "epoch": 1.0542465753424657, "percentage": 26.37, "elapsed_time": "3:59:33", "remaining_time": "11:08:51"} +{"current_steps": 1444, "total_steps": 5472, "loss": 0.1977, "accuracy": 1.0, "learning_rate": 4.602506446241476e-07, "epoch": 1.0549771689497718, "percentage": 26.39, "elapsed_time": "3:59:44", "remaining_time": "11:08:44"} +{"current_steps": 1445, "total_steps": 5472, "loss": 0.1433, "accuracy": 1.0, "learning_rate": 4.60164305159506e-07, "epoch": 1.0557077625570777, "percentage": 26.41, "elapsed_time": "3:59:53", "remaining_time": "11:08:33"} +{"current_steps": 1446, "total_steps": 5472, "loss": 0.288, "accuracy": 1.0, "learning_rate": 4.600778801443552e-07, "epoch": 1.0564383561643835, "percentage": 26.43, "elapsed_time": "4:00:05", "remaining_time": "11:08:26"} +{"current_steps": 1447, "total_steps": 5472, "loss": 0.1412, "accuracy": 1.0, "learning_rate": 4.5999136961387587e-07, "epoch": 1.0571689497716894, "percentage": 26.44, "elapsed_time": "4:00:15", "remaining_time": "11:08:17"} +{"current_steps": 1448, "total_steps": 5472, "loss": 0.2215, "accuracy": 0.875, "learning_rate": 4.5990477360328337e-07, "epoch": 1.0578995433789955, "percentage": 26.46, "elapsed_time": "4:00:25", "remaining_time": "11:08:09"} +{"current_steps": 1449, "total_steps": 5472, "loss": 0.181, "accuracy": 1.0, "learning_rate": 4.5981809214782796e-07, "epoch": 1.0586301369863014, "percentage": 26.48, "elapsed_time": "4:00:35", "remaining_time": "11:07:58"} +{"current_steps": 1450, "total_steps": 5472, "loss": 0.1792, "accuracy": 0.875, "learning_rate": 4.597313252827946e-07, "epoch": 1.0593607305936072, "percentage": 26.5, "elapsed_time": "4:00:44", "remaining_time": "11:07:46"} +{"current_steps": 1451, "total_steps": 5472, "loss": 0.2772, "accuracy": 1.0, "learning_rate": 4.59644473043503e-07, "epoch": 1.0600913242009133, "percentage": 26.52, "elapsed_time": "4:00:54", "remaining_time": "11:07:35"} +{"current_steps": 1452, "total_steps": 5472, "loss": 0.1191, "accuracy": 1.0, "learning_rate": 4.5955753546530773e-07, "epoch": 1.0608219178082192, "percentage": 26.54, "elapsed_time": "4:01:03", "remaining_time": "11:07:23"} +{"current_steps": 1453, "total_steps": 5472, "loss": 0.2086, "accuracy": 1.0, "learning_rate": 4.5947051258359795e-07, "epoch": 1.061552511415525, "percentage": 26.55, "elapsed_time": "4:01:12", "remaining_time": "11:07:09"} +{"current_steps": 1454, "total_steps": 5472, "loss": 0.2194, "accuracy": 0.875, "learning_rate": 4.5938340443379764e-07, "epoch": 1.062283105022831, "percentage": 26.57, "elapsed_time": "4:01:21", "remaining_time": "11:06:57"} +{"current_steps": 1455, "total_steps": 5472, "loss": 0.1552, "accuracy": 1.0, "learning_rate": 4.5929621105136546e-07, "epoch": 1.063013698630137, "percentage": 26.59, "elapsed_time": "4:01:30", "remaining_time": "11:06:46"} +{"current_steps": 1456, "total_steps": 5472, "loss": 0.1804, "accuracy": 1.0, "learning_rate": 4.592089324717948e-07, "epoch": 1.063744292237443, "percentage": 26.61, "elapsed_time": "4:01:40", "remaining_time": "11:06:36"} +{"current_steps": 1457, "total_steps": 5472, "loss": 0.1606, "accuracy": 1.0, "learning_rate": 4.591215687306137e-07, "epoch": 1.0644748858447488, "percentage": 26.63, "elapsed_time": "4:01:49", "remaining_time": "11:06:22"} +{"current_steps": 1458, "total_steps": 5472, "loss": 0.1607, "accuracy": 1.0, "learning_rate": 4.5903411986338493e-07, "epoch": 1.0652054794520547, "percentage": 26.64, "elapsed_time": "4:01:59", "remaining_time": "11:06:13"} +{"current_steps": 1459, "total_steps": 5472, "loss": 0.2308, "accuracy": 0.875, "learning_rate": 4.589465859057057e-07, "epoch": 1.0659360730593608, "percentage": 26.66, "elapsed_time": "4:02:08", "remaining_time": "11:06:00"} +{"current_steps": 1460, "total_steps": 5472, "loss": 0.1666, "accuracy": 1.0, "learning_rate": 4.5885896689320813e-07, "epoch": 1.0666666666666667, "percentage": 26.68, "elapsed_time": "4:02:17", "remaining_time": "11:05:47"} +{"current_steps": 1461, "total_steps": 5472, "loss": 0.1584, "accuracy": 1.0, "learning_rate": 4.5877126286155887e-07, "epoch": 1.0673972602739725, "percentage": 26.7, "elapsed_time": "4:02:26", "remaining_time": "11:05:36"} +{"current_steps": 1462, "total_steps": 5472, "loss": 0.201, "accuracy": 1.0, "learning_rate": 4.58683473846459e-07, "epoch": 1.0681278538812786, "percentage": 26.72, "elapsed_time": "4:02:35", "remaining_time": "11:05:23"} +{"current_steps": 1463, "total_steps": 5472, "loss": 0.1723, "accuracy": 0.875, "learning_rate": 4.585955998836445e-07, "epoch": 1.0688584474885845, "percentage": 26.74, "elapsed_time": "4:02:44", "remaining_time": "11:05:10"} +{"current_steps": 1464, "total_steps": 5472, "loss": 0.1856, "accuracy": 0.875, "learning_rate": 4.585076410088857e-07, "epoch": 1.0695890410958904, "percentage": 26.75, "elapsed_time": "4:02:55", "remaining_time": "11:05:03"} +{"current_steps": 1465, "total_steps": 5472, "loss": 0.106, "accuracy": 1.0, "learning_rate": 4.584195972579876e-07, "epoch": 1.0703196347031962, "percentage": 26.77, "elapsed_time": "4:03:04", "remaining_time": "11:04:51"} +{"current_steps": 1466, "total_steps": 5472, "loss": 0.1418, "accuracy": 1.0, "learning_rate": 4.583314686667897e-07, "epoch": 1.0710502283105023, "percentage": 26.79, "elapsed_time": "4:03:13", "remaining_time": "11:04:38"} +{"current_steps": 1467, "total_steps": 5472, "loss": 0.2287, "accuracy": 1.0, "learning_rate": 4.58243255271166e-07, "epoch": 1.0717808219178082, "percentage": 26.81, "elapsed_time": "4:03:22", "remaining_time": "11:04:25"} +{"current_steps": 1468, "total_steps": 5472, "loss": 0.1502, "accuracy": 1.0, "learning_rate": 4.5815495710702525e-07, "epoch": 1.072511415525114, "percentage": 26.83, "elapsed_time": "4:03:31", "remaining_time": "11:04:14"} +{"current_steps": 1469, "total_steps": 5472, "loss": 0.2072, "accuracy": 0.875, "learning_rate": 4.580665742103104e-07, "epoch": 1.0732420091324202, "percentage": 26.85, "elapsed_time": "4:03:42", "remaining_time": "11:04:05"} +{"current_steps": 1470, "total_steps": 5472, "loss": 0.1829, "accuracy": 1.0, "learning_rate": 4.57978106616999e-07, "epoch": 1.073972602739726, "percentage": 26.86, "elapsed_time": "4:03:52", "remaining_time": "11:03:55"} +{"current_steps": 1471, "total_steps": 5472, "loss": 0.2642, "accuracy": 0.875, "learning_rate": 4.578895543631032e-07, "epoch": 1.074703196347032, "percentage": 26.88, "elapsed_time": "4:04:01", "remaining_time": "11:03:44"} +{"current_steps": 1472, "total_steps": 5472, "loss": 0.1491, "accuracy": 1.0, "learning_rate": 4.578009174846693e-07, "epoch": 1.0754337899543378, "percentage": 26.9, "elapsed_time": "4:04:12", "remaining_time": "11:03:35"} +{"current_steps": 1473, "total_steps": 5472, "loss": 0.2466, "accuracy": 1.0, "learning_rate": 4.5771219601777855e-07, "epoch": 1.076164383561644, "percentage": 26.92, "elapsed_time": "4:04:22", "remaining_time": "11:03:27"} +{"current_steps": 1474, "total_steps": 5472, "loss": 0.1669, "accuracy": 1.0, "learning_rate": 4.5762338999854623e-07, "epoch": 1.0768949771689498, "percentage": 26.94, "elapsed_time": "4:04:33", "remaining_time": "11:03:18"} +{"current_steps": 1475, "total_steps": 5472, "loss": 0.238, "accuracy": 0.875, "learning_rate": 4.5753449946312205e-07, "epoch": 1.0776255707762556, "percentage": 26.96, "elapsed_time": "4:04:42", "remaining_time": "11:03:07"} +{"current_steps": 1476, "total_steps": 5472, "loss": 0.1872, "accuracy": 1.0, "learning_rate": 4.5744552444769034e-07, "epoch": 1.0783561643835617, "percentage": 26.97, "elapsed_time": "4:04:52", "remaining_time": "11:02:56"} +{"current_steps": 1477, "total_steps": 5472, "loss": 0.167, "accuracy": 0.875, "learning_rate": 4.573564649884697e-07, "epoch": 1.0790867579908676, "percentage": 26.99, "elapsed_time": "4:05:01", "remaining_time": "11:02:43"} +{"current_steps": 1478, "total_steps": 5472, "loss": 0.2173, "accuracy": 1.0, "learning_rate": 4.5726732112171306e-07, "epoch": 1.0798173515981735, "percentage": 27.01, "elapsed_time": "4:05:12", "remaining_time": "11:02:36"} +{"current_steps": 1479, "total_steps": 5472, "loss": 0.1385, "accuracy": 0.875, "learning_rate": 4.571780928837078e-07, "epoch": 1.0805479452054794, "percentage": 27.03, "elapsed_time": "4:05:22", "remaining_time": "11:02:26"} +{"current_steps": 1480, "total_steps": 5472, "loss": 0.1868, "accuracy": 0.875, "learning_rate": 4.570887803107756e-07, "epoch": 1.0812785388127855, "percentage": 27.05, "elapsed_time": "4:05:31", "remaining_time": "11:02:16"} +{"current_steps": 1481, "total_steps": 5472, "loss": 0.2674, "accuracy": 0.875, "learning_rate": 4.5699938343927236e-07, "epoch": 1.0820091324200913, "percentage": 27.07, "elapsed_time": "4:05:41", "remaining_time": "11:02:04"} +{"current_steps": 1482, "total_steps": 5472, "loss": 0.2224, "accuracy": 0.875, "learning_rate": 4.5690990230558857e-07, "epoch": 1.0827397260273972, "percentage": 27.08, "elapsed_time": "4:05:51", "remaining_time": "11:01:55"} +{"current_steps": 1483, "total_steps": 5472, "loss": 0.1906, "accuracy": 0.75, "learning_rate": 4.568203369461488e-07, "epoch": 1.0834703196347033, "percentage": 27.1, "elapsed_time": "4:06:01", "remaining_time": "11:01:46"} +{"current_steps": 1484, "total_steps": 5472, "loss": 0.2062, "accuracy": 0.875, "learning_rate": 4.567306873974119e-07, "epoch": 1.0842009132420092, "percentage": 27.12, "elapsed_time": "4:06:11", "remaining_time": "11:01:36"} +{"current_steps": 1485, "total_steps": 5472, "loss": 0.1717, "accuracy": 0.875, "learning_rate": 4.566409536958712e-07, "epoch": 1.084931506849315, "percentage": 27.14, "elapsed_time": "4:06:23", "remaining_time": "11:01:31"} +{"current_steps": 1486, "total_steps": 5472, "loss": 0.1446, "accuracy": 1.0, "learning_rate": 4.565511358780539e-07, "epoch": 1.085662100456621, "percentage": 27.16, "elapsed_time": "4:06:33", "remaining_time": "11:01:20"} +{"current_steps": 1487, "total_steps": 5472, "loss": 0.1544, "accuracy": 1.0, "learning_rate": 4.564612339805219e-07, "epoch": 1.086392694063927, "percentage": 27.17, "elapsed_time": "4:06:42", "remaining_time": "11:01:09"} +{"current_steps": 1488, "total_steps": 5472, "loss": 0.2322, "accuracy": 0.75, "learning_rate": 4.5637124803987114e-07, "epoch": 1.087123287671233, "percentage": 27.19, "elapsed_time": "4:06:52", "remaining_time": "11:00:58"} +{"current_steps": 1489, "total_steps": 5472, "loss": 0.1805, "accuracy": 0.875, "learning_rate": 4.562811780927315e-07, "epoch": 1.0878538812785388, "percentage": 27.21, "elapsed_time": "4:07:02", "remaining_time": "11:00:49"} +{"current_steps": 1490, "total_steps": 5472, "loss": 0.1344, "accuracy": 1.0, "learning_rate": 4.561910241757675e-07, "epoch": 1.0885844748858449, "percentage": 27.23, "elapsed_time": "4:07:11", "remaining_time": "11:00:36"} +{"current_steps": 1491, "total_steps": 5472, "loss": 0.167, "accuracy": 1.0, "learning_rate": 4.561007863256775e-07, "epoch": 1.0893150684931507, "percentage": 27.25, "elapsed_time": "4:07:20", "remaining_time": "11:00:24"} +{"current_steps": 1492, "total_steps": 5472, "loss": 0.146, "accuracy": 1.0, "learning_rate": 4.5601046457919425e-07, "epoch": 1.0900456621004566, "percentage": 27.27, "elapsed_time": "4:07:29", "remaining_time": "11:00:13"} +{"current_steps": 1493, "total_steps": 5472, "loss": 0.1254, "accuracy": 1.0, "learning_rate": 4.559200589730845e-07, "epoch": 1.0907762557077625, "percentage": 27.28, "elapsed_time": "4:07:39", "remaining_time": "11:00:01"} +{"current_steps": 1494, "total_steps": 5472, "loss": 0.183, "accuracy": 0.875, "learning_rate": 4.558295695441492e-07, "epoch": 1.0915068493150686, "percentage": 27.3, "elapsed_time": "4:07:48", "remaining_time": "10:59:50"} +{"current_steps": 1495, "total_steps": 5472, "loss": 0.1778, "accuracy": 1.0, "learning_rate": 4.5573899632922354e-07, "epoch": 1.0922374429223745, "percentage": 27.32, "elapsed_time": "4:07:58", "remaining_time": "10:59:40"} +{"current_steps": 1496, "total_steps": 5472, "loss": 0.2398, "accuracy": 1.0, "learning_rate": 4.556483393651765e-07, "epoch": 1.0929680365296803, "percentage": 27.34, "elapsed_time": "4:08:07", "remaining_time": "10:59:28"} +{"current_steps": 1497, "total_steps": 5472, "loss": 0.2807, "accuracy": 0.75, "learning_rate": 4.5555759868891154e-07, "epoch": 1.0936986301369862, "percentage": 27.36, "elapsed_time": "4:08:18", "remaining_time": "10:59:19"} +{"current_steps": 1498, "total_steps": 5472, "loss": 0.1817, "accuracy": 0.875, "learning_rate": 4.554667743373658e-07, "epoch": 1.0944292237442923, "percentage": 27.38, "elapsed_time": "4:08:28", "remaining_time": "10:59:09"} +{"current_steps": 1499, "total_steps": 5472, "loss": 0.1589, "accuracy": 1.0, "learning_rate": 4.5537586634751086e-07, "epoch": 1.0951598173515982, "percentage": 27.39, "elapsed_time": "4:08:37", "remaining_time": "10:58:58"} +{"current_steps": 1500, "total_steps": 5472, "loss": 0.1988, "accuracy": 1.0, "learning_rate": 4.55284874756352e-07, "epoch": 1.095890410958904, "percentage": 27.41, "elapsed_time": "4:08:47", "remaining_time": "10:58:47"} +{"current_steps": 1501, "total_steps": 5472, "loss": 0.2592, "accuracy": 0.875, "learning_rate": 4.5519379960092896e-07, "epoch": 1.0966210045662101, "percentage": 27.43, "elapsed_time": "4:08:57", "remaining_time": "10:58:38"} +{"current_steps": 1502, "total_steps": 5472, "loss": 0.351, "accuracy": 0.875, "learning_rate": 4.55102640918315e-07, "epoch": 1.097351598173516, "percentage": 27.45, "elapsed_time": "4:09:06", "remaining_time": "10:58:26"} +{"current_steps": 1503, "total_steps": 5472, "loss": 0.2003, "accuracy": 0.875, "learning_rate": 4.550113987456178e-07, "epoch": 1.098082191780822, "percentage": 27.47, "elapsed_time": "4:09:16", "remaining_time": "10:58:16"} +{"current_steps": 1504, "total_steps": 5472, "loss": 0.2578, "accuracy": 0.875, "learning_rate": 4.549200731199786e-07, "epoch": 1.0988127853881278, "percentage": 27.49, "elapsed_time": "4:09:25", "remaining_time": "10:58:04"} +{"current_steps": 1505, "total_steps": 5472, "loss": 0.2003, "accuracy": 0.875, "learning_rate": 4.548286640785731e-07, "epoch": 1.0995433789954339, "percentage": 27.5, "elapsed_time": "4:09:34", "remaining_time": "10:57:52"} +{"current_steps": 1506, "total_steps": 5472, "loss": 0.2472, "accuracy": 1.0, "learning_rate": 4.547371716586106e-07, "epoch": 1.1002739726027397, "percentage": 27.52, "elapsed_time": "4:09:44", "remaining_time": "10:57:41"} +{"current_steps": 1507, "total_steps": 5472, "loss": 0.2332, "accuracy": 0.875, "learning_rate": 4.5464559589733444e-07, "epoch": 1.1010045662100456, "percentage": 27.54, "elapsed_time": "4:09:55", "remaining_time": "10:57:34"} +{"current_steps": 1508, "total_steps": 5472, "loss": 0.1842, "accuracy": 1.0, "learning_rate": 4.545539368320219e-07, "epoch": 1.1017351598173515, "percentage": 27.56, "elapsed_time": "4:10:05", "remaining_time": "10:57:24"} +{"current_steps": 1509, "total_steps": 5472, "loss": 0.1745, "accuracy": 0.875, "learning_rate": 4.5446219449998425e-07, "epoch": 1.1024657534246576, "percentage": 27.58, "elapsed_time": "4:10:15", "remaining_time": "10:57:13"} +{"current_steps": 1510, "total_steps": 5472, "loss": 0.2126, "accuracy": 0.875, "learning_rate": 4.5437036893856653e-07, "epoch": 1.1031963470319635, "percentage": 27.6, "elapsed_time": "4:10:24", "remaining_time": "10:57:01"} +{"current_steps": 1511, "total_steps": 5472, "loss": 0.2584, "accuracy": 1.0, "learning_rate": 4.5427846018514757e-07, "epoch": 1.1039269406392693, "percentage": 27.61, "elapsed_time": "4:10:34", "remaining_time": "10:56:52"} +{"current_steps": 1512, "total_steps": 5472, "loss": 0.1726, "accuracy": 1.0, "learning_rate": 4.5418646827714036e-07, "epoch": 1.1046575342465754, "percentage": 27.63, "elapsed_time": "4:10:44", "remaining_time": "10:56:41"} +{"current_steps": 1513, "total_steps": 5472, "loss": 0.1916, "accuracy": 1.0, "learning_rate": 4.5409439325199157e-07, "epoch": 1.1053881278538813, "percentage": 27.65, "elapsed_time": "4:10:54", "remaining_time": "10:56:33"} +{"current_steps": 1514, "total_steps": 5472, "loss": 0.1605, "accuracy": 0.875, "learning_rate": 4.5400223514718163e-07, "epoch": 1.1061187214611872, "percentage": 27.67, "elapsed_time": "4:11:05", "remaining_time": "10:56:25"} +{"current_steps": 1515, "total_steps": 5472, "loss": 0.1842, "accuracy": 0.875, "learning_rate": 4.539099940002249e-07, "epoch": 1.106849315068493, "percentage": 27.69, "elapsed_time": "4:11:15", "remaining_time": "10:56:16"} +{"current_steps": 1516, "total_steps": 5472, "loss": 0.2352, "accuracy": 1.0, "learning_rate": 4.5381766984866956e-07, "epoch": 1.1075799086757991, "percentage": 27.7, "elapsed_time": "4:11:25", "remaining_time": "10:56:05"} +{"current_steps": 1517, "total_steps": 5472, "loss": 0.1766, "accuracy": 1.0, "learning_rate": 4.537252627300975e-07, "epoch": 1.108310502283105, "percentage": 27.72, "elapsed_time": "4:11:35", "remaining_time": "10:55:54"} +{"current_steps": 1518, "total_steps": 5472, "loss": 0.1933, "accuracy": 0.75, "learning_rate": 4.536327726821243e-07, "epoch": 1.1090410958904109, "percentage": 27.74, "elapsed_time": "4:11:44", "remaining_time": "10:55:43"} +{"current_steps": 1519, "total_steps": 5472, "loss": 0.2376, "accuracy": 1.0, "learning_rate": 4.5354019974239955e-07, "epoch": 1.109771689497717, "percentage": 27.76, "elapsed_time": "4:11:54", "remaining_time": "10:55:34"} +{"current_steps": 1520, "total_steps": 5472, "loss": 0.1562, "accuracy": 1.0, "learning_rate": 4.534475439486064e-07, "epoch": 1.1105022831050229, "percentage": 27.78, "elapsed_time": "4:12:05", "remaining_time": "10:55:25"} +{"current_steps": 1521, "total_steps": 5472, "loss": 0.1836, "accuracy": 0.875, "learning_rate": 4.533548053384618e-07, "epoch": 1.1112328767123287, "percentage": 27.8, "elapsed_time": "4:12:14", "remaining_time": "10:55:14"} +{"current_steps": 1522, "total_steps": 5472, "loss": 0.1809, "accuracy": 0.875, "learning_rate": 4.532619839497164e-07, "epoch": 1.1119634703196346, "percentage": 27.81, "elapsed_time": "4:12:23", "remaining_time": "10:55:02"} +{"current_steps": 1523, "total_steps": 5472, "loss": 0.2453, "accuracy": 1.0, "learning_rate": 4.531690798201544e-07, "epoch": 1.1126940639269407, "percentage": 27.83, "elapsed_time": "4:12:33", "remaining_time": "10:54:50"} +{"current_steps": 1524, "total_steps": 5472, "loss": 0.1651, "accuracy": 1.0, "learning_rate": 4.53076092987594e-07, "epoch": 1.1134246575342466, "percentage": 27.85, "elapsed_time": "4:12:43", "remaining_time": "10:54:42"} +{"current_steps": 1525, "total_steps": 5472, "loss": 0.1259, "accuracy": 1.0, "learning_rate": 4.529830234898866e-07, "epoch": 1.1141552511415524, "percentage": 27.87, "elapsed_time": "4:12:52", "remaining_time": "10:54:30"} +{"current_steps": 1526, "total_steps": 5472, "loss": 0.3266, "accuracy": 1.0, "learning_rate": 4.528898713649178e-07, "epoch": 1.1148858447488585, "percentage": 27.89, "elapsed_time": "4:13:02", "remaining_time": "10:54:19"} +{"current_steps": 1527, "total_steps": 5472, "loss": 0.2788, "accuracy": 0.875, "learning_rate": 4.5279663665060643e-07, "epoch": 1.1156164383561644, "percentage": 27.91, "elapsed_time": "4:13:12", "remaining_time": "10:54:09"} +{"current_steps": 1528, "total_steps": 5472, "loss": 0.2309, "accuracy": 0.875, "learning_rate": 4.5270331938490516e-07, "epoch": 1.1163470319634703, "percentage": 27.92, "elapsed_time": "4:13:21", "remaining_time": "10:53:57"} +{"current_steps": 1529, "total_steps": 5472, "loss": 0.1635, "accuracy": 1.0, "learning_rate": 4.526099196058e-07, "epoch": 1.1170776255707762, "percentage": 27.94, "elapsed_time": "4:13:31", "remaining_time": "10:53:47"} +{"current_steps": 1530, "total_steps": 5472, "loss": 0.1989, "accuracy": 1.0, "learning_rate": 4.5251643735131086e-07, "epoch": 1.1178082191780823, "percentage": 27.96, "elapsed_time": "4:13:41", "remaining_time": "10:53:36"} +{"current_steps": 1531, "total_steps": 5472, "loss": 0.0819, "accuracy": 1.0, "learning_rate": 4.5242287265949097e-07, "epoch": 1.1185388127853881, "percentage": 27.98, "elapsed_time": "4:13:50", "remaining_time": "10:53:24"} +{"current_steps": 1532, "total_steps": 5472, "loss": 0.1795, "accuracy": 0.75, "learning_rate": 4.523292255684275e-07, "epoch": 1.119269406392694, "percentage": 28.0, "elapsed_time": "4:14:00", "remaining_time": "10:53:15"} +{"current_steps": 1533, "total_steps": 5472, "loss": 0.1072, "accuracy": 1.0, "learning_rate": 4.5223549611624045e-07, "epoch": 1.12, "percentage": 28.02, "elapsed_time": "4:14:09", "remaining_time": "10:53:02"} +{"current_steps": 1534, "total_steps": 5472, "loss": 0.1574, "accuracy": 1.0, "learning_rate": 4.521416843410842e-07, "epoch": 1.120730593607306, "percentage": 28.03, "elapsed_time": "4:14:18", "remaining_time": "10:52:51"} +{"current_steps": 1535, "total_steps": 5472, "loss": 0.1315, "accuracy": 1.0, "learning_rate": 4.52047790281146e-07, "epoch": 1.1214611872146119, "percentage": 28.05, "elapsed_time": "4:14:28", "remaining_time": "10:52:39"} +{"current_steps": 1536, "total_steps": 5472, "loss": 0.1572, "accuracy": 1.0, "learning_rate": 4.519538139746469e-07, "epoch": 1.1221917808219177, "percentage": 28.07, "elapsed_time": "4:14:37", "remaining_time": "10:52:29"} +{"current_steps": 1537, "total_steps": 5472, "loss": 0.1785, "accuracy": 1.0, "learning_rate": 4.5185975545984146e-07, "epoch": 1.1229223744292238, "percentage": 28.09, "elapsed_time": "4:14:47", "remaining_time": "10:52:17"} +{"current_steps": 1538, "total_steps": 5472, "loss": 0.1927, "accuracy": 0.625, "learning_rate": 4.517656147750174e-07, "epoch": 1.1236529680365297, "percentage": 28.11, "elapsed_time": "4:14:57", "remaining_time": "10:52:09"} +{"current_steps": 1539, "total_steps": 5472, "loss": 0.1698, "accuracy": 1.0, "learning_rate": 4.516713919584961e-07, "epoch": 1.1243835616438356, "percentage": 28.12, "elapsed_time": "4:15:07", "remaining_time": "10:51:58"} +{"current_steps": 1540, "total_steps": 5472, "loss": 0.2277, "accuracy": 0.875, "learning_rate": 4.515770870486325e-07, "epoch": 1.1251141552511417, "percentage": 28.14, "elapsed_time": "4:15:17", "remaining_time": "10:51:50"} +{"current_steps": 1541, "total_steps": 5472, "loss": 0.1573, "accuracy": 1.0, "learning_rate": 4.514827000838148e-07, "epoch": 1.1258447488584475, "percentage": 28.16, "elapsed_time": "4:15:27", "remaining_time": "10:51:38"} +{"current_steps": 1542, "total_steps": 5472, "loss": 0.1627, "accuracy": 0.875, "learning_rate": 4.5138823110246447e-07, "epoch": 1.1265753424657534, "percentage": 28.18, "elapsed_time": "4:15:36", "remaining_time": "10:51:27"} +{"current_steps": 1543, "total_steps": 5472, "loss": 0.1648, "accuracy": 1.0, "learning_rate": 4.5129368014303673e-07, "epoch": 1.1273059360730593, "percentage": 28.2, "elapsed_time": "4:15:45", "remaining_time": "10:51:16"} +{"current_steps": 1544, "total_steps": 5472, "loss": 0.1196, "accuracy": 1.0, "learning_rate": 4.5119904724401976e-07, "epoch": 1.1280365296803654, "percentage": 28.22, "elapsed_time": "4:15:57", "remaining_time": "10:51:09"} +{"current_steps": 1545, "total_steps": 5472, "loss": 0.2337, "accuracy": 1.0, "learning_rate": 4.5110433244393537e-07, "epoch": 1.1287671232876713, "percentage": 28.23, "elapsed_time": "4:16:08", "remaining_time": "10:51:01"} +{"current_steps": 1546, "total_steps": 5472, "loss": 0.1484, "accuracy": 1.0, "learning_rate": 4.510095357813387e-07, "epoch": 1.1294977168949771, "percentage": 28.25, "elapsed_time": "4:16:17", "remaining_time": "10:50:49"} +{"current_steps": 1547, "total_steps": 5472, "loss": 0.1919, "accuracy": 0.875, "learning_rate": 4.5091465729481793e-07, "epoch": 1.1302283105022832, "percentage": 28.27, "elapsed_time": "4:16:27", "remaining_time": "10:50:39"} +{"current_steps": 1548, "total_steps": 5472, "loss": 0.153, "accuracy": 1.0, "learning_rate": 4.5081969702299506e-07, "epoch": 1.130958904109589, "percentage": 28.29, "elapsed_time": "4:16:36", "remaining_time": "10:50:27"} +{"current_steps": 1549, "total_steps": 5472, "loss": 0.1345, "accuracy": 1.0, "learning_rate": 4.5072465500452485e-07, "epoch": 1.131689497716895, "percentage": 28.31, "elapsed_time": "4:16:45", "remaining_time": "10:50:15"} +{"current_steps": 1550, "total_steps": 5472, "loss": 0.3298, "accuracy": 0.75, "learning_rate": 4.506295312780957e-07, "epoch": 1.1324200913242009, "percentage": 28.33, "elapsed_time": "4:16:55", "remaining_time": "10:50:05"} +{"current_steps": 1551, "total_steps": 5472, "loss": 0.2273, "accuracy": 0.875, "learning_rate": 4.5053432588242894e-07, "epoch": 1.133150684931507, "percentage": 28.34, "elapsed_time": "4:17:05", "remaining_time": "10:49:55"} +{"current_steps": 1552, "total_steps": 5472, "loss": 0.2844, "accuracy": 0.875, "learning_rate": 4.504390388562796e-07, "epoch": 1.1338812785388128, "percentage": 28.36, "elapsed_time": "4:17:15", "remaining_time": "10:49:46"} +{"current_steps": 1553, "total_steps": 5472, "loss": 0.2352, "accuracy": 1.0, "learning_rate": 4.5034367023843556e-07, "epoch": 1.1346118721461187, "percentage": 28.38, "elapsed_time": "4:17:26", "remaining_time": "10:49:39"} +{"current_steps": 1554, "total_steps": 5472, "loss": 0.1525, "accuracy": 0.875, "learning_rate": 4.50248220067718e-07, "epoch": 1.1353424657534246, "percentage": 28.4, "elapsed_time": "4:17:35", "remaining_time": "10:49:26"} +{"current_steps": 1555, "total_steps": 5472, "loss": 0.2154, "accuracy": 0.875, "learning_rate": 4.5015268838298145e-07, "epoch": 1.1360730593607307, "percentage": 28.42, "elapsed_time": "4:17:44", "remaining_time": "10:49:13"} +{"current_steps": 1556, "total_steps": 5472, "loss": 0.1293, "accuracy": 1.0, "learning_rate": 4.500570752231134e-07, "epoch": 1.1368036529680365, "percentage": 28.44, "elapsed_time": "4:17:53", "remaining_time": "10:49:02"} +{"current_steps": 1557, "total_steps": 5472, "loss": 0.2058, "accuracy": 0.875, "learning_rate": 4.499613806270346e-07, "epoch": 1.1375342465753424, "percentage": 28.45, "elapsed_time": "4:18:02", "remaining_time": "10:48:51"} +{"current_steps": 1558, "total_steps": 5472, "loss": 0.1531, "accuracy": 1.0, "learning_rate": 4.4986560463369905e-07, "epoch": 1.1382648401826483, "percentage": 28.47, "elapsed_time": "4:18:11", "remaining_time": "10:48:37"} +{"current_steps": 1559, "total_steps": 5472, "loss": 0.226, "accuracy": 1.0, "learning_rate": 4.497697472820937e-07, "epoch": 1.1389954337899544, "percentage": 28.49, "elapsed_time": "4:18:20", "remaining_time": "10:48:25"} +{"current_steps": 1560, "total_steps": 5472, "loss": 0.1483, "accuracy": 1.0, "learning_rate": 4.496738086112388e-07, "epoch": 1.1397260273972603, "percentage": 28.51, "elapsed_time": "4:18:30", "remaining_time": "10:48:14"} +{"current_steps": 1561, "total_steps": 5472, "loss": 0.1581, "accuracy": 1.0, "learning_rate": 4.495777886601876e-07, "epoch": 1.1404566210045661, "percentage": 28.53, "elapsed_time": "4:18:41", "remaining_time": "10:48:08"} +{"current_steps": 1562, "total_steps": 5472, "loss": 0.1685, "accuracy": 1.0, "learning_rate": 4.494816874680263e-07, "epoch": 1.1411872146118722, "percentage": 28.55, "elapsed_time": "4:18:52", "remaining_time": "10:48:01"} +{"current_steps": 1563, "total_steps": 5472, "loss": 0.1051, "accuracy": 1.0, "learning_rate": 4.493855050738746e-07, "epoch": 1.141917808219178, "percentage": 28.56, "elapsed_time": "4:19:01", "remaining_time": "10:47:48"} +{"current_steps": 1564, "total_steps": 5472, "loss": 0.16, "accuracy": 1.0, "learning_rate": 4.492892415168847e-07, "epoch": 1.142648401826484, "percentage": 28.58, "elapsed_time": "4:19:12", "remaining_time": "10:47:40"} +{"current_steps": 1565, "total_steps": 5472, "loss": 0.1658, "accuracy": 1.0, "learning_rate": 4.4919289683624226e-07, "epoch": 1.1433789954337898, "percentage": 28.6, "elapsed_time": "4:19:21", "remaining_time": "10:47:28"} +{"current_steps": 1566, "total_steps": 5472, "loss": 0.242, "accuracy": 0.875, "learning_rate": 4.490964710711659e-07, "epoch": 1.144109589041096, "percentage": 28.62, "elapsed_time": "4:19:30", "remaining_time": "10:47:16"} +{"current_steps": 1567, "total_steps": 5472, "loss": 0.1364, "accuracy": 1.0, "learning_rate": 4.4899996426090694e-07, "epoch": 1.1448401826484018, "percentage": 28.64, "elapsed_time": "4:19:41", "remaining_time": "10:47:10"} +{"current_steps": 1568, "total_steps": 5472, "loss": 0.2524, "accuracy": 0.875, "learning_rate": 4.489033764447501e-07, "epoch": 1.1455707762557077, "percentage": 28.65, "elapsed_time": "4:19:51", "remaining_time": "10:46:58"} +{"current_steps": 1569, "total_steps": 5472, "loss": 0.2511, "accuracy": 0.875, "learning_rate": 4.4880670766201265e-07, "epoch": 1.1463013698630138, "percentage": 28.67, "elapsed_time": "4:20:01", "remaining_time": "10:46:48"} +{"current_steps": 1570, "total_steps": 5472, "loss": 0.2139, "accuracy": 1.0, "learning_rate": 4.4870995795204534e-07, "epoch": 1.1470319634703197, "percentage": 28.69, "elapsed_time": "4:20:10", "remaining_time": "10:46:37"} +{"current_steps": 1571, "total_steps": 5472, "loss": 0.284, "accuracy": 0.625, "learning_rate": 4.486131273542315e-07, "epoch": 1.1477625570776255, "percentage": 28.71, "elapsed_time": "4:20:19", "remaining_time": "10:46:26"} +{"current_steps": 1572, "total_steps": 5472, "loss": 0.1749, "accuracy": 1.0, "learning_rate": 4.485162159079874e-07, "epoch": 1.1484931506849314, "percentage": 28.73, "elapsed_time": "4:20:29", "remaining_time": "10:46:14"} +{"current_steps": 1573, "total_steps": 5472, "loss": 0.355, "accuracy": 0.875, "learning_rate": 4.484192236527623e-07, "epoch": 1.1492237442922375, "percentage": 28.75, "elapsed_time": "4:20:39", "remaining_time": "10:46:06"} +{"current_steps": 1574, "total_steps": 5472, "loss": 0.1477, "accuracy": 0.75, "learning_rate": 4.4832215062803835e-07, "epoch": 1.1499543378995434, "percentage": 28.76, "elapsed_time": "4:20:49", "remaining_time": "10:45:55"} +{"current_steps": 1575, "total_steps": 5472, "loss": 0.2353, "accuracy": 1.0, "learning_rate": 4.482249968733306e-07, "epoch": 1.1506849315068493, "percentage": 28.78, "elapsed_time": "4:20:58", "remaining_time": "10:45:43"} +{"current_steps": 1576, "total_steps": 5472, "loss": 0.129, "accuracy": 0.875, "learning_rate": 4.4812776242818687e-07, "epoch": 1.1514155251141553, "percentage": 28.8, "elapsed_time": "4:21:08", "remaining_time": "10:45:34"} +{"current_steps": 1577, "total_steps": 5472, "loss": 0.1271, "accuracy": 1.0, "learning_rate": 4.4803044733218795e-07, "epoch": 1.1521461187214612, "percentage": 28.82, "elapsed_time": "4:21:18", "remaining_time": "10:45:24"} +{"current_steps": 1578, "total_steps": 5472, "loss": 0.1484, "accuracy": 1.0, "learning_rate": 4.479330516249474e-07, "epoch": 1.152876712328767, "percentage": 28.84, "elapsed_time": "4:21:29", "remaining_time": "10:45:15"} +{"current_steps": 1579, "total_steps": 5472, "loss": 0.2196, "accuracy": 0.875, "learning_rate": 4.478355753461115e-07, "epoch": 1.153607305936073, "percentage": 28.86, "elapsed_time": "4:21:38", "remaining_time": "10:45:04"} +{"current_steps": 1580, "total_steps": 5472, "loss": 0.2903, "accuracy": 1.0, "learning_rate": 4.477380185353595e-07, "epoch": 1.154337899543379, "percentage": 28.87, "elapsed_time": "4:21:49", "remaining_time": "10:44:58"} +{"current_steps": 1581, "total_steps": 5472, "loss": 0.1573, "accuracy": 1.0, "learning_rate": 4.4764038123240346e-07, "epoch": 1.155068493150685, "percentage": 28.89, "elapsed_time": "4:21:58", "remaining_time": "10:44:45"} +{"current_steps": 1582, "total_steps": 5472, "loss": 0.2011, "accuracy": 0.75, "learning_rate": 4.475426634769879e-07, "epoch": 1.1557990867579908, "percentage": 28.91, "elapsed_time": "4:22:09", "remaining_time": "10:44:36"} +{"current_steps": 1583, "total_steps": 5472, "loss": 0.2218, "accuracy": 0.875, "learning_rate": 4.474448653088903e-07, "epoch": 1.156529680365297, "percentage": 28.93, "elapsed_time": "4:22:17", "remaining_time": "10:44:23"} +{"current_steps": 1584, "total_steps": 5472, "loss": 0.1953, "accuracy": 1.0, "learning_rate": 4.47346986767921e-07, "epoch": 1.1572602739726028, "percentage": 28.95, "elapsed_time": "4:22:28", "remaining_time": "10:44:15"} +{"current_steps": 1585, "total_steps": 5472, "loss": 0.1636, "accuracy": 1.0, "learning_rate": 4.4724902789392284e-07, "epoch": 1.1579908675799087, "percentage": 28.97, "elapsed_time": "4:22:39", "remaining_time": "10:44:08"} +{"current_steps": 1586, "total_steps": 5472, "loss": 0.2302, "accuracy": 0.875, "learning_rate": 4.471509887267714e-07, "epoch": 1.1587214611872145, "percentage": 28.98, "elapsed_time": "4:22:49", "remaining_time": "10:43:58"} +{"current_steps": 1587, "total_steps": 5472, "loss": 0.2236, "accuracy": 1.0, "learning_rate": 4.4705286930637505e-07, "epoch": 1.1594520547945206, "percentage": 29.0, "elapsed_time": "4:22:58", "remaining_time": "10:43:45"} +{"current_steps": 1588, "total_steps": 5472, "loss": 0.2523, "accuracy": 0.875, "learning_rate": 4.469546696726747e-07, "epoch": 1.1601826484018265, "percentage": 29.02, "elapsed_time": "4:23:11", "remaining_time": "10:43:44"} +{"current_steps": 1589, "total_steps": 5472, "loss": 0.1551, "accuracy": 1.0, "learning_rate": 4.4685638986564406e-07, "epoch": 1.1609132420091324, "percentage": 29.04, "elapsed_time": "4:23:23", "remaining_time": "10:43:38"} +{"current_steps": 1590, "total_steps": 5472, "loss": 0.1985, "accuracy": 1.0, "learning_rate": 4.467580299252893e-07, "epoch": 1.1616438356164385, "percentage": 29.06, "elapsed_time": "4:23:32", "remaining_time": "10:43:25"} +{"current_steps": 1591, "total_steps": 5472, "loss": 0.2292, "accuracy": 1.0, "learning_rate": 4.466595898916493e-07, "epoch": 1.1623744292237443, "percentage": 29.08, "elapsed_time": "4:23:41", "remaining_time": "10:43:13"} +{"current_steps": 1592, "total_steps": 5472, "loss": 0.1526, "accuracy": 0.875, "learning_rate": 4.465610698047957e-07, "epoch": 1.1631050228310502, "percentage": 29.09, "elapsed_time": "4:23:51", "remaining_time": "10:43:04"} +{"current_steps": 1593, "total_steps": 5472, "loss": 0.159, "accuracy": 0.875, "learning_rate": 4.4646246970483237e-07, "epoch": 1.163835616438356, "percentage": 29.11, "elapsed_time": "4:24:00", "remaining_time": "10:42:51"} +{"current_steps": 1594, "total_steps": 5472, "loss": 0.1536, "accuracy": 1.0, "learning_rate": 4.4636378963189596e-07, "epoch": 1.1645662100456622, "percentage": 29.13, "elapsed_time": "4:24:11", "remaining_time": "10:42:44"} +{"current_steps": 1595, "total_steps": 5472, "loss": 0.1147, "accuracy": 1.0, "learning_rate": 4.462650296261558e-07, "epoch": 1.165296803652968, "percentage": 29.15, "elapsed_time": "4:24:21", "remaining_time": "10:42:34"} +{"current_steps": 1596, "total_steps": 5472, "loss": 0.2203, "accuracy": 1.0, "learning_rate": 4.461661897278135e-07, "epoch": 1.166027397260274, "percentage": 29.17, "elapsed_time": "4:24:29", "remaining_time": "10:42:21"} +{"current_steps": 1597, "total_steps": 5472, "loss": 0.1566, "accuracy": 1.0, "learning_rate": 4.460672699771034e-07, "epoch": 1.16675799086758, "percentage": 29.18, "elapsed_time": "4:24:39", "remaining_time": "10:42:09"} +{"current_steps": 1598, "total_steps": 5472, "loss": 0.1809, "accuracy": 0.75, "learning_rate": 4.4596827041429217e-07, "epoch": 1.167488584474886, "percentage": 29.2, "elapsed_time": "4:24:48", "remaining_time": "10:41:59"} +{"current_steps": 1599, "total_steps": 5472, "loss": 0.2227, "accuracy": 0.875, "learning_rate": 4.458691910796791e-07, "epoch": 1.1682191780821918, "percentage": 29.22, "elapsed_time": "4:24:58", "remaining_time": "10:41:49"} +{"current_steps": 1600, "total_steps": 5472, "loss": 0.1546, "accuracy": 0.875, "learning_rate": 4.45770032013596e-07, "epoch": 1.1689497716894977, "percentage": 29.24, "elapsed_time": "4:25:07", "remaining_time": "10:41:36"} +{"current_steps": 1601, "total_steps": 5472, "loss": 0.1633, "accuracy": 1.0, "learning_rate": 4.456707932564069e-07, "epoch": 1.1696803652968037, "percentage": 29.26, "elapsed_time": "4:25:17", "remaining_time": "10:41:27"} +{"current_steps": 1602, "total_steps": 5472, "loss": 0.1903, "accuracy": 1.0, "learning_rate": 4.455714748485084e-07, "epoch": 1.1704109589041096, "percentage": 29.28, "elapsed_time": "4:25:26", "remaining_time": "10:41:15"} +{"current_steps": 1603, "total_steps": 5472, "loss": 0.1428, "accuracy": 1.0, "learning_rate": 4.454720768303296e-07, "epoch": 1.1711415525114155, "percentage": 29.29, "elapsed_time": "4:25:36", "remaining_time": "10:41:03"} +{"current_steps": 1604, "total_steps": 5472, "loss": 0.1874, "accuracy": 0.875, "learning_rate": 4.453725992423321e-07, "epoch": 1.1718721461187214, "percentage": 29.31, "elapsed_time": "4:25:45", "remaining_time": "10:40:52"} +{"current_steps": 1605, "total_steps": 5472, "loss": 0.3042, "accuracy": 0.875, "learning_rate": 4.452730421250094e-07, "epoch": 1.1726027397260275, "percentage": 29.33, "elapsed_time": "4:25:56", "remaining_time": "10:40:44"} +{"current_steps": 1606, "total_steps": 5472, "loss": 0.1722, "accuracy": 0.875, "learning_rate": 4.451734055188879e-07, "epoch": 1.1733333333333333, "percentage": 29.35, "elapsed_time": "4:26:05", "remaining_time": "10:40:32"} +{"current_steps": 1607, "total_steps": 5472, "loss": 0.2213, "accuracy": 0.875, "learning_rate": 4.450736894645263e-07, "epoch": 1.1740639269406392, "percentage": 29.37, "elapsed_time": "4:26:14", "remaining_time": "10:40:20"} +{"current_steps": 1608, "total_steps": 5472, "loss": 0.1069, "accuracy": 1.0, "learning_rate": 4.4497389400251525e-07, "epoch": 1.174794520547945, "percentage": 29.39, "elapsed_time": "4:26:24", "remaining_time": "10:40:09"} +{"current_steps": 1609, "total_steps": 5472, "loss": 0.2953, "accuracy": 0.75, "learning_rate": 4.4487401917347807e-07, "epoch": 1.1755251141552512, "percentage": 29.4, "elapsed_time": "4:26:33", "remaining_time": "10:39:59"} +{"current_steps": 1610, "total_steps": 5472, "loss": 0.2398, "accuracy": 1.0, "learning_rate": 4.447740650180703e-07, "epoch": 1.176255707762557, "percentage": 29.42, "elapsed_time": "4:26:44", "remaining_time": "10:39:50"} +{"current_steps": 1611, "total_steps": 5472, "loss": 0.3598, "accuracy": 0.75, "learning_rate": 4.446740315769798e-07, "epoch": 1.176986301369863, "percentage": 29.44, "elapsed_time": "4:26:53", "remaining_time": "10:39:38"} +{"current_steps": 1612, "total_steps": 5472, "loss": 0.3096, "accuracy": 0.75, "learning_rate": 4.4457391889092666e-07, "epoch": 1.177716894977169, "percentage": 29.46, "elapsed_time": "4:27:02", "remaining_time": "10:39:26"} +{"current_steps": 1613, "total_steps": 5472, "loss": 0.1664, "accuracy": 1.0, "learning_rate": 4.444737270006632e-07, "epoch": 1.178447488584475, "percentage": 29.48, "elapsed_time": "4:27:12", "remaining_time": "10:39:16"} +{"current_steps": 1614, "total_steps": 5472, "loss": 0.2033, "accuracy": 1.0, "learning_rate": 4.443734559469741e-07, "epoch": 1.1791780821917808, "percentage": 29.5, "elapsed_time": "4:27:22", "remaining_time": "10:39:07"} +{"current_steps": 1615, "total_steps": 5472, "loss": 0.0956, "accuracy": 1.0, "learning_rate": 4.44273105770676e-07, "epoch": 1.1799086757990866, "percentage": 29.51, "elapsed_time": "4:27:32", "remaining_time": "10:38:56"} +{"current_steps": 1616, "total_steps": 5472, "loss": 0.1844, "accuracy": 1.0, "learning_rate": 4.4417267651261815e-07, "epoch": 1.1806392694063927, "percentage": 29.53, "elapsed_time": "4:27:42", "remaining_time": "10:38:48"} +{"current_steps": 1617, "total_steps": 5472, "loss": 0.1419, "accuracy": 1.0, "learning_rate": 4.4407216821368165e-07, "epoch": 1.1813698630136986, "percentage": 29.55, "elapsed_time": "4:27:53", "remaining_time": "10:38:38"} +{"current_steps": 1618, "total_steps": 5472, "loss": 0.1687, "accuracy": 1.0, "learning_rate": 4.4397158091478006e-07, "epoch": 1.1821004566210045, "percentage": 29.57, "elapsed_time": "4:28:02", "remaining_time": "10:38:28"} +{"current_steps": 1619, "total_steps": 5472, "loss": 0.264, "accuracy": 1.0, "learning_rate": 4.4387091465685864e-07, "epoch": 1.1828310502283106, "percentage": 29.59, "elapsed_time": "4:28:12", "remaining_time": "10:38:17"} +{"current_steps": 1620, "total_steps": 5472, "loss": 0.2764, "accuracy": 0.625, "learning_rate": 4.437701694808954e-07, "epoch": 1.1835616438356165, "percentage": 29.61, "elapsed_time": "4:28:21", "remaining_time": "10:38:06"} +{"current_steps": 1621, "total_steps": 5472, "loss": 0.1451, "accuracy": 1.0, "learning_rate": 4.4366934542789993e-07, "epoch": 1.1842922374429223, "percentage": 29.62, "elapsed_time": "4:28:32", "remaining_time": "10:37:57"} +{"current_steps": 1622, "total_steps": 5472, "loss": 0.2062, "accuracy": 0.875, "learning_rate": 4.4356844253891434e-07, "epoch": 1.1850228310502282, "percentage": 29.64, "elapsed_time": "4:28:41", "remaining_time": "10:37:45"} +{"current_steps": 1623, "total_steps": 5472, "loss": 0.1131, "accuracy": 1.0, "learning_rate": 4.434674608550125e-07, "epoch": 1.1857534246575343, "percentage": 29.66, "elapsed_time": "4:28:49", "remaining_time": "10:37:32"} +{"current_steps": 1624, "total_steps": 5472, "loss": 0.2258, "accuracy": 1.0, "learning_rate": 4.433664004173006e-07, "epoch": 1.1864840182648402, "percentage": 29.68, "elapsed_time": "4:28:58", "remaining_time": "10:37:20"} +{"current_steps": 1625, "total_steps": 5472, "loss": 0.1277, "accuracy": 1.0, "learning_rate": 4.4326526126691685e-07, "epoch": 1.187214611872146, "percentage": 29.7, "elapsed_time": "4:29:08", "remaining_time": "10:37:10"} +{"current_steps": 1626, "total_steps": 5472, "loss": 0.1923, "accuracy": 0.875, "learning_rate": 4.4316404344503133e-07, "epoch": 1.1879452054794521, "percentage": 29.71, "elapsed_time": "4:29:18", "remaining_time": "10:37:01"} +{"current_steps": 1627, "total_steps": 5472, "loss": 0.1662, "accuracy": 1.0, "learning_rate": 4.4306274699284623e-07, "epoch": 1.188675799086758, "percentage": 29.73, "elapsed_time": "4:29:28", "remaining_time": "10:36:51"} +{"current_steps": 1628, "total_steps": 5472, "loss": 0.3237, "accuracy": 0.875, "learning_rate": 4.4296137195159587e-07, "epoch": 1.189406392694064, "percentage": 29.75, "elapsed_time": "4:29:40", "remaining_time": "10:36:45"} +{"current_steps": 1629, "total_steps": 5472, "loss": 0.2888, "accuracy": 0.875, "learning_rate": 4.4285991836254657e-07, "epoch": 1.1901369863013698, "percentage": 29.77, "elapsed_time": "4:29:54", "remaining_time": "10:36:45"} +{"current_steps": 1630, "total_steps": 5472, "loss": 0.1738, "accuracy": 1.0, "learning_rate": 4.427583862669963e-07, "epoch": 1.1908675799086759, "percentage": 29.79, "elapsed_time": "4:30:06", "remaining_time": "10:36:38"} +{"current_steps": 1631, "total_steps": 5472, "loss": 0.2032, "accuracy": 0.875, "learning_rate": 4.4265677570627536e-07, "epoch": 1.1915981735159817, "percentage": 29.81, "elapsed_time": "4:30:14", "remaining_time": "10:36:25"} +{"current_steps": 1632, "total_steps": 5472, "loss": 0.1678, "accuracy": 0.875, "learning_rate": 4.425550867217458e-07, "epoch": 1.1923287671232876, "percentage": 29.82, "elapsed_time": "4:30:25", "remaining_time": "10:36:16"} +{"current_steps": 1633, "total_steps": 5472, "loss": 0.1533, "accuracy": 0.875, "learning_rate": 4.424533193548016e-07, "epoch": 1.1930593607305937, "percentage": 29.84, "elapsed_time": "4:30:34", "remaining_time": "10:36:05"} +{"current_steps": 1634, "total_steps": 5472, "loss": 0.1652, "accuracy": 0.875, "learning_rate": 4.423514736468688e-07, "epoch": 1.1937899543378996, "percentage": 29.86, "elapsed_time": "4:30:43", "remaining_time": "10:35:54"} +{"current_steps": 1635, "total_steps": 5472, "loss": 0.2208, "accuracy": 0.875, "learning_rate": 4.42249549639405e-07, "epoch": 1.1945205479452055, "percentage": 29.88, "elapsed_time": "4:30:54", "remaining_time": "10:35:45"} +{"current_steps": 1636, "total_steps": 5472, "loss": 0.1794, "accuracy": 1.0, "learning_rate": 4.4214754737390006e-07, "epoch": 1.1952511415525113, "percentage": 29.9, "elapsed_time": "4:31:04", "remaining_time": "10:35:35"} +{"current_steps": 1637, "total_steps": 5472, "loss": 0.1252, "accuracy": 1.0, "learning_rate": 4.420454668918755e-07, "epoch": 1.1959817351598174, "percentage": 29.92, "elapsed_time": "4:31:13", "remaining_time": "10:35:24"} +{"current_steps": 1638, "total_steps": 5472, "loss": 0.1523, "accuracy": 1.0, "learning_rate": 4.4194330823488455e-07, "epoch": 1.1967123287671233, "percentage": 29.93, "elapsed_time": "4:31:23", "remaining_time": "10:35:13"} +{"current_steps": 1639, "total_steps": 5472, "loss": 0.1444, "accuracy": 1.0, "learning_rate": 4.4184107144451263e-07, "epoch": 1.1974429223744292, "percentage": 29.95, "elapsed_time": "4:31:32", "remaining_time": "10:35:01"} +{"current_steps": 1640, "total_steps": 5472, "loss": 0.1582, "accuracy": 1.0, "learning_rate": 4.417387565623767e-07, "epoch": 1.1981735159817353, "percentage": 29.97, "elapsed_time": "4:31:43", "remaining_time": "10:34:53"} +{"current_steps": 1641, "total_steps": 5472, "loss": 0.1903, "accuracy": 0.875, "learning_rate": 4.4163636363012546e-07, "epoch": 1.1989041095890411, "percentage": 29.99, "elapsed_time": "4:31:52", "remaining_time": "10:34:43"} +{"current_steps": 1642, "total_steps": 5472, "loss": 0.1488, "accuracy": 1.0, "learning_rate": 4.4153389268943955e-07, "epoch": 1.199634703196347, "percentage": 30.01, "elapsed_time": "4:32:02", "remaining_time": "10:34:33"} +{"current_steps": 1643, "total_steps": 5472, "loss": 0.2294, "accuracy": 1.0, "learning_rate": 4.4143134378203127e-07, "epoch": 1.200365296803653, "percentage": 30.03, "elapsed_time": "4:32:13", "remaining_time": "10:34:25"} +{"current_steps": 1644, "total_steps": 5472, "loss": 0.1379, "accuracy": 1.0, "learning_rate": 4.4132871694964463e-07, "epoch": 1.201095890410959, "percentage": 30.04, "elapsed_time": "4:32:22", "remaining_time": "10:34:14"} +{"current_steps": 1645, "total_steps": 5472, "loss": 0.1776, "accuracy": 0.875, "learning_rate": 4.4122601223405545e-07, "epoch": 1.2018264840182649, "percentage": 30.06, "elapsed_time": "4:32:32", "remaining_time": "10:34:04"} +{"current_steps": 1646, "total_steps": 5472, "loss": 0.1769, "accuracy": 0.875, "learning_rate": 4.4112322967707127e-07, "epoch": 1.2025570776255707, "percentage": 30.08, "elapsed_time": "4:32:42", "remaining_time": "10:33:53"} +{"current_steps": 1647, "total_steps": 5472, "loss": 0.1389, "accuracy": 1.0, "learning_rate": 4.410203693205312e-07, "epoch": 1.2032876712328768, "percentage": 30.1, "elapsed_time": "4:32:51", "remaining_time": "10:33:41"} +{"current_steps": 1648, "total_steps": 5472, "loss": 0.2274, "accuracy": 1.0, "learning_rate": 4.409174312063061e-07, "epoch": 1.2040182648401827, "percentage": 30.12, "elapsed_time": "4:33:00", "remaining_time": "10:33:29"} +{"current_steps": 1649, "total_steps": 5472, "loss": 0.1432, "accuracy": 1.0, "learning_rate": 4.4081441537629837e-07, "epoch": 1.2047488584474886, "percentage": 30.14, "elapsed_time": "4:33:10", "remaining_time": "10:33:18"} +{"current_steps": 1650, "total_steps": 5472, "loss": 0.1504, "accuracy": 1.0, "learning_rate": 4.407113218724423e-07, "epoch": 1.2054794520547945, "percentage": 30.15, "elapsed_time": "4:33:20", "remaining_time": "10:33:08"} +{"current_steps": 1651, "total_steps": 5472, "loss": 0.149, "accuracy": 0.875, "learning_rate": 4.4060815073670356e-07, "epoch": 1.2062100456621005, "percentage": 30.17, "elapsed_time": "4:33:28", "remaining_time": "10:32:55"} +{"current_steps": 1652, "total_steps": 5472, "loss": 0.1783, "accuracy": 0.875, "learning_rate": 4.405049020110794e-07, "epoch": 1.2069406392694064, "percentage": 30.19, "elapsed_time": "4:33:37", "remaining_time": "10:32:43"} +{"current_steps": 1653, "total_steps": 5472, "loss": 0.2566, "accuracy": 0.875, "learning_rate": 4.4040157573759893e-07, "epoch": 1.2076712328767123, "percentage": 30.21, "elapsed_time": "4:33:47", "remaining_time": "10:32:33"} +{"current_steps": 1654, "total_steps": 5472, "loss": 0.153, "accuracy": 0.875, "learning_rate": 4.402981719583225e-07, "epoch": 1.2084018264840182, "percentage": 30.23, "elapsed_time": "4:33:56", "remaining_time": "10:32:21"} +{"current_steps": 1655, "total_steps": 5472, "loss": 0.179, "accuracy": 1.0, "learning_rate": 4.4019469071534224e-07, "epoch": 1.2091324200913243, "percentage": 30.24, "elapsed_time": "4:34:06", "remaining_time": "10:32:10"} +{"current_steps": 1656, "total_steps": 5472, "loss": 0.1571, "accuracy": 0.875, "learning_rate": 4.4009113205078174e-07, "epoch": 1.2098630136986301, "percentage": 30.26, "elapsed_time": "4:34:15", "remaining_time": "10:31:59"} +{"current_steps": 1657, "total_steps": 5472, "loss": 0.1437, "accuracy": 0.75, "learning_rate": 4.3998749600679604e-07, "epoch": 1.210593607305936, "percentage": 30.28, "elapsed_time": "4:34:26", "remaining_time": "10:31:51"} +{"current_steps": 1658, "total_steps": 5472, "loss": 0.1658, "accuracy": 1.0, "learning_rate": 4.398837826255717e-07, "epoch": 1.2113242009132419, "percentage": 30.3, "elapsed_time": "4:34:36", "remaining_time": "10:31:41"} +{"current_steps": 1659, "total_steps": 5472, "loss": 0.1937, "accuracy": 1.0, "learning_rate": 4.397799919493269e-07, "epoch": 1.212054794520548, "percentage": 30.32, "elapsed_time": "4:34:45", "remaining_time": "10:31:30"} +{"current_steps": 1660, "total_steps": 5472, "loss": 0.1713, "accuracy": 1.0, "learning_rate": 4.3967612402031116e-07, "epoch": 1.2127853881278539, "percentage": 30.34, "elapsed_time": "4:34:55", "remaining_time": "10:31:19"} +{"current_steps": 1661, "total_steps": 5472, "loss": 0.2545, "accuracy": 1.0, "learning_rate": 4.3957217888080545e-07, "epoch": 1.2135159817351597, "percentage": 30.35, "elapsed_time": "4:35:07", "remaining_time": "10:31:14"} +{"current_steps": 1662, "total_steps": 5472, "loss": 0.1096, "accuracy": 1.0, "learning_rate": 4.3946815657312206e-07, "epoch": 1.2142465753424658, "percentage": 30.37, "elapsed_time": "4:35:17", "remaining_time": "10:31:05"} +{"current_steps": 1663, "total_steps": 5472, "loss": 0.1238, "accuracy": 1.0, "learning_rate": 4.3936405713960504e-07, "epoch": 1.2149771689497717, "percentage": 30.39, "elapsed_time": "4:35:27", "remaining_time": "10:30:54"} +{"current_steps": 1664, "total_steps": 5472, "loss": 0.2717, "accuracy": 0.875, "learning_rate": 4.3925988062262953e-07, "epoch": 1.2157077625570776, "percentage": 30.41, "elapsed_time": "4:35:36", "remaining_time": "10:30:43"} +{"current_steps": 1665, "total_steps": 5472, "loss": 0.1255, "accuracy": 1.0, "learning_rate": 4.391556270646021e-07, "epoch": 1.2164383561643834, "percentage": 30.43, "elapsed_time": "4:35:47", "remaining_time": "10:30:35"} +{"current_steps": 1666, "total_steps": 5472, "loss": 0.2256, "accuracy": 0.875, "learning_rate": 4.390512965079606e-07, "epoch": 1.2171689497716895, "percentage": 30.45, "elapsed_time": "4:35:56", "remaining_time": "10:30:23"} +{"current_steps": 1667, "total_steps": 5472, "loss": 0.2213, "accuracy": 1.0, "learning_rate": 4.389468889951746e-07, "epoch": 1.2178995433789954, "percentage": 30.46, "elapsed_time": "4:36:05", "remaining_time": "10:30:12"} +{"current_steps": 1668, "total_steps": 5472, "loss": 0.1681, "accuracy": 1.0, "learning_rate": 4.388424045687446e-07, "epoch": 1.2186301369863013, "percentage": 30.48, "elapsed_time": "4:36:17", "remaining_time": "10:30:06"} +{"current_steps": 1669, "total_steps": 5472, "loss": 0.1606, "accuracy": 0.875, "learning_rate": 4.3873784327120246e-07, "epoch": 1.2193607305936074, "percentage": 30.5, "elapsed_time": "4:36:27", "remaining_time": "10:29:55"} +{"current_steps": 1670, "total_steps": 5472, "loss": 0.1275, "accuracy": 1.0, "learning_rate": 4.386332051451115e-07, "epoch": 1.2200913242009133, "percentage": 30.52, "elapsed_time": "4:36:37", "remaining_time": "10:29:46"} +{"current_steps": 1671, "total_steps": 5472, "loss": 0.1975, "accuracy": 1.0, "learning_rate": 4.3852849023306617e-07, "epoch": 1.2208219178082191, "percentage": 30.54, "elapsed_time": "4:36:47", "remaining_time": "10:29:37"} +{"current_steps": 1672, "total_steps": 5472, "loss": 0.2416, "accuracy": 0.75, "learning_rate": 4.3842369857769235e-07, "epoch": 1.221552511415525, "percentage": 30.56, "elapsed_time": "4:36:56", "remaining_time": "10:29:25"} +{"current_steps": 1673, "total_steps": 5472, "loss": 0.1774, "accuracy": 1.0, "learning_rate": 4.3831883022164694e-07, "epoch": 1.222283105022831, "percentage": 30.57, "elapsed_time": "4:37:05", "remaining_time": "10:29:13"} +{"current_steps": 1674, "total_steps": 5472, "loss": 0.1666, "accuracy": 1.0, "learning_rate": 4.3821388520761817e-07, "epoch": 1.223013698630137, "percentage": 30.59, "elapsed_time": "4:37:15", "remaining_time": "10:29:02"} +{"current_steps": 1675, "total_steps": 5472, "loss": 0.1966, "accuracy": 1.0, "learning_rate": 4.3810886357832556e-07, "epoch": 1.2237442922374429, "percentage": 30.61, "elapsed_time": "4:37:24", "remaining_time": "10:28:51"} +{"current_steps": 1676, "total_steps": 5472, "loss": 0.1927, "accuracy": 0.875, "learning_rate": 4.380037653765196e-07, "epoch": 1.224474885844749, "percentage": 30.63, "elapsed_time": "4:37:33", "remaining_time": "10:28:39"} +{"current_steps": 1677, "total_steps": 5472, "loss": 0.1407, "accuracy": 1.0, "learning_rate": 4.3789859064498223e-07, "epoch": 1.2252054794520548, "percentage": 30.65, "elapsed_time": "4:37:44", "remaining_time": "10:28:30"} +{"current_steps": 1678, "total_steps": 5472, "loss": 0.1475, "accuracy": 0.875, "learning_rate": 4.3779333942652624e-07, "epoch": 1.2259360730593607, "percentage": 30.67, "elapsed_time": "4:37:53", "remaining_time": "10:28:18"} +{"current_steps": 1679, "total_steps": 5472, "loss": 0.2335, "accuracy": 1.0, "learning_rate": 4.376880117639958e-07, "epoch": 1.2266666666666666, "percentage": 30.68, "elapsed_time": "4:38:03", "remaining_time": "10:28:08"} +{"current_steps": 1680, "total_steps": 5472, "loss": 0.1625, "accuracy": 0.875, "learning_rate": 4.37582607700266e-07, "epoch": 1.2273972602739727, "percentage": 30.7, "elapsed_time": "4:38:12", "remaining_time": "10:27:58"} +{"current_steps": 1681, "total_steps": 5472, "loss": 0.1999, "accuracy": 1.0, "learning_rate": 4.3747712727824326e-07, "epoch": 1.2281278538812785, "percentage": 30.72, "elapsed_time": "4:38:21", "remaining_time": "10:27:46"} +{"current_steps": 1682, "total_steps": 5472, "loss": 0.2359, "accuracy": 0.875, "learning_rate": 4.3737157054086493e-07, "epoch": 1.2288584474885844, "percentage": 30.74, "elapsed_time": "4:38:31", "remaining_time": "10:27:34"} +{"current_steps": 1683, "total_steps": 5472, "loss": 0.1723, "accuracy": 1.0, "learning_rate": 4.372659375310994e-07, "epoch": 1.2295890410958905, "percentage": 30.76, "elapsed_time": "4:38:40", "remaining_time": "10:27:23"} +{"current_steps": 1684, "total_steps": 5472, "loss": 0.1057, "accuracy": 1.0, "learning_rate": 4.371602282919461e-07, "epoch": 1.2303196347031964, "percentage": 30.77, "elapsed_time": "4:38:49", "remaining_time": "10:27:11"} +{"current_steps": 1685, "total_steps": 5472, "loss": 0.1922, "accuracy": 0.875, "learning_rate": 4.370544428664357e-07, "epoch": 1.2310502283105023, "percentage": 30.79, "elapsed_time": "4:39:00", "remaining_time": "10:27:04"} +{"current_steps": 1686, "total_steps": 5472, "loss": 0.217, "accuracy": 0.875, "learning_rate": 4.369485812976297e-07, "epoch": 1.2317808219178081, "percentage": 30.81, "elapsed_time": "4:39:11", "remaining_time": "10:26:55"} +{"current_steps": 1687, "total_steps": 5472, "loss": 0.1117, "accuracy": 1.0, "learning_rate": 4.3684264362862057e-07, "epoch": 1.2325114155251142, "percentage": 30.83, "elapsed_time": "4:39:22", "remaining_time": "10:26:47"} +{"current_steps": 1688, "total_steps": 5472, "loss": 0.1385, "accuracy": 0.75, "learning_rate": 4.367366299025318e-07, "epoch": 1.23324200913242, "percentage": 30.85, "elapsed_time": "4:39:33", "remaining_time": "10:26:40"} +{"current_steps": 1689, "total_steps": 5472, "loss": 0.2037, "accuracy": 1.0, "learning_rate": 4.366305401625179e-07, "epoch": 1.233972602739726, "percentage": 30.87, "elapsed_time": "4:39:43", "remaining_time": "10:26:30"} +{"current_steps": 1690, "total_steps": 5472, "loss": 0.2406, "accuracy": 0.875, "learning_rate": 4.3652437445176426e-07, "epoch": 1.234703196347032, "percentage": 30.88, "elapsed_time": "4:39:53", "remaining_time": "10:26:20"} +{"current_steps": 1691, "total_steps": 5472, "loss": 0.1246, "accuracy": 0.875, "learning_rate": 4.364181328134872e-07, "epoch": 1.235433789954338, "percentage": 30.9, "elapsed_time": "4:40:03", "remaining_time": "10:26:12"} +{"current_steps": 1692, "total_steps": 5472, "loss": 0.1194, "accuracy": 1.0, "learning_rate": 4.3631181529093405e-07, "epoch": 1.2361643835616438, "percentage": 30.92, "elapsed_time": "4:40:12", "remaining_time": "10:26:00"} +{"current_steps": 1693, "total_steps": 5472, "loss": 0.1082, "accuracy": 1.0, "learning_rate": 4.362054219273828e-07, "epoch": 1.2368949771689497, "percentage": 30.94, "elapsed_time": "4:40:23", "remaining_time": "10:25:52"} +{"current_steps": 1694, "total_steps": 5472, "loss": 0.1878, "accuracy": 1.0, "learning_rate": 4.3609895276614263e-07, "epoch": 1.2376255707762558, "percentage": 30.96, "elapsed_time": "4:40:33", "remaining_time": "10:25:43"} +{"current_steps": 1695, "total_steps": 5472, "loss": 0.2839, "accuracy": 0.875, "learning_rate": 4.359924078505532e-07, "epoch": 1.2383561643835617, "percentage": 30.98, "elapsed_time": "4:40:44", "remaining_time": "10:25:33"} +{"current_steps": 1696, "total_steps": 5472, "loss": 0.2089, "accuracy": 0.75, "learning_rate": 4.358857872239853e-07, "epoch": 1.2390867579908675, "percentage": 30.99, "elapsed_time": "4:40:55", "remaining_time": "10:25:26"} +{"current_steps": 1697, "total_steps": 5472, "loss": 0.1154, "accuracy": 1.0, "learning_rate": 4.3577909092984046e-07, "epoch": 1.2398173515981736, "percentage": 31.01, "elapsed_time": "4:41:05", "remaining_time": "10:25:16"} +{"current_steps": 1698, "total_steps": 5472, "loss": 0.1527, "accuracy": 0.75, "learning_rate": 4.35672319011551e-07, "epoch": 1.2405479452054795, "percentage": 31.03, "elapsed_time": "4:41:14", "remaining_time": "10:25:06"} +{"current_steps": 1699, "total_steps": 5472, "loss": 0.1686, "accuracy": 1.0, "learning_rate": 4.3556547151257993e-07, "epoch": 1.2412785388127854, "percentage": 31.05, "elapsed_time": "4:41:23", "remaining_time": "10:24:53"} +{"current_steps": 1700, "total_steps": 5472, "loss": 0.1613, "accuracy": 1.0, "learning_rate": 4.3545854847642124e-07, "epoch": 1.2420091324200913, "percentage": 31.07, "elapsed_time": "4:41:32", "remaining_time": "10:24:42"} +{"current_steps": 1701, "total_steps": 5472, "loss": 0.1391, "accuracy": 1.0, "learning_rate": 4.353515499465994e-07, "epoch": 1.2427397260273974, "percentage": 31.09, "elapsed_time": "4:41:43", "remaining_time": "10:24:33"} +{"current_steps": 1702, "total_steps": 5472, "loss": 0.1991, "accuracy": 1.0, "learning_rate": 4.352444759666699e-07, "epoch": 1.2434703196347032, "percentage": 31.1, "elapsed_time": "4:41:52", "remaining_time": "10:24:22"} +{"current_steps": 1703, "total_steps": 5472, "loss": 0.2102, "accuracy": 1.0, "learning_rate": 4.3513732658021874e-07, "epoch": 1.244200913242009, "percentage": 31.12, "elapsed_time": "4:42:02", "remaining_time": "10:24:12"} +{"current_steps": 1704, "total_steps": 5472, "loss": 0.2744, "accuracy": 1.0, "learning_rate": 4.3503010183086266e-07, "epoch": 1.244931506849315, "percentage": 31.14, "elapsed_time": "4:42:11", "remaining_time": "10:24:00"} +{"current_steps": 1705, "total_steps": 5472, "loss": 0.1039, "accuracy": 0.875, "learning_rate": 4.349228017622491e-07, "epoch": 1.245662100456621, "percentage": 31.16, "elapsed_time": "4:42:20", "remaining_time": "10:23:48"} +{"current_steps": 1706, "total_steps": 5472, "loss": 0.2172, "accuracy": 1.0, "learning_rate": 4.3481542641805613e-07, "epoch": 1.246392694063927, "percentage": 31.18, "elapsed_time": "4:42:31", "remaining_time": "10:23:41"} +{"current_steps": 1707, "total_steps": 5472, "loss": 0.2452, "accuracy": 0.875, "learning_rate": 4.3470797584199254e-07, "epoch": 1.2471232876712328, "percentage": 31.2, "elapsed_time": "4:42:40", "remaining_time": "10:23:29"} +{"current_steps": 1708, "total_steps": 5472, "loss": 0.1672, "accuracy": 1.0, "learning_rate": 4.3460045007779757e-07, "epoch": 1.2478538812785387, "percentage": 31.21, "elapsed_time": "4:42:49", "remaining_time": "10:23:17"} +{"current_steps": 1709, "total_steps": 5472, "loss": 0.1667, "accuracy": 1.0, "learning_rate": 4.3449284916924135e-07, "epoch": 1.2485844748858448, "percentage": 31.23, "elapsed_time": "4:43:00", "remaining_time": "10:23:08"} +{"current_steps": 1710, "total_steps": 5472, "loss": 0.1569, "accuracy": 1.0, "learning_rate": 4.343851731601243e-07, "epoch": 1.2493150684931507, "percentage": 31.25, "elapsed_time": "4:43:09", "remaining_time": "10:22:57"} +{"current_steps": 1711, "total_steps": 5472, "loss": 0.1165, "accuracy": 0.875, "learning_rate": 4.3427742209427753e-07, "epoch": 1.2500456621004568, "percentage": 31.27, "elapsed_time": "4:43:20", "remaining_time": "10:22:49"} +{"current_steps": 1712, "total_steps": 5472, "loss": 0.2183, "accuracy": 0.75, "learning_rate": 4.341695960155628e-07, "epoch": 1.2507762557077626, "percentage": 31.29, "elapsed_time": "4:43:29", "remaining_time": "10:22:38"} +{"current_steps": 1713, "total_steps": 5472, "loss": 0.1293, "accuracy": 1.0, "learning_rate": 4.340616949678724e-07, "epoch": 1.2515068493150685, "percentage": 31.3, "elapsed_time": "4:43:41", "remaining_time": "10:22:32"} +{"current_steps": 1714, "total_steps": 5472, "loss": 0.1899, "accuracy": 1.0, "learning_rate": 4.339537189951288e-07, "epoch": 1.2522374429223744, "percentage": 31.32, "elapsed_time": "4:43:50", "remaining_time": "10:22:20"} +{"current_steps": 1715, "total_steps": 5472, "loss": 0.257, "accuracy": 1.0, "learning_rate": 4.338456681412854e-07, "epoch": 1.2529680365296803, "percentage": 31.34, "elapsed_time": "4:43:59", "remaining_time": "10:22:08"} +{"current_steps": 1716, "total_steps": 5472, "loss": 0.19, "accuracy": 1.0, "learning_rate": 4.337375424503259e-07, "epoch": 1.2536986301369863, "percentage": 31.36, "elapsed_time": "4:44:09", "remaining_time": "10:21:57"} +{"current_steps": 1717, "total_steps": 5472, "loss": 0.2673, "accuracy": 1.0, "learning_rate": 4.3362934196626447e-07, "epoch": 1.2544292237442922, "percentage": 31.38, "elapsed_time": "4:44:18", "remaining_time": "10:21:45"} +{"current_steps": 1718, "total_steps": 5472, "loss": 0.2404, "accuracy": 1.0, "learning_rate": 4.3352106673314575e-07, "epoch": 1.255159817351598, "percentage": 31.4, "elapsed_time": "4:44:27", "remaining_time": "10:21:35"} +{"current_steps": 1719, "total_steps": 5472, "loss": 0.1191, "accuracy": 1.0, "learning_rate": 4.3341271679504473e-07, "epoch": 1.2558904109589042, "percentage": 31.41, "elapsed_time": "4:44:36", "remaining_time": "10:21:23"} +{"current_steps": 1720, "total_steps": 5472, "loss": 0.2007, "accuracy": 1.0, "learning_rate": 4.3330429219606685e-07, "epoch": 1.25662100456621, "percentage": 31.43, "elapsed_time": "4:44:45", "remaining_time": "10:21:10"} +{"current_steps": 1721, "total_steps": 5472, "loss": 0.0983, "accuracy": 1.0, "learning_rate": 4.33195792980348e-07, "epoch": 1.257351598173516, "percentage": 31.45, "elapsed_time": "4:44:55", "remaining_time": "10:20:59"} +{"current_steps": 1722, "total_steps": 5472, "loss": 0.149, "accuracy": 1.0, "learning_rate": 4.330872191920544e-07, "epoch": 1.2580821917808218, "percentage": 31.47, "elapsed_time": "4:45:05", "remaining_time": "10:20:51"} +{"current_steps": 1723, "total_steps": 5472, "loss": 0.2037, "accuracy": 0.875, "learning_rate": 4.3297857087538256e-07, "epoch": 1.258812785388128, "percentage": 31.49, "elapsed_time": "4:45:16", "remaining_time": "10:20:44"} +{"current_steps": 1724, "total_steps": 5472, "loss": 0.1529, "accuracy": 1.0, "learning_rate": 4.328698480745595e-07, "epoch": 1.2595433789954338, "percentage": 31.51, "elapsed_time": "4:45:27", "remaining_time": "10:20:35"} +{"current_steps": 1725, "total_steps": 5472, "loss": 0.162, "accuracy": 0.875, "learning_rate": 4.3276105083384244e-07, "epoch": 1.2602739726027397, "percentage": 31.52, "elapsed_time": "4:45:36", "remaining_time": "10:20:23"} +{"current_steps": 1726, "total_steps": 5472, "loss": 0.2053, "accuracy": 0.875, "learning_rate": 4.3265217919751883e-07, "epoch": 1.2610045662100458, "percentage": 31.54, "elapsed_time": "4:45:46", "remaining_time": "10:20:13"} +{"current_steps": 1727, "total_steps": 5472, "loss": 0.1405, "accuracy": 1.0, "learning_rate": 4.325432332099066e-07, "epoch": 1.2617351598173516, "percentage": 31.56, "elapsed_time": "4:45:57", "remaining_time": "10:20:05"} +{"current_steps": 1728, "total_steps": 5472, "loss": 0.2153, "accuracy": 0.875, "learning_rate": 4.3243421291535377e-07, "epoch": 1.2624657534246575, "percentage": 31.58, "elapsed_time": "4:46:07", "remaining_time": "10:19:55"} +{"current_steps": 1729, "total_steps": 5472, "loss": 0.2242, "accuracy": 0.875, "learning_rate": 4.323251183582387e-07, "epoch": 1.2631963470319634, "percentage": 31.6, "elapsed_time": "4:46:15", "remaining_time": "10:19:42"} +{"current_steps": 1730, "total_steps": 5472, "loss": 0.2731, "accuracy": 1.0, "learning_rate": 4.322159495829699e-07, "epoch": 1.2639269406392695, "percentage": 31.62, "elapsed_time": "4:46:25", "remaining_time": "10:19:33"} +{"current_steps": 1731, "total_steps": 5472, "loss": 0.2157, "accuracy": 1.0, "learning_rate": 4.321067066339862e-07, "epoch": 1.2646575342465753, "percentage": 31.63, "elapsed_time": "4:46:37", "remaining_time": "10:19:25"} +{"current_steps": 1732, "total_steps": 5472, "loss": 0.3148, "accuracy": 1.0, "learning_rate": 4.3199738955575654e-07, "epoch": 1.2653881278538812, "percentage": 31.65, "elapsed_time": "4:46:46", "remaining_time": "10:19:13"} +{"current_steps": 1733, "total_steps": 5472, "loss": 0.2565, "accuracy": 0.75, "learning_rate": 4.318879983927801e-07, "epoch": 1.2661187214611873, "percentage": 31.67, "elapsed_time": "4:46:56", "remaining_time": "10:19:04"} +{"current_steps": 1734, "total_steps": 5472, "loss": 0.233, "accuracy": 0.875, "learning_rate": 4.3177853318958613e-07, "epoch": 1.2668493150684932, "percentage": 31.69, "elapsed_time": "4:47:05", "remaining_time": "10:18:53"} +{"current_steps": 1735, "total_steps": 5472, "loss": 0.1952, "accuracy": 1.0, "learning_rate": 4.316689939907341e-07, "epoch": 1.267579908675799, "percentage": 31.71, "elapsed_time": "4:47:15", "remaining_time": "10:18:43"} +{"current_steps": 1736, "total_steps": 5472, "loss": 0.1869, "accuracy": 1.0, "learning_rate": 4.3155938084081356e-07, "epoch": 1.268310502283105, "percentage": 31.73, "elapsed_time": "4:47:25", "remaining_time": "10:18:34"} +{"current_steps": 1737, "total_steps": 5472, "loss": 0.2891, "accuracy": 1.0, "learning_rate": 4.3144969378444416e-07, "epoch": 1.269041095890411, "percentage": 31.74, "elapsed_time": "4:47:36", "remaining_time": "10:18:26"} +{"current_steps": 1738, "total_steps": 5472, "loss": 0.1191, "accuracy": 0.875, "learning_rate": 4.313399328662758e-07, "epoch": 1.269771689497717, "percentage": 31.76, "elapsed_time": "4:47:46", "remaining_time": "10:18:15"} +{"current_steps": 1739, "total_steps": 5472, "loss": 0.1055, "accuracy": 1.0, "learning_rate": 4.312300981309881e-07, "epoch": 1.2705022831050228, "percentage": 31.78, "elapsed_time": "4:47:55", "remaining_time": "10:18:05"} +{"current_steps": 1740, "total_steps": 5472, "loss": 0.227, "accuracy": 0.75, "learning_rate": 4.3112018962329095e-07, "epoch": 1.2712328767123289, "percentage": 31.8, "elapsed_time": "4:48:05", "remaining_time": "10:17:53"} +{"current_steps": 1741, "total_steps": 5472, "loss": 0.1502, "accuracy": 0.875, "learning_rate": 4.310102073879243e-07, "epoch": 1.2719634703196347, "percentage": 31.82, "elapsed_time": "4:48:16", "remaining_time": "10:17:45"} +{"current_steps": 1742, "total_steps": 5472, "loss": 0.1589, "accuracy": 1.0, "learning_rate": 4.3090015146965806e-07, "epoch": 1.2726940639269406, "percentage": 31.83, "elapsed_time": "4:48:26", "remaining_time": "10:17:37"} +{"current_steps": 1743, "total_steps": 5472, "loss": 0.2114, "accuracy": 0.875, "learning_rate": 4.307900219132922e-07, "epoch": 1.2734246575342465, "percentage": 31.85, "elapsed_time": "4:48:35", "remaining_time": "10:17:25"} +{"current_steps": 1744, "total_steps": 5472, "loss": 0.2322, "accuracy": 0.875, "learning_rate": 4.3067981876365634e-07, "epoch": 1.2741552511415526, "percentage": 31.87, "elapsed_time": "4:48:45", "remaining_time": "10:17:15"} +{"current_steps": 1745, "total_steps": 5472, "loss": 0.2225, "accuracy": 0.75, "learning_rate": 4.305695420656106e-07, "epoch": 1.2748858447488585, "percentage": 31.89, "elapsed_time": "4:48:54", "remaining_time": "10:17:03"} +{"current_steps": 1746, "total_steps": 5472, "loss": 0.2102, "accuracy": 0.875, "learning_rate": 4.304591918640446e-07, "epoch": 1.2756164383561643, "percentage": 31.91, "elapsed_time": "4:49:03", "remaining_time": "10:16:52"} +{"current_steps": 1747, "total_steps": 5472, "loss": 0.1165, "accuracy": 1.0, "learning_rate": 4.3034876820387804e-07, "epoch": 1.2763470319634704, "percentage": 31.93, "elapsed_time": "4:49:14", "remaining_time": "10:16:44"} +{"current_steps": 1748, "total_steps": 5472, "loss": 0.1231, "accuracy": 1.0, "learning_rate": 4.3023827113006063e-07, "epoch": 1.2770776255707763, "percentage": 31.94, "elapsed_time": "4:49:24", "remaining_time": "10:16:32"} +{"current_steps": 1749, "total_steps": 5472, "loss": 0.1982, "accuracy": 0.875, "learning_rate": 4.3012770068757166e-07, "epoch": 1.2778082191780822, "percentage": 31.96, "elapsed_time": "4:49:34", "remaining_time": "10:16:23"} +{"current_steps": 1750, "total_steps": 5472, "loss": 0.2998, "accuracy": 0.875, "learning_rate": 4.300170569214206e-07, "epoch": 1.278538812785388, "percentage": 31.98, "elapsed_time": "4:49:43", "remaining_time": "10:16:13"} +{"current_steps": 1751, "total_steps": 5472, "loss": 0.1761, "accuracy": 1.0, "learning_rate": 4.299063398766466e-07, "epoch": 1.279269406392694, "percentage": 32.0, "elapsed_time": "4:49:53", "remaining_time": "10:16:01"} +{"current_steps": 1752, "total_steps": 5472, "loss": 0.1374, "accuracy": 1.0, "learning_rate": 4.2979554959831877e-07, "epoch": 1.28, "percentage": 32.02, "elapsed_time": "4:50:02", "remaining_time": "10:15:50"} +{"current_steps": 1753, "total_steps": 5472, "loss": 0.2146, "accuracy": 0.875, "learning_rate": 4.296846861315359e-07, "epoch": 1.280730593607306, "percentage": 32.04, "elapsed_time": "4:50:12", "remaining_time": "10:15:39"} +{"current_steps": 1754, "total_steps": 5472, "loss": 0.1927, "accuracy": 1.0, "learning_rate": 4.2957374952142644e-07, "epoch": 1.281461187214612, "percentage": 32.05, "elapsed_time": "4:50:22", "remaining_time": "10:15:30"} +{"current_steps": 1755, "total_steps": 5472, "loss": 0.2196, "accuracy": 0.875, "learning_rate": 4.2946273981314895e-07, "epoch": 1.2821917808219179, "percentage": 32.07, "elapsed_time": "4:50:31", "remaining_time": "10:15:19"} +{"current_steps": 1756, "total_steps": 5472, "loss": 0.1651, "accuracy": 1.0, "learning_rate": 4.2935165705189167e-07, "epoch": 1.2829223744292237, "percentage": 32.09, "elapsed_time": "4:50:40", "remaining_time": "10:15:08"} +{"current_steps": 1757, "total_steps": 5472, "loss": 0.1202, "accuracy": 1.0, "learning_rate": 4.2924050128287233e-07, "epoch": 1.2836529680365296, "percentage": 32.11, "elapsed_time": "4:50:50", "remaining_time": "10:14:57"} +{"current_steps": 1758, "total_steps": 5472, "loss": 0.2273, "accuracy": 1.0, "learning_rate": 4.2912927255133855e-07, "epoch": 1.2843835616438355, "percentage": 32.13, "elapsed_time": "4:50:59", "remaining_time": "10:14:45"} +{"current_steps": 1759, "total_steps": 5472, "loss": 0.1586, "accuracy": 1.0, "learning_rate": 4.290179709025679e-07, "epoch": 1.2851141552511416, "percentage": 32.15, "elapsed_time": "4:51:08", "remaining_time": "10:14:34"} +{"current_steps": 1760, "total_steps": 5472, "loss": 0.1343, "accuracy": 1.0, "learning_rate": 4.2890659638186694e-07, "epoch": 1.2858447488584475, "percentage": 32.16, "elapsed_time": "4:51:17", "remaining_time": "10:14:22"} +{"current_steps": 1761, "total_steps": 5472, "loss": 0.1244, "accuracy": 1.0, "learning_rate": 4.287951490345726e-07, "epoch": 1.2865753424657536, "percentage": 32.18, "elapsed_time": "4:51:28", "remaining_time": "10:14:13"} +{"current_steps": 1762, "total_steps": 5472, "loss": 0.1062, "accuracy": 0.875, "learning_rate": 4.2868362890605116e-07, "epoch": 1.2873059360730594, "percentage": 32.2, "elapsed_time": "4:51:37", "remaining_time": "10:14:02"} +{"current_steps": 1763, "total_steps": 5472, "loss": 0.2365, "accuracy": 1.0, "learning_rate": 4.2857203604169854e-07, "epoch": 1.2880365296803653, "percentage": 32.22, "elapsed_time": "4:51:48", "remaining_time": "10:13:53"} +{"current_steps": 1764, "total_steps": 5472, "loss": 0.1614, "accuracy": 1.0, "learning_rate": 4.284603704869402e-07, "epoch": 1.2887671232876712, "percentage": 32.24, "elapsed_time": "4:51:58", "remaining_time": "10:13:45"} +{"current_steps": 1765, "total_steps": 5472, "loss": 0.2386, "accuracy": 1.0, "learning_rate": 4.2834863228723137e-07, "epoch": 1.289497716894977, "percentage": 32.26, "elapsed_time": "4:52:10", "remaining_time": "10:13:38"} +{"current_steps": 1766, "total_steps": 5472, "loss": 0.2501, "accuracy": 0.875, "learning_rate": 4.282368214880567e-07, "epoch": 1.2902283105022831, "percentage": 32.27, "elapsed_time": "4:52:19", "remaining_time": "10:13:26"} +{"current_steps": 1767, "total_steps": 5472, "loss": 0.1561, "accuracy": 1.0, "learning_rate": 4.2812493813493046e-07, "epoch": 1.290958904109589, "percentage": 32.29, "elapsed_time": "4:52:28", "remaining_time": "10:13:15"} +{"current_steps": 1768, "total_steps": 5472, "loss": 0.2431, "accuracy": 1.0, "learning_rate": 4.2801298227339634e-07, "epoch": 1.291689497716895, "percentage": 32.31, "elapsed_time": "4:52:39", "remaining_time": "10:13:07"} +{"current_steps": 1769, "total_steps": 5472, "loss": 0.178, "accuracy": 1.0, "learning_rate": 4.279009539490278e-07, "epoch": 1.292420091324201, "percentage": 32.33, "elapsed_time": "4:52:48", "remaining_time": "10:12:55"} +{"current_steps": 1770, "total_steps": 5472, "loss": 0.2, "accuracy": 1.0, "learning_rate": 4.2778885320742753e-07, "epoch": 1.2931506849315069, "percentage": 32.35, "elapsed_time": "4:52:59", "remaining_time": "10:12:48"} +{"current_steps": 1771, "total_steps": 5472, "loss": 0.1331, "accuracy": 1.0, "learning_rate": 4.276766800942278e-07, "epoch": 1.2938812785388127, "percentage": 32.36, "elapsed_time": "4:53:10", "remaining_time": "10:12:39"} +{"current_steps": 1772, "total_steps": 5472, "loss": 0.1953, "accuracy": 0.875, "learning_rate": 4.275644346550904e-07, "epoch": 1.2946118721461186, "percentage": 32.38, "elapsed_time": "4:53:20", "remaining_time": "10:12:30"} +{"current_steps": 1773, "total_steps": 5472, "loss": 0.1406, "accuracy": 1.0, "learning_rate": 4.274521169357065e-07, "epoch": 1.2953424657534247, "percentage": 32.4, "elapsed_time": "4:53:30", "remaining_time": "10:12:20"} +{"current_steps": 1774, "total_steps": 5472, "loss": 0.1329, "accuracy": 1.0, "learning_rate": 4.2733972698179666e-07, "epoch": 1.2960730593607306, "percentage": 32.42, "elapsed_time": "4:53:40", "remaining_time": "10:12:10"} +{"current_steps": 1775, "total_steps": 5472, "loss": 0.1276, "accuracy": 1.0, "learning_rate": 4.272272648391109e-07, "epoch": 1.2968036529680365, "percentage": 32.44, "elapsed_time": "4:53:49", "remaining_time": "10:11:58"} +{"current_steps": 1776, "total_steps": 5472, "loss": 0.2134, "accuracy": 0.875, "learning_rate": 4.2711473055342864e-07, "epoch": 1.2975342465753426, "percentage": 32.46, "elapsed_time": "4:53:59", "remaining_time": "10:11:49"} +{"current_steps": 1777, "total_steps": 5472, "loss": 0.2564, "accuracy": 0.75, "learning_rate": 4.2700212417055853e-07, "epoch": 1.2982648401826484, "percentage": 32.47, "elapsed_time": "4:54:08", "remaining_time": "10:11:38"} +{"current_steps": 1778, "total_steps": 5472, "loss": 0.1851, "accuracy": 1.0, "learning_rate": 4.268894457363388e-07, "epoch": 1.2989954337899543, "percentage": 32.49, "elapsed_time": "4:54:18", "remaining_time": "10:11:27"} +{"current_steps": 1779, "total_steps": 5472, "loss": 0.2019, "accuracy": 1.0, "learning_rate": 4.2677669529663686e-07, "epoch": 1.2997260273972602, "percentage": 32.51, "elapsed_time": "4:54:29", "remaining_time": "10:11:20"} +{"current_steps": 1780, "total_steps": 5472, "loss": 0.2146, "accuracy": 0.75, "learning_rate": 4.266638728973494e-07, "epoch": 1.3004566210045663, "percentage": 32.53, "elapsed_time": "4:54:39", "remaining_time": "10:11:09"} +{"current_steps": 1781, "total_steps": 5472, "loss": 0.1967, "accuracy": 1.0, "learning_rate": 4.2655097858440257e-07, "epoch": 1.3011872146118721, "percentage": 32.55, "elapsed_time": "4:54:49", "remaining_time": "10:11:01"} +{"current_steps": 1782, "total_steps": 5472, "loss": 0.146, "accuracy": 0.875, "learning_rate": 4.2643801240375153e-07, "epoch": 1.301917808219178, "percentage": 32.57, "elapsed_time": "4:54:58", "remaining_time": "10:10:49"} +{"current_steps": 1783, "total_steps": 5472, "loss": 0.1688, "accuracy": 1.0, "learning_rate": 4.263249744013809e-07, "epoch": 1.3026484018264841, "percentage": 32.58, "elapsed_time": "4:55:07", "remaining_time": "10:10:37"} +{"current_steps": 1784, "total_steps": 5472, "loss": 0.2536, "accuracy": 0.875, "learning_rate": 4.262118646233046e-07, "epoch": 1.30337899543379, "percentage": 32.6, "elapsed_time": "4:55:17", "remaining_time": "10:10:27"} +{"current_steps": 1785, "total_steps": 5472, "loss": 0.102, "accuracy": 1.0, "learning_rate": 4.260986831155655e-07, "epoch": 1.3041095890410959, "percentage": 32.62, "elapsed_time": "4:55:27", "remaining_time": "10:10:15"} +{"current_steps": 1786, "total_steps": 5472, "loss": 0.213, "accuracy": 1.0, "learning_rate": 4.259854299242358e-07, "epoch": 1.3048401826484017, "percentage": 32.64, "elapsed_time": "4:55:36", "remaining_time": "10:10:05"} +{"current_steps": 1787, "total_steps": 5472, "loss": 0.1245, "accuracy": 1.0, "learning_rate": 4.2587210509541704e-07, "epoch": 1.3055707762557078, "percentage": 32.66, "elapsed_time": "4:55:45", "remaining_time": "10:09:53"} +{"current_steps": 1788, "total_steps": 5472, "loss": 0.1657, "accuracy": 1.0, "learning_rate": 4.2575870867523973e-07, "epoch": 1.3063013698630137, "percentage": 32.68, "elapsed_time": "4:55:55", "remaining_time": "10:09:42"} +{"current_steps": 1789, "total_steps": 5472, "loss": 0.1489, "accuracy": 0.875, "learning_rate": 4.256452407098635e-07, "epoch": 1.3070319634703196, "percentage": 32.69, "elapsed_time": "4:56:04", "remaining_time": "10:09:30"} +{"current_steps": 1790, "total_steps": 5472, "loss": 0.1753, "accuracy": 0.875, "learning_rate": 4.255317012454772e-07, "epoch": 1.3077625570776257, "percentage": 32.71, "elapsed_time": "4:56:14", "remaining_time": "10:09:21"} +{"current_steps": 1791, "total_steps": 5472, "loss": 0.2631, "accuracy": 0.75, "learning_rate": 4.2541809032829876e-07, "epoch": 1.3084931506849315, "percentage": 32.73, "elapsed_time": "4:56:23", "remaining_time": "10:09:09"} +{"current_steps": 1792, "total_steps": 5472, "loss": 0.1782, "accuracy": 1.0, "learning_rate": 4.253044080045753e-07, "epoch": 1.3092237442922374, "percentage": 32.75, "elapsed_time": "4:56:33", "remaining_time": "10:09:00"} +{"current_steps": 1793, "total_steps": 5472, "loss": 0.1812, "accuracy": 1.0, "learning_rate": 4.2519065432058275e-07, "epoch": 1.3099543378995433, "percentage": 32.77, "elapsed_time": "4:56:44", "remaining_time": "10:08:51"} +{"current_steps": 1794, "total_steps": 5472, "loss": 0.2661, "accuracy": 1.0, "learning_rate": 4.2507682932262636e-07, "epoch": 1.3106849315068494, "percentage": 32.79, "elapsed_time": "4:56:53", "remaining_time": "10:08:41"} +{"current_steps": 1795, "total_steps": 5472, "loss": 0.1892, "accuracy": 1.0, "learning_rate": 4.249629330570401e-07, "epoch": 1.3114155251141553, "percentage": 32.8, "elapsed_time": "4:57:03", "remaining_time": "10:08:30"} +{"current_steps": 1796, "total_steps": 5472, "loss": 0.1526, "accuracy": 1.0, "learning_rate": 4.248489655701875e-07, "epoch": 1.3121461187214611, "percentage": 32.82, "elapsed_time": "4:57:13", "remaining_time": "10:08:20"} +{"current_steps": 1797, "total_steps": 5472, "loss": 0.1962, "accuracy": 0.75, "learning_rate": 4.2473492690846025e-07, "epoch": 1.3128767123287672, "percentage": 32.84, "elapsed_time": "4:57:23", "remaining_time": "10:08:11"} +{"current_steps": 1798, "total_steps": 5472, "loss": 0.1454, "accuracy": 1.0, "learning_rate": 4.246208171182799e-07, "epoch": 1.313607305936073, "percentage": 32.86, "elapsed_time": "4:57:32", "remaining_time": "10:08:00"} +{"current_steps": 1799, "total_steps": 5472, "loss": 0.1139, "accuracy": 1.0, "learning_rate": 4.2450663624609627e-07, "epoch": 1.314337899543379, "percentage": 32.88, "elapsed_time": "4:57:42", "remaining_time": "10:07:49"} +{"current_steps": 1800, "total_steps": 5472, "loss": 0.229, "accuracy": 1.0, "learning_rate": 4.2439238433838857e-07, "epoch": 1.3150684931506849, "percentage": 32.89, "elapsed_time": "4:57:52", "remaining_time": "10:07:39"} +{"current_steps": 1801, "total_steps": 5472, "loss": 0.1527, "accuracy": 0.875, "learning_rate": 4.242780614416647e-07, "epoch": 1.3157990867579907, "percentage": 32.91, "elapsed_time": "4:58:02", "remaining_time": "10:07:30"} +{"current_steps": 1802, "total_steps": 5472, "loss": 0.2531, "accuracy": 0.875, "learning_rate": 4.2416366760246136e-07, "epoch": 1.3165296803652968, "percentage": 32.93, "elapsed_time": "4:58:14", "remaining_time": "10:07:23"} +{"current_steps": 1803, "total_steps": 5472, "loss": 0.2437, "accuracy": 0.875, "learning_rate": 4.240492028673444e-07, "epoch": 1.3172602739726027, "percentage": 32.95, "elapsed_time": "4:58:25", "remaining_time": "10:07:16"} +{"current_steps": 1804, "total_steps": 5472, "loss": 0.1809, "accuracy": 1.0, "learning_rate": 4.2393466728290826e-07, "epoch": 1.3179908675799088, "percentage": 32.97, "elapsed_time": "4:58:34", "remaining_time": "10:07:05"} +{"current_steps": 1805, "total_steps": 5472, "loss": 0.2403, "accuracy": 1.0, "learning_rate": 4.2382006089577646e-07, "epoch": 1.3187214611872147, "percentage": 32.99, "elapsed_time": "4:58:44", "remaining_time": "10:06:55"} +{"current_steps": 1806, "total_steps": 5472, "loss": 0.1917, "accuracy": 0.875, "learning_rate": 4.2370538375260133e-07, "epoch": 1.3194520547945205, "percentage": 33.0, "elapsed_time": "4:58:53", "remaining_time": "10:06:43"} +{"current_steps": 1807, "total_steps": 5472, "loss": 0.1215, "accuracy": 1.0, "learning_rate": 4.2359063590006374e-07, "epoch": 1.3201826484018264, "percentage": 33.02, "elapsed_time": "4:59:02", "remaining_time": "10:06:32"} +{"current_steps": 1808, "total_steps": 5472, "loss": 0.1861, "accuracy": 0.875, "learning_rate": 4.234758173848736e-07, "epoch": 1.3209132420091323, "percentage": 33.04, "elapsed_time": "4:59:12", "remaining_time": "10:06:21"} +{"current_steps": 1809, "total_steps": 5472, "loss": 0.1444, "accuracy": 1.0, "learning_rate": 4.2336092825376946e-07, "epoch": 1.3216438356164384, "percentage": 33.06, "elapsed_time": "4:59:23", "remaining_time": "10:06:13"} +{"current_steps": 1810, "total_steps": 5472, "loss": 0.1209, "accuracy": 0.875, "learning_rate": 4.232459685535186e-07, "epoch": 1.3223744292237443, "percentage": 33.08, "elapsed_time": "4:59:32", "remaining_time": "10:06:02"} +{"current_steps": 1811, "total_steps": 5472, "loss": 0.2855, "accuracy": 0.875, "learning_rate": 4.2313093833091716e-07, "epoch": 1.3231050228310504, "percentage": 33.1, "elapsed_time": "4:59:43", "remaining_time": "10:05:53"} +{"current_steps": 1812, "total_steps": 5472, "loss": 0.1731, "accuracy": 1.0, "learning_rate": 4.230158376327899e-07, "epoch": 1.3238356164383562, "percentage": 33.11, "elapsed_time": "4:59:53", "remaining_time": "10:05:45"} +{"current_steps": 1813, "total_steps": 5472, "loss": 0.1874, "accuracy": 1.0, "learning_rate": 4.229006665059903e-07, "epoch": 1.324566210045662, "percentage": 33.13, "elapsed_time": "5:00:03", "remaining_time": "10:05:34"} +{"current_steps": 1814, "total_steps": 5472, "loss": 0.172, "accuracy": 1.0, "learning_rate": 4.227854249974004e-07, "epoch": 1.325296803652968, "percentage": 33.15, "elapsed_time": "5:00:12", "remaining_time": "10:05:22"} +{"current_steps": 1815, "total_steps": 5472, "loss": 0.2033, "accuracy": 0.875, "learning_rate": 4.2267011315393103e-07, "epoch": 1.3260273972602739, "percentage": 33.17, "elapsed_time": "5:00:22", "remaining_time": "10:05:13"} +{"current_steps": 1816, "total_steps": 5472, "loss": 0.1486, "accuracy": 1.0, "learning_rate": 4.2255473102252154e-07, "epoch": 1.32675799086758, "percentage": 33.19, "elapsed_time": "5:00:38", "remaining_time": "10:05:14"} +{"current_steps": 1817, "total_steps": 5472, "loss": 0.2607, "accuracy": 1.0, "learning_rate": 4.2243927865013997e-07, "epoch": 1.3274885844748858, "percentage": 33.21, "elapsed_time": "5:00:48", "remaining_time": "10:05:05"} +{"current_steps": 1818, "total_steps": 5472, "loss": 0.2851, "accuracy": 1.0, "learning_rate": 4.2232375608378295e-07, "epoch": 1.3282191780821917, "percentage": 33.22, "elapsed_time": "5:01:00", "remaining_time": "10:05:00"} +{"current_steps": 1819, "total_steps": 5472, "loss": 0.2309, "accuracy": 0.875, "learning_rate": 4.222081633704756e-07, "epoch": 1.3289497716894978, "percentage": 33.24, "elapsed_time": "5:01:10", "remaining_time": "10:04:49"} +{"current_steps": 1820, "total_steps": 5472, "loss": 0.1829, "accuracy": 1.0, "learning_rate": 4.2209250055727177e-07, "epoch": 1.3296803652968037, "percentage": 33.26, "elapsed_time": "5:01:21", "remaining_time": "10:04:43"} +{"current_steps": 1821, "total_steps": 5472, "loss": 0.0975, "accuracy": 1.0, "learning_rate": 4.2197676769125363e-07, "epoch": 1.3304109589041095, "percentage": 33.28, "elapsed_time": "5:01:30", "remaining_time": "10:04:30"} +{"current_steps": 1822, "total_steps": 5472, "loss": 0.1232, "accuracy": 1.0, "learning_rate": 4.21860964819532e-07, "epoch": 1.3311415525114154, "percentage": 33.3, "elapsed_time": "5:01:39", "remaining_time": "10:04:18"} +{"current_steps": 1823, "total_steps": 5472, "loss": 0.1524, "accuracy": 1.0, "learning_rate": 4.2174509198924613e-07, "epoch": 1.3318721461187215, "percentage": 33.32, "elapsed_time": "5:01:50", "remaining_time": "10:04:09"} +{"current_steps": 1824, "total_steps": 5472, "loss": 0.0842, "accuracy": 1.0, "learning_rate": 4.216291492475638e-07, "epoch": 1.3326027397260274, "percentage": 33.33, "elapsed_time": "5:02:03", "remaining_time": "10:04:06"} +{"current_steps": 1825, "total_steps": 5472, "loss": 0.2977, "accuracy": 1.0, "learning_rate": 4.215131366416812e-07, "epoch": 1.3333333333333333, "percentage": 33.35, "elapsed_time": "5:02:12", "remaining_time": "10:03:55"} +{"current_steps": 1826, "total_steps": 5472, "loss": 0.1389, "accuracy": 1.0, "learning_rate": 4.213970542188231e-07, "epoch": 1.3340639269406394, "percentage": 33.37, "elapsed_time": "5:02:21", "remaining_time": "10:03:43"} +{"current_steps": 1827, "total_steps": 5472, "loss": 0.2016, "accuracy": 0.875, "learning_rate": 4.212809020262425e-07, "epoch": 1.3347945205479452, "percentage": 33.39, "elapsed_time": "5:02:31", "remaining_time": "10:03:33"} +{"current_steps": 1828, "total_steps": 5472, "loss": 0.14, "accuracy": 1.0, "learning_rate": 4.2116468011122086e-07, "epoch": 1.335525114155251, "percentage": 33.41, "elapsed_time": "5:02:41", "remaining_time": "10:03:24"} +{"current_steps": 1829, "total_steps": 5472, "loss": 0.2391, "accuracy": 1.0, "learning_rate": 4.2104838852106804e-07, "epoch": 1.336255707762557, "percentage": 33.42, "elapsed_time": "5:02:51", "remaining_time": "10:03:13"} +{"current_steps": 1830, "total_steps": 5472, "loss": 0.181, "accuracy": 1.0, "learning_rate": 4.2093202730312227e-07, "epoch": 1.336986301369863, "percentage": 33.44, "elapsed_time": "5:02:59", "remaining_time": "10:03:01"} +{"current_steps": 1831, "total_steps": 5472, "loss": 0.2292, "accuracy": 1.0, "learning_rate": 4.208155965047502e-07, "epoch": 1.337716894977169, "percentage": 33.46, "elapsed_time": "5:03:09", "remaining_time": "10:02:49"} +{"current_steps": 1832, "total_steps": 5472, "loss": 0.1697, "accuracy": 1.0, "learning_rate": 4.206990961733466e-07, "epoch": 1.3384474885844748, "percentage": 33.48, "elapsed_time": "5:03:18", "remaining_time": "10:02:38"} +{"current_steps": 1833, "total_steps": 5472, "loss": 0.1241, "accuracy": 1.0, "learning_rate": 4.205825263563347e-07, "epoch": 1.339178082191781, "percentage": 33.5, "elapsed_time": "5:03:27", "remaining_time": "10:02:27"} +{"current_steps": 1834, "total_steps": 5472, "loss": 0.1854, "accuracy": 1.0, "learning_rate": 4.2046588710116603e-07, "epoch": 1.3399086757990868, "percentage": 33.52, "elapsed_time": "5:03:37", "remaining_time": "10:02:16"} +{"current_steps": 1835, "total_steps": 5472, "loss": 0.2597, "accuracy": 0.875, "learning_rate": 4.2034917845532035e-07, "epoch": 1.3406392694063927, "percentage": 33.53, "elapsed_time": "5:03:47", "remaining_time": "10:02:06"} +{"current_steps": 1836, "total_steps": 5472, "loss": 0.1713, "accuracy": 1.0, "learning_rate": 4.2023240046630553e-07, "epoch": 1.3413698630136985, "percentage": 33.55, "elapsed_time": "5:03:57", "remaining_time": "10:01:57"} +{"current_steps": 1837, "total_steps": 5472, "loss": 0.254, "accuracy": 1.0, "learning_rate": 4.201155531816579e-07, "epoch": 1.3421004566210046, "percentage": 33.57, "elapsed_time": "5:04:06", "remaining_time": "10:01:46"} +{"current_steps": 1838, "total_steps": 5472, "loss": 0.1871, "accuracy": 1.0, "learning_rate": 4.1999863664894183e-07, "epoch": 1.3428310502283105, "percentage": 33.59, "elapsed_time": "5:04:16", "remaining_time": "10:01:35"} +{"current_steps": 1839, "total_steps": 5472, "loss": 0.1749, "accuracy": 1.0, "learning_rate": 4.198816509157499e-07, "epoch": 1.3435616438356164, "percentage": 33.61, "elapsed_time": "5:04:25", "remaining_time": "10:01:25"} +{"current_steps": 1840, "total_steps": 5472, "loss": 0.218, "accuracy": 1.0, "learning_rate": 4.1976459602970305e-07, "epoch": 1.3442922374429225, "percentage": 33.63, "elapsed_time": "5:04:35", "remaining_time": "10:01:14"} +{"current_steps": 1841, "total_steps": 5472, "loss": 0.1547, "accuracy": 1.0, "learning_rate": 4.1964747203845007e-07, "epoch": 1.3450228310502284, "percentage": 33.64, "elapsed_time": "5:04:45", "remaining_time": "10:01:03"} +{"current_steps": 1842, "total_steps": 5472, "loss": 0.1304, "accuracy": 1.0, "learning_rate": 4.1953027898966795e-07, "epoch": 1.3457534246575342, "percentage": 33.66, "elapsed_time": "5:04:55", "remaining_time": "10:00:55"} +{"current_steps": 1843, "total_steps": 5472, "loss": 0.1175, "accuracy": 1.0, "learning_rate": 4.194130169310621e-07, "epoch": 1.34648401826484, "percentage": 33.68, "elapsed_time": "5:05:07", "remaining_time": "10:00:49"} +{"current_steps": 1844, "total_steps": 5472, "loss": 0.2164, "accuracy": 0.75, "learning_rate": 4.192956859103657e-07, "epoch": 1.3472146118721462, "percentage": 33.7, "elapsed_time": "5:05:17", "remaining_time": "10:00:39"} +{"current_steps": 1845, "total_steps": 5472, "loss": 0.1881, "accuracy": 0.875, "learning_rate": 4.1917828597534e-07, "epoch": 1.347945205479452, "percentage": 33.72, "elapsed_time": "5:05:27", "remaining_time": "10:00:28"} +{"current_steps": 1846, "total_steps": 5472, "loss": 0.2144, "accuracy": 0.875, "learning_rate": 4.190608171737744e-07, "epoch": 1.348675799086758, "percentage": 33.74, "elapsed_time": "5:05:36", "remaining_time": "10:00:18"} +{"current_steps": 1847, "total_steps": 5472, "loss": 0.337, "accuracy": 0.875, "learning_rate": 4.1894327955348643e-07, "epoch": 1.349406392694064, "percentage": 33.75, "elapsed_time": "5:05:46", "remaining_time": "10:00:07"} +{"current_steps": 1848, "total_steps": 5472, "loss": 0.3349, "accuracy": 1.0, "learning_rate": 4.1882567316232145e-07, "epoch": 1.35013698630137, "percentage": 33.77, "elapsed_time": "5:05:55", "remaining_time": "9:59:55"} +{"current_steps": 1849, "total_steps": 5472, "loss": 0.2237, "accuracy": 0.875, "learning_rate": 4.187079980481529e-07, "epoch": 1.3508675799086758, "percentage": 33.79, "elapsed_time": "5:06:07", "remaining_time": "9:59:50"} +{"current_steps": 1850, "total_steps": 5472, "loss": 0.158, "accuracy": 1.0, "learning_rate": 4.1859025425888224e-07, "epoch": 1.3515981735159817, "percentage": 33.81, "elapsed_time": "5:06:17", "remaining_time": "9:59:39"} +{"current_steps": 1851, "total_steps": 5472, "loss": 0.1438, "accuracy": 1.0, "learning_rate": 4.1847244184243867e-07, "epoch": 1.3523287671232875, "percentage": 33.83, "elapsed_time": "5:06:27", "remaining_time": "9:59:30"} +{"current_steps": 1852, "total_steps": 5472, "loss": 0.2025, "accuracy": 0.75, "learning_rate": 4.183545608467798e-07, "epoch": 1.3530593607305936, "percentage": 33.85, "elapsed_time": "5:06:38", "remaining_time": "9:59:22"} +{"current_steps": 1853, "total_steps": 5472, "loss": 0.2077, "accuracy": 1.0, "learning_rate": 4.182366113198905e-07, "epoch": 1.3537899543378995, "percentage": 33.86, "elapsed_time": "5:06:47", "remaining_time": "9:59:10"} +{"current_steps": 1854, "total_steps": 5472, "loss": 0.1351, "accuracy": 0.75, "learning_rate": 4.1811859330978406e-07, "epoch": 1.3545205479452056, "percentage": 33.88, "elapsed_time": "5:06:57", "remaining_time": "9:59:00"} +{"current_steps": 1855, "total_steps": 5472, "loss": 0.1695, "accuracy": 1.0, "learning_rate": 4.180005068645015e-07, "epoch": 1.3552511415525115, "percentage": 33.9, "elapsed_time": "5:07:07", "remaining_time": "9:58:50"} +{"current_steps": 1856, "total_steps": 5472, "loss": 0.1426, "accuracy": 1.0, "learning_rate": 4.1788235203211154e-07, "epoch": 1.3559817351598173, "percentage": 33.92, "elapsed_time": "5:07:16", "remaining_time": "9:58:39"} +{"current_steps": 1857, "total_steps": 5472, "loss": 0.2285, "accuracy": 1.0, "learning_rate": 4.17764128860711e-07, "epoch": 1.3567123287671232, "percentage": 33.94, "elapsed_time": "5:07:25", "remaining_time": "9:58:28"} +{"current_steps": 1858, "total_steps": 5472, "loss": 0.164, "accuracy": 1.0, "learning_rate": 4.176458373984243e-07, "epoch": 1.357442922374429, "percentage": 33.95, "elapsed_time": "5:07:35", "remaining_time": "9:58:17"} +{"current_steps": 1859, "total_steps": 5472, "loss": 0.2167, "accuracy": 0.875, "learning_rate": 4.175274776934037e-07, "epoch": 1.3581735159817352, "percentage": 33.97, "elapsed_time": "5:07:45", "remaining_time": "9:58:08"} +{"current_steps": 1860, "total_steps": 5472, "loss": 0.1329, "accuracy": 1.0, "learning_rate": 4.1740904979382935e-07, "epoch": 1.358904109589041, "percentage": 33.99, "elapsed_time": "5:07:54", "remaining_time": "9:57:55"} +{"current_steps": 1861, "total_steps": 5472, "loss": 0.1385, "accuracy": 1.0, "learning_rate": 4.172905537479091e-07, "epoch": 1.3596347031963472, "percentage": 34.01, "elapsed_time": "5:08:03", "remaining_time": "9:57:44"} +{"current_steps": 1862, "total_steps": 5472, "loss": 0.1579, "accuracy": 1.0, "learning_rate": 4.1717198960387847e-07, "epoch": 1.360365296803653, "percentage": 34.03, "elapsed_time": "5:08:14", "remaining_time": "9:57:37"} +{"current_steps": 1863, "total_steps": 5472, "loss": 0.2541, "accuracy": 1.0, "learning_rate": 4.170533574100008e-07, "epoch": 1.361095890410959, "percentage": 34.05, "elapsed_time": "5:08:23", "remaining_time": "9:57:25"} +{"current_steps": 1864, "total_steps": 5472, "loss": 0.1463, "accuracy": 1.0, "learning_rate": 4.169346572145671e-07, "epoch": 1.3618264840182648, "percentage": 34.06, "elapsed_time": "5:08:33", "remaining_time": "9:57:14"} +{"current_steps": 1865, "total_steps": 5472, "loss": 0.0782, "accuracy": 1.0, "learning_rate": 4.1681588906589605e-07, "epoch": 1.3625570776255707, "percentage": 34.08, "elapsed_time": "5:08:41", "remaining_time": "9:57:02"} +{"current_steps": 1866, "total_steps": 5472, "loss": 0.1738, "accuracy": 1.0, "learning_rate": 4.1669705301233393e-07, "epoch": 1.3632876712328768, "percentage": 34.1, "elapsed_time": "5:08:51", "remaining_time": "9:56:51"} +{"current_steps": 1867, "total_steps": 5472, "loss": 0.1405, "accuracy": 1.0, "learning_rate": 4.1657814910225477e-07, "epoch": 1.3640182648401826, "percentage": 34.12, "elapsed_time": "5:09:04", "remaining_time": "9:56:47"} +{"current_steps": 1868, "total_steps": 5472, "loss": 0.149, "accuracy": 1.0, "learning_rate": 4.1645917738406024e-07, "epoch": 1.3647488584474887, "percentage": 34.14, "elapsed_time": "5:09:13", "remaining_time": "9:56:35"} +{"current_steps": 1869, "total_steps": 5472, "loss": 0.1892, "accuracy": 0.875, "learning_rate": 4.163401379061794e-07, "epoch": 1.3654794520547946, "percentage": 34.16, "elapsed_time": "5:09:22", "remaining_time": "9:56:23"} +{"current_steps": 1870, "total_steps": 5472, "loss": 0.2385, "accuracy": 0.875, "learning_rate": 4.162210307170693e-07, "epoch": 1.3662100456621005, "percentage": 34.17, "elapsed_time": "5:09:31", "remaining_time": "9:56:12"} +{"current_steps": 1871, "total_steps": 5472, "loss": 0.1956, "accuracy": 1.0, "learning_rate": 4.1610185586521396e-07, "epoch": 1.3669406392694063, "percentage": 34.19, "elapsed_time": "5:09:40", "remaining_time": "9:56:00"} +{"current_steps": 1872, "total_steps": 5472, "loss": 0.1661, "accuracy": 1.0, "learning_rate": 4.159826133991254e-07, "epoch": 1.3676712328767122, "percentage": 34.21, "elapsed_time": "5:09:49", "remaining_time": "9:55:49"} +{"current_steps": 1873, "total_steps": 5472, "loss": 0.2118, "accuracy": 1.0, "learning_rate": 4.158633033673432e-07, "epoch": 1.3684018264840183, "percentage": 34.23, "elapsed_time": "5:09:59", "remaining_time": "9:55:39"} +{"current_steps": 1874, "total_steps": 5472, "loss": 0.2127, "accuracy": 1.0, "learning_rate": 4.1574392581843414e-07, "epoch": 1.3691324200913242, "percentage": 34.25, "elapsed_time": "5:10:08", "remaining_time": "9:55:27"} +{"current_steps": 1875, "total_steps": 5472, "loss": 0.257, "accuracy": 1.0, "learning_rate": 4.1562448080099264e-07, "epoch": 1.36986301369863, "percentage": 34.27, "elapsed_time": "5:10:17", "remaining_time": "9:55:15"} +{"current_steps": 1876, "total_steps": 5472, "loss": 0.1557, "accuracy": 1.0, "learning_rate": 4.155049683636406e-07, "epoch": 1.3705936073059362, "percentage": 34.28, "elapsed_time": "5:10:27", "remaining_time": "9:55:05"} +{"current_steps": 1877, "total_steps": 5472, "loss": 0.1551, "accuracy": 1.0, "learning_rate": 4.153853885550273e-07, "epoch": 1.371324200913242, "percentage": 34.3, "elapsed_time": "5:10:36", "remaining_time": "9:54:53"} +{"current_steps": 1878, "total_steps": 5472, "loss": 0.2171, "accuracy": 1.0, "learning_rate": 4.1526574142382955e-07, "epoch": 1.372054794520548, "percentage": 34.32, "elapsed_time": "5:10:45", "remaining_time": "9:54:42"} +{"current_steps": 1879, "total_steps": 5472, "loss": 0.192, "accuracy": 1.0, "learning_rate": 4.1514602701875145e-07, "epoch": 1.3727853881278538, "percentage": 34.34, "elapsed_time": "5:10:56", "remaining_time": "9:54:33"} +{"current_steps": 1880, "total_steps": 5472, "loss": 0.2323, "accuracy": 0.875, "learning_rate": 4.150262453885245e-07, "epoch": 1.3735159817351599, "percentage": 34.36, "elapsed_time": "5:11:05", "remaining_time": "9:54:22"} +{"current_steps": 1881, "total_steps": 5472, "loss": 0.1623, "accuracy": 1.0, "learning_rate": 4.149063965819076e-07, "epoch": 1.3742465753424657, "percentage": 34.38, "elapsed_time": "5:11:16", "remaining_time": "9:54:14"} +{"current_steps": 1882, "total_steps": 5472, "loss": 0.1449, "accuracy": 1.0, "learning_rate": 4.1478648064768704e-07, "epoch": 1.3749771689497716, "percentage": 34.39, "elapsed_time": "5:11:25", "remaining_time": "9:54:03"} +{"current_steps": 1883, "total_steps": 5472, "loss": 0.2127, "accuracy": 1.0, "learning_rate": 4.1466649763467643e-07, "epoch": 1.3757077625570777, "percentage": 34.41, "elapsed_time": "5:11:34", "remaining_time": "9:53:52"} +{"current_steps": 1884, "total_steps": 5472, "loss": 0.1257, "accuracy": 0.875, "learning_rate": 4.145464475917165e-07, "epoch": 1.3764383561643836, "percentage": 34.43, "elapsed_time": "5:11:43", "remaining_time": "9:53:40"} +{"current_steps": 1885, "total_steps": 5472, "loss": 0.1672, "accuracy": 1.0, "learning_rate": 4.144263305676755e-07, "epoch": 1.3771689497716895, "percentage": 34.45, "elapsed_time": "5:11:53", "remaining_time": "9:53:30"} +{"current_steps": 1886, "total_steps": 5472, "loss": 0.1938, "accuracy": 1.0, "learning_rate": 4.1430614661144884e-07, "epoch": 1.3778995433789953, "percentage": 34.47, "elapsed_time": "5:12:02", "remaining_time": "9:53:18"} +{"current_steps": 1887, "total_steps": 5472, "loss": 0.2055, "accuracy": 1.0, "learning_rate": 4.1418589577195927e-07, "epoch": 1.3786301369863014, "percentage": 34.48, "elapsed_time": "5:12:12", "remaining_time": "9:53:09"} +{"current_steps": 1888, "total_steps": 5472, "loss": 0.3682, "accuracy": 0.875, "learning_rate": 4.1406557809815646e-07, "epoch": 1.3793607305936073, "percentage": 34.5, "elapsed_time": "5:12:21", "remaining_time": "9:52:56"} +{"current_steps": 1889, "total_steps": 5472, "loss": 0.2258, "accuracy": 0.75, "learning_rate": 4.1394519363901775e-07, "epoch": 1.3800913242009132, "percentage": 34.52, "elapsed_time": "5:12:31", "remaining_time": "9:52:46"} +{"current_steps": 1890, "total_steps": 5472, "loss": 0.1338, "accuracy": 0.875, "learning_rate": 4.1382474244354725e-07, "epoch": 1.3808219178082193, "percentage": 34.54, "elapsed_time": "5:12:41", "remaining_time": "9:52:36"} +{"current_steps": 1891, "total_steps": 5472, "loss": 0.0913, "accuracy": 1.0, "learning_rate": 4.137042245607766e-07, "epoch": 1.3815525114155252, "percentage": 34.56, "elapsed_time": "5:12:50", "remaining_time": "9:52:26"} +{"current_steps": 1892, "total_steps": 5472, "loss": 0.1141, "accuracy": 1.0, "learning_rate": 4.135836400397642e-07, "epoch": 1.382283105022831, "percentage": 34.58, "elapsed_time": "5:12:59", "remaining_time": "9:52:14"} +{"current_steps": 1893, "total_steps": 5472, "loss": 0.1937, "accuracy": 1.0, "learning_rate": 4.134629889295959e-07, "epoch": 1.383013698630137, "percentage": 34.59, "elapsed_time": "5:13:08", "remaining_time": "9:52:03"} +{"current_steps": 1894, "total_steps": 5472, "loss": 0.2073, "accuracy": 0.875, "learning_rate": 4.133422712793845e-07, "epoch": 1.383744292237443, "percentage": 34.61, "elapsed_time": "5:13:19", "remaining_time": "9:51:54"} +{"current_steps": 1895, "total_steps": 5472, "loss": 0.1166, "accuracy": 1.0, "learning_rate": 4.1322148713826975e-07, "epoch": 1.3844748858447489, "percentage": 34.63, "elapsed_time": "5:13:28", "remaining_time": "9:51:42"} +{"current_steps": 1896, "total_steps": 5472, "loss": 0.2177, "accuracy": 1.0, "learning_rate": 4.13100636555419e-07, "epoch": 1.3852054794520547, "percentage": 34.65, "elapsed_time": "5:13:38", "remaining_time": "9:51:33"} +{"current_steps": 1897, "total_steps": 5472, "loss": 0.0883, "accuracy": 1.0, "learning_rate": 4.1297971958002595e-07, "epoch": 1.3859360730593608, "percentage": 34.67, "elapsed_time": "5:13:47", "remaining_time": "9:51:21"} +{"current_steps": 1898, "total_steps": 5472, "loss": 0.2237, "accuracy": 0.875, "learning_rate": 4.1285873626131186e-07, "epoch": 1.3866666666666667, "percentage": 34.69, "elapsed_time": "5:13:57", "remaining_time": "9:51:11"} +{"current_steps": 1899, "total_steps": 5472, "loss": 0.1248, "accuracy": 1.0, "learning_rate": 4.1273768664852463e-07, "epoch": 1.3873972602739726, "percentage": 34.7, "elapsed_time": "5:14:06", "remaining_time": "9:50:59"} +{"current_steps": 1900, "total_steps": 5472, "loss": 0.1534, "accuracy": 0.875, "learning_rate": 4.126165707909394e-07, "epoch": 1.3881278538812785, "percentage": 34.72, "elapsed_time": "5:14:17", "remaining_time": "9:50:51"} +{"current_steps": 1901, "total_steps": 5472, "loss": 0.0803, "accuracy": 1.0, "learning_rate": 4.1249538873785815e-07, "epoch": 1.3888584474885846, "percentage": 34.74, "elapsed_time": "5:14:26", "remaining_time": "9:50:40"} +{"current_steps": 1902, "total_steps": 5472, "loss": 0.1598, "accuracy": 1.0, "learning_rate": 4.1237414053860995e-07, "epoch": 1.3895890410958904, "percentage": 34.76, "elapsed_time": "5:14:36", "remaining_time": "9:50:29"} +{"current_steps": 1903, "total_steps": 5472, "loss": 0.1347, "accuracy": 1.0, "learning_rate": 4.122528262425505e-07, "epoch": 1.3903196347031963, "percentage": 34.78, "elapsed_time": "5:14:44", "remaining_time": "9:50:17"} +{"current_steps": 1904, "total_steps": 5472, "loss": 0.1102, "accuracy": 1.0, "learning_rate": 4.1213144589906266e-07, "epoch": 1.3910502283105024, "percentage": 34.8, "elapsed_time": "5:14:53", "remaining_time": "9:50:04"} +{"current_steps": 1905, "total_steps": 5472, "loss": 0.1529, "accuracy": 1.0, "learning_rate": 4.120099995575562e-07, "epoch": 1.3917808219178083, "percentage": 34.81, "elapsed_time": "5:15:02", "remaining_time": "9:49:54"} +{"current_steps": 1906, "total_steps": 5472, "loss": 0.1209, "accuracy": 1.0, "learning_rate": 4.1188848726746763e-07, "epoch": 1.3925114155251141, "percentage": 34.83, "elapsed_time": "5:15:12", "remaining_time": "9:49:43"} +{"current_steps": 1907, "total_steps": 5472, "loss": 0.2049, "accuracy": 0.875, "learning_rate": 4.117669090782602e-07, "epoch": 1.39324200913242, "percentage": 34.85, "elapsed_time": "5:15:21", "remaining_time": "9:49:31"} +{"current_steps": 1908, "total_steps": 5472, "loss": 0.2035, "accuracy": 1.0, "learning_rate": 4.116452650394242e-07, "epoch": 1.393972602739726, "percentage": 34.87, "elapsed_time": "5:15:30", "remaining_time": "9:49:21"} +{"current_steps": 1909, "total_steps": 5472, "loss": 0.151, "accuracy": 1.0, "learning_rate": 4.115235552004767e-07, "epoch": 1.394703196347032, "percentage": 34.89, "elapsed_time": "5:15:40", "remaining_time": "9:49:10"} +{"current_steps": 1910, "total_steps": 5472, "loss": 0.35, "accuracy": 1.0, "learning_rate": 4.1140177961096146e-07, "epoch": 1.3954337899543379, "percentage": 34.9, "elapsed_time": "5:15:50", "remaining_time": "9:49:01"} +{"current_steps": 1911, "total_steps": 5472, "loss": 0.1412, "accuracy": 1.0, "learning_rate": 4.1127993832044903e-07, "epoch": 1.396164383561644, "percentage": 34.92, "elapsed_time": "5:16:00", "remaining_time": "9:48:50"} +{"current_steps": 1912, "total_steps": 5472, "loss": 0.1811, "accuracy": 1.0, "learning_rate": 4.111580313785368e-07, "epoch": 1.3968949771689498, "percentage": 34.94, "elapsed_time": "5:16:10", "remaining_time": "9:48:41"} +{"current_steps": 1913, "total_steps": 5472, "loss": 0.1857, "accuracy": 0.875, "learning_rate": 4.110360588348487e-07, "epoch": 1.3976255707762557, "percentage": 34.96, "elapsed_time": "5:16:19", "remaining_time": "9:48:30"} +{"current_steps": 1914, "total_steps": 5472, "loss": 0.1581, "accuracy": 1.0, "learning_rate": 4.1091402073903555e-07, "epoch": 1.3983561643835616, "percentage": 34.98, "elapsed_time": "5:16:29", "remaining_time": "9:48:21"} +{"current_steps": 1915, "total_steps": 5472, "loss": 0.0919, "accuracy": 1.0, "learning_rate": 4.107919171407747e-07, "epoch": 1.3990867579908675, "percentage": 35.0, "elapsed_time": "5:16:39", "remaining_time": "9:48:10"} +{"current_steps": 1916, "total_steps": 5472, "loss": 3.6065, "accuracy": 0.75, "learning_rate": 4.106697480897703e-07, "epoch": 1.3998173515981736, "percentage": 35.01, "elapsed_time": "5:16:50", "remaining_time": "9:48:02"} +{"current_steps": 1917, "total_steps": 5472, "loss": 0.1414, "accuracy": 1.0, "learning_rate": 4.1054751363575303e-07, "epoch": 1.4005479452054794, "percentage": 35.03, "elapsed_time": "5:16:59", "remaining_time": "9:47:51"} +{"current_steps": 1918, "total_steps": 5472, "loss": 0.2246, "accuracy": 0.875, "learning_rate": 4.104252138284803e-07, "epoch": 1.4012785388127855, "percentage": 35.05, "elapsed_time": "5:17:08", "remaining_time": "9:47:39"} +{"current_steps": 1919, "total_steps": 5472, "loss": 0.217, "accuracy": 1.0, "learning_rate": 4.1030284871773604e-07, "epoch": 1.4020091324200914, "percentage": 35.07, "elapsed_time": "5:17:17", "remaining_time": "9:47:27"} +{"current_steps": 1920, "total_steps": 5472, "loss": 0.2965, "accuracy": 0.875, "learning_rate": 4.1018041835333076e-07, "epoch": 1.4027397260273973, "percentage": 35.09, "elapsed_time": "5:17:27", "remaining_time": "9:47:18"} +{"current_steps": 1921, "total_steps": 5472, "loss": 0.1855, "accuracy": 1.0, "learning_rate": 4.1005792278510164e-07, "epoch": 1.4034703196347031, "percentage": 35.11, "elapsed_time": "5:17:37", "remaining_time": "9:47:08"} +{"current_steps": 1922, "total_steps": 5472, "loss": 0.2232, "accuracy": 1.0, "learning_rate": 4.0993536206291225e-07, "epoch": 1.404200913242009, "percentage": 35.12, "elapsed_time": "5:17:47", "remaining_time": "9:46:58"} +{"current_steps": 1923, "total_steps": 5472, "loss": 0.2466, "accuracy": 1.0, "learning_rate": 4.098127362366528e-07, "epoch": 1.4049315068493151, "percentage": 35.14, "elapsed_time": "5:17:57", "remaining_time": "9:46:48"} +{"current_steps": 1924, "total_steps": 5472, "loss": 0.14, "accuracy": 1.0, "learning_rate": 4.096900453562399e-07, "epoch": 1.405662100456621, "percentage": 35.16, "elapsed_time": "5:18:06", "remaining_time": "9:46:37"} +{"current_steps": 1925, "total_steps": 5472, "loss": 0.0997, "accuracy": 1.0, "learning_rate": 4.0956728947161677e-07, "epoch": 1.4063926940639269, "percentage": 35.18, "elapsed_time": "5:18:16", "remaining_time": "9:46:27"} +{"current_steps": 1926, "total_steps": 5472, "loss": 0.285, "accuracy": 0.75, "learning_rate": 4.09444468632753e-07, "epoch": 1.407123287671233, "percentage": 35.2, "elapsed_time": "5:18:26", "remaining_time": "9:46:16"} +{"current_steps": 1927, "total_steps": 5472, "loss": 0.2464, "accuracy": 0.75, "learning_rate": 4.0932158288964456e-07, "epoch": 1.4078538812785388, "percentage": 35.22, "elapsed_time": "5:18:37", "remaining_time": "9:46:08"} +{"current_steps": 1928, "total_steps": 5472, "loss": 0.206, "accuracy": 1.0, "learning_rate": 4.091986322923141e-07, "epoch": 1.4085844748858447, "percentage": 35.23, "elapsed_time": "5:18:45", "remaining_time": "9:45:56"} +{"current_steps": 1929, "total_steps": 5472, "loss": 0.1731, "accuracy": 0.875, "learning_rate": 4.090756168908104e-07, "epoch": 1.4093150684931506, "percentage": 35.25, "elapsed_time": "5:18:55", "remaining_time": "9:45:46"} +{"current_steps": 1930, "total_steps": 5472, "loss": 0.2048, "accuracy": 1.0, "learning_rate": 4.0895253673520856e-07, "epoch": 1.4100456621004567, "percentage": 35.27, "elapsed_time": "5:19:04", "remaining_time": "9:45:34"} +{"current_steps": 1931, "total_steps": 5472, "loss": 0.1849, "accuracy": 1.0, "learning_rate": 4.0882939187561047e-07, "epoch": 1.4107762557077625, "percentage": 35.29, "elapsed_time": "5:19:13", "remaining_time": "9:45:23"} +{"current_steps": 1932, "total_steps": 5472, "loss": 0.1351, "accuracy": 0.875, "learning_rate": 4.0870618236214383e-07, "epoch": 1.4115068493150684, "percentage": 35.31, "elapsed_time": "5:19:24", "remaining_time": "9:45:15"} +{"current_steps": 1933, "total_steps": 5472, "loss": 0.1775, "accuracy": 0.875, "learning_rate": 4.085829082449631e-07, "epoch": 1.4122374429223745, "percentage": 35.33, "elapsed_time": "5:19:35", "remaining_time": "9:45:07"} +{"current_steps": 1934, "total_steps": 5472, "loss": 0.194, "accuracy": 1.0, "learning_rate": 4.0845956957424865e-07, "epoch": 1.4129680365296804, "percentage": 35.34, "elapsed_time": "5:19:44", "remaining_time": "9:44:54"} +{"current_steps": 1935, "total_steps": 5472, "loss": 0.1204, "accuracy": 1.0, "learning_rate": 4.083361664002075e-07, "epoch": 1.4136986301369863, "percentage": 35.36, "elapsed_time": "5:19:53", "remaining_time": "9:44:44"} +{"current_steps": 1936, "total_steps": 5472, "loss": 0.2197, "accuracy": 1.0, "learning_rate": 4.0821269877307264e-07, "epoch": 1.4144292237442921, "percentage": 35.38, "elapsed_time": "5:20:03", "remaining_time": "9:44:34"} +{"current_steps": 1937, "total_steps": 5472, "loss": 0.1655, "accuracy": 0.75, "learning_rate": 4.080891667431035e-07, "epoch": 1.4151598173515982, "percentage": 35.4, "elapsed_time": "5:20:13", "remaining_time": "9:44:24"} +{"current_steps": 1938, "total_steps": 5472, "loss": 0.111, "accuracy": 1.0, "learning_rate": 4.079655703605854e-07, "epoch": 1.415890410958904, "percentage": 35.42, "elapsed_time": "5:20:24", "remaining_time": "9:44:15"} +{"current_steps": 1939, "total_steps": 5472, "loss": 0.1772, "accuracy": 1.0, "learning_rate": 4.0784190967583046e-07, "epoch": 1.41662100456621, "percentage": 35.43, "elapsed_time": "5:20:33", "remaining_time": "9:44:04"} +{"current_steps": 1940, "total_steps": 5472, "loss": 0.1406, "accuracy": 1.0, "learning_rate": 4.077181847391763e-07, "epoch": 1.417351598173516, "percentage": 35.45, "elapsed_time": "5:20:42", "remaining_time": "9:43:53"} +{"current_steps": 1941, "total_steps": 5472, "loss": 0.1398, "accuracy": 1.0, "learning_rate": 4.0759439560098715e-07, "epoch": 1.418082191780822, "percentage": 35.47, "elapsed_time": "5:20:53", "remaining_time": "9:43:46"} +{"current_steps": 1942, "total_steps": 5472, "loss": 0.189, "accuracy": 1.0, "learning_rate": 4.074705423116531e-07, "epoch": 1.4188127853881278, "percentage": 35.49, "elapsed_time": "5:21:02", "remaining_time": "9:43:34"} +{"current_steps": 1943, "total_steps": 5472, "loss": 0.1609, "accuracy": 1.0, "learning_rate": 4.0734662492159063e-07, "epoch": 1.4195433789954337, "percentage": 35.51, "elapsed_time": "5:21:12", "remaining_time": "9:43:23"} +{"current_steps": 1944, "total_steps": 5472, "loss": 0.083, "accuracy": 1.0, "learning_rate": 4.07222643481242e-07, "epoch": 1.4202739726027398, "percentage": 35.53, "elapsed_time": "5:21:23", "remaining_time": "9:43:15"} +{"current_steps": 1945, "total_steps": 5472, "loss": 0.1594, "accuracy": 1.0, "learning_rate": 4.0709859804107584e-07, "epoch": 1.4210045662100457, "percentage": 35.54, "elapsed_time": "5:21:31", "remaining_time": "9:43:03"} +{"current_steps": 1946, "total_steps": 5472, "loss": 0.1561, "accuracy": 1.0, "learning_rate": 4.0697448865158663e-07, "epoch": 1.4217351598173515, "percentage": 35.56, "elapsed_time": "5:21:42", "remaining_time": "9:42:54"} +{"current_steps": 1947, "total_steps": 5472, "loss": 0.2559, "accuracy": 0.75, "learning_rate": 4.068503153632949e-07, "epoch": 1.4224657534246576, "percentage": 35.58, "elapsed_time": "5:21:51", "remaining_time": "9:42:43"} +{"current_steps": 1948, "total_steps": 5472, "loss": 0.1621, "accuracy": 1.0, "learning_rate": 4.0672607822674734e-07, "epoch": 1.4231963470319635, "percentage": 35.6, "elapsed_time": "5:22:01", "remaining_time": "9:42:33"} +{"current_steps": 1949, "total_steps": 5472, "loss": 0.2111, "accuracy": 0.875, "learning_rate": 4.0660177729251636e-07, "epoch": 1.4239269406392694, "percentage": 35.62, "elapsed_time": "5:22:11", "remaining_time": "9:42:22"} +{"current_steps": 1950, "total_steps": 5472, "loss": 0.2245, "accuracy": 0.875, "learning_rate": 4.064774126112007e-07, "epoch": 1.4246575342465753, "percentage": 35.64, "elapsed_time": "5:22:20", "remaining_time": "9:42:12"} +{"current_steps": 1951, "total_steps": 5472, "loss": 0.1678, "accuracy": 1.0, "learning_rate": 4.063529842334247e-07, "epoch": 1.4253881278538814, "percentage": 35.65, "elapsed_time": "5:22:30", "remaining_time": "9:42:02"} +{"current_steps": 1952, "total_steps": 5472, "loss": 0.176, "accuracy": 0.875, "learning_rate": 4.0622849220983895e-07, "epoch": 1.4261187214611872, "percentage": 35.67, "elapsed_time": "5:22:40", "remaining_time": "9:41:52"} +{"current_steps": 1953, "total_steps": 5472, "loss": 0.1497, "accuracy": 1.0, "learning_rate": 4.061039365911196e-07, "epoch": 1.426849315068493, "percentage": 35.69, "elapsed_time": "5:22:49", "remaining_time": "9:41:41"} +{"current_steps": 1954, "total_steps": 5472, "loss": 0.1904, "accuracy": 1.0, "learning_rate": 4.05979317427969e-07, "epoch": 1.4275799086757992, "percentage": 35.71, "elapsed_time": "5:22:58", "remaining_time": "9:41:29"} +{"current_steps": 1955, "total_steps": 5472, "loss": 0.2297, "accuracy": 0.875, "learning_rate": 4.0585463477111516e-07, "epoch": 1.428310502283105, "percentage": 35.73, "elapsed_time": "5:23:07", "remaining_time": "9:41:18"} +{"current_steps": 1956, "total_steps": 5472, "loss": 0.2049, "accuracy": 1.0, "learning_rate": 4.05729888671312e-07, "epoch": 1.429041095890411, "percentage": 35.75, "elapsed_time": "5:23:17", "remaining_time": "9:41:07"} +{"current_steps": 1957, "total_steps": 5472, "loss": 0.3231, "accuracy": 0.875, "learning_rate": 4.056050791793394e-07, "epoch": 1.4297716894977168, "percentage": 35.76, "elapsed_time": "5:23:27", "remaining_time": "9:40:57"} +{"current_steps": 1958, "total_steps": 5472, "loss": 0.1899, "accuracy": 1.0, "learning_rate": 4.0548020634600275e-07, "epoch": 1.4305022831050227, "percentage": 35.78, "elapsed_time": "5:23:36", "remaining_time": "9:40:45"} +{"current_steps": 1959, "total_steps": 5472, "loss": 0.1753, "accuracy": 1.0, "learning_rate": 4.0535527022213356e-07, "epoch": 1.4312328767123288, "percentage": 35.8, "elapsed_time": "5:23:46", "remaining_time": "9:40:36"} +{"current_steps": 1960, "total_steps": 5472, "loss": 0.1101, "accuracy": 1.0, "learning_rate": 4.052302708585888e-07, "epoch": 1.4319634703196347, "percentage": 35.82, "elapsed_time": "5:23:56", "remaining_time": "9:40:26"} +{"current_steps": 1961, "total_steps": 5472, "loss": 0.1295, "accuracy": 1.0, "learning_rate": 4.0510520830625137e-07, "epoch": 1.4326940639269408, "percentage": 35.84, "elapsed_time": "5:24:05", "remaining_time": "9:40:16"} +{"current_steps": 1962, "total_steps": 5472, "loss": 0.1305, "accuracy": 1.0, "learning_rate": 4.049800826160299e-07, "epoch": 1.4334246575342466, "percentage": 35.86, "elapsed_time": "5:24:16", "remaining_time": "9:40:08"} +{"current_steps": 1963, "total_steps": 5472, "loss": 0.2584, "accuracy": 0.875, "learning_rate": 4.0485489383885865e-07, "epoch": 1.4341552511415525, "percentage": 35.87, "elapsed_time": "5:24:26", "remaining_time": "9:39:58"} +{"current_steps": 1964, "total_steps": 5472, "loss": 0.2884, "accuracy": 0.875, "learning_rate": 4.0472964202569747e-07, "epoch": 1.4348858447488584, "percentage": 35.89, "elapsed_time": "5:24:36", "remaining_time": "9:39:47"} +{"current_steps": 1965, "total_steps": 5472, "loss": 0.3089, "accuracy": 0.875, "learning_rate": 4.0460432722753214e-07, "epoch": 1.4356164383561643, "percentage": 35.91, "elapsed_time": "5:24:45", "remaining_time": "9:39:37"} +{"current_steps": 1966, "total_steps": 5472, "loss": 0.1242, "accuracy": 1.0, "learning_rate": 4.0447894949537375e-07, "epoch": 1.4363470319634704, "percentage": 35.93, "elapsed_time": "5:24:55", "remaining_time": "9:39:27"} +{"current_steps": 1967, "total_steps": 5472, "loss": 0.0899, "accuracy": 1.0, "learning_rate": 4.0435350888025925e-07, "epoch": 1.4370776255707762, "percentage": 35.95, "elapsed_time": "5:25:05", "remaining_time": "9:39:16"} +{"current_steps": 1968, "total_steps": 5472, "loss": 0.3091, "accuracy": 0.875, "learning_rate": 4.0422800543325114e-07, "epoch": 1.4378082191780823, "percentage": 35.96, "elapsed_time": "5:25:16", "remaining_time": "9:39:08"} +{"current_steps": 1969, "total_steps": 5472, "loss": 0.1211, "accuracy": 1.0, "learning_rate": 4.041024392054374e-07, "epoch": 1.4385388127853882, "percentage": 35.98, "elapsed_time": "5:25:26", "remaining_time": "9:38:59"} +{"current_steps": 1970, "total_steps": 5472, "loss": 0.1577, "accuracy": 1.0, "learning_rate": 4.0397681024793175e-07, "epoch": 1.439269406392694, "percentage": 36.0, "elapsed_time": "5:25:37", "remaining_time": "9:38:50"} +{"current_steps": 1971, "total_steps": 5472, "loss": 0.1056, "accuracy": 0.875, "learning_rate": 4.0385111861187313e-07, "epoch": 1.44, "percentage": 36.02, "elapsed_time": "5:25:46", "remaining_time": "9:38:39"} +{"current_steps": 1972, "total_steps": 5472, "loss": 0.1447, "accuracy": 1.0, "learning_rate": 4.037253643484264e-07, "epoch": 1.4407305936073058, "percentage": 36.04, "elapsed_time": "5:25:56", "remaining_time": "9:38:29"} +{"current_steps": 1973, "total_steps": 5472, "loss": 0.0865, "accuracy": 1.0, "learning_rate": 4.0359954750878155e-07, "epoch": 1.441461187214612, "percentage": 36.06, "elapsed_time": "5:26:06", "remaining_time": "9:38:20"} +{"current_steps": 1974, "total_steps": 5472, "loss": 0.1145, "accuracy": 0.875, "learning_rate": 4.0347366814415433e-07, "epoch": 1.4421917808219178, "percentage": 36.07, "elapsed_time": "5:26:16", "remaining_time": "9:38:10"} +{"current_steps": 1975, "total_steps": 5472, "loss": 0.2248, "accuracy": 1.0, "learning_rate": 4.0334772630578565e-07, "epoch": 1.4429223744292237, "percentage": 36.09, "elapsed_time": "5:26:27", "remaining_time": "9:38:01"} +{"current_steps": 1976, "total_steps": 5472, "loss": 0.1657, "accuracy": 1.0, "learning_rate": 4.032217220449422e-07, "epoch": 1.4436529680365298, "percentage": 36.11, "elapsed_time": "5:26:37", "remaining_time": "9:37:51"} +{"current_steps": 1977, "total_steps": 5472, "loss": 0.2581, "accuracy": 0.875, "learning_rate": 4.0309565541291566e-07, "epoch": 1.4443835616438356, "percentage": 36.13, "elapsed_time": "5:26:47", "remaining_time": "9:37:42"} +{"current_steps": 1978, "total_steps": 5472, "loss": 0.1604, "accuracy": 1.0, "learning_rate": 4.0296952646102356e-07, "epoch": 1.4451141552511415, "percentage": 36.15, "elapsed_time": "5:26:57", "remaining_time": "9:37:33"} +{"current_steps": 1979, "total_steps": 5472, "loss": 0.1404, "accuracy": 1.0, "learning_rate": 4.0284333524060844e-07, "epoch": 1.4458447488584474, "percentage": 36.17, "elapsed_time": "5:27:06", "remaining_time": "9:37:21"} +{"current_steps": 1980, "total_steps": 5472, "loss": 0.191, "accuracy": 0.875, "learning_rate": 4.027170818030383e-07, "epoch": 1.4465753424657535, "percentage": 36.18, "elapsed_time": "5:27:17", "remaining_time": "9:37:12"} +{"current_steps": 1981, "total_steps": 5472, "loss": 0.0936, "accuracy": 1.0, "learning_rate": 4.0259076619970663e-07, "epoch": 1.4473059360730594, "percentage": 36.2, "elapsed_time": "5:27:25", "remaining_time": "9:37:00"} +{"current_steps": 1982, "total_steps": 5472, "loss": 0.1834, "accuracy": 1.0, "learning_rate": 4.024643884820319e-07, "epoch": 1.4480365296803652, "percentage": 36.22, "elapsed_time": "5:27:35", "remaining_time": "9:36:49"} +{"current_steps": 1983, "total_steps": 5472, "loss": 0.2077, "accuracy": 1.0, "learning_rate": 4.023379487014581e-07, "epoch": 1.4487671232876713, "percentage": 36.24, "elapsed_time": "5:27:44", "remaining_time": "9:36:39"} +{"current_steps": 1984, "total_steps": 5472, "loss": 0.1856, "accuracy": 1.0, "learning_rate": 4.022114469094544e-07, "epoch": 1.4494977168949772, "percentage": 36.26, "elapsed_time": "5:27:53", "remaining_time": "9:36:27"} +{"current_steps": 1985, "total_steps": 5472, "loss": 0.2166, "accuracy": 0.75, "learning_rate": 4.020848831575153e-07, "epoch": 1.450228310502283, "percentage": 36.28, "elapsed_time": "5:28:04", "remaining_time": "9:36:18"} +{"current_steps": 1986, "total_steps": 5472, "loss": 0.1767, "accuracy": 1.0, "learning_rate": 4.0195825749716044e-07, "epoch": 1.450958904109589, "percentage": 36.29, "elapsed_time": "5:28:12", "remaining_time": "9:36:06"} +{"current_steps": 1987, "total_steps": 5472, "loss": 0.1336, "accuracy": 1.0, "learning_rate": 4.018315699799347e-07, "epoch": 1.451689497716895, "percentage": 36.31, "elapsed_time": "5:28:22", "remaining_time": "9:35:56"} +{"current_steps": 1988, "total_steps": 5472, "loss": 0.1773, "accuracy": 0.875, "learning_rate": 4.0170482065740807e-07, "epoch": 1.452420091324201, "percentage": 36.33, "elapsed_time": "5:28:33", "remaining_time": "9:35:47"} +{"current_steps": 1989, "total_steps": 5472, "loss": 0.2007, "accuracy": 0.875, "learning_rate": 4.015780095811758e-07, "epoch": 1.4531506849315068, "percentage": 36.35, "elapsed_time": "5:28:42", "remaining_time": "9:35:36"} +{"current_steps": 1990, "total_steps": 5472, "loss": 0.1303, "accuracy": 1.0, "learning_rate": 4.0145113680285814e-07, "epoch": 1.4538812785388129, "percentage": 36.37, "elapsed_time": "5:28:53", "remaining_time": "9:35:28"} +{"current_steps": 1991, "total_steps": 5472, "loss": 0.0427, "accuracy": 1.0, "learning_rate": 4.0132420237410056e-07, "epoch": 1.4546118721461188, "percentage": 36.39, "elapsed_time": "5:29:02", "remaining_time": "9:35:17"} +{"current_steps": 1992, "total_steps": 5472, "loss": 0.2095, "accuracy": 0.875, "learning_rate": 4.0119720634657374e-07, "epoch": 1.4553424657534246, "percentage": 36.4, "elapsed_time": "5:29:13", "remaining_time": "9:35:08"} +{"current_steps": 1993, "total_steps": 5472, "loss": 0.1332, "accuracy": 1.0, "learning_rate": 4.010701487719732e-07, "epoch": 1.4560730593607305, "percentage": 36.42, "elapsed_time": "5:29:23", "remaining_time": "9:34:59"} +{"current_steps": 1994, "total_steps": 5472, "loss": 0.3359, "accuracy": 1.0, "learning_rate": 4.0094302970201965e-07, "epoch": 1.4568036529680366, "percentage": 36.44, "elapsed_time": "5:29:35", "remaining_time": "9:34:52"} +{"current_steps": 1995, "total_steps": 5472, "loss": 0.2251, "accuracy": 1.0, "learning_rate": 4.008158491884587e-07, "epoch": 1.4575342465753425, "percentage": 36.46, "elapsed_time": "5:29:45", "remaining_time": "9:34:43"} +{"current_steps": 1996, "total_steps": 5472, "loss": 0.1375, "accuracy": 1.0, "learning_rate": 4.006886072830612e-07, "epoch": 1.4582648401826483, "percentage": 36.48, "elapsed_time": "5:29:56", "remaining_time": "9:34:34"} +{"current_steps": 1997, "total_steps": 5472, "loss": 0.1344, "accuracy": 1.0, "learning_rate": 4.0056130403762277e-07, "epoch": 1.4589954337899544, "percentage": 36.49, "elapsed_time": "5:30:04", "remaining_time": "9:34:22"} +{"current_steps": 1998, "total_steps": 5472, "loss": 0.1554, "accuracy": 0.875, "learning_rate": 4.004339395039642e-07, "epoch": 1.4597260273972603, "percentage": 36.51, "elapsed_time": "5:30:15", "remaining_time": "9:34:13"} +{"current_steps": 1999, "total_steps": 5472, "loss": 0.1046, "accuracy": 0.875, "learning_rate": 4.0030651373393104e-07, "epoch": 1.4604566210045662, "percentage": 36.53, "elapsed_time": "5:30:24", "remaining_time": "9:34:02"} +{"current_steps": 2000, "total_steps": 5472, "loss": 0.1849, "accuracy": 0.875, "learning_rate": 4.0017902677939386e-07, "epoch": 1.461187214611872, "percentage": 36.55, "elapsed_time": "5:30:34", "remaining_time": "9:33:53"} +{"current_steps": 2001, "total_steps": 5472, "loss": 0.1845, "accuracy": 1.0, "learning_rate": 4.000514786922481e-07, "epoch": 1.4619178082191782, "percentage": 36.57, "elapsed_time": "5:30:45", "remaining_time": "9:33:44"} +{"current_steps": 2002, "total_steps": 5472, "loss": 0.2366, "accuracy": 1.0, "learning_rate": 3.9992386952441414e-07, "epoch": 1.462648401826484, "percentage": 36.59, "elapsed_time": "5:30:56", "remaining_time": "9:33:36"} +{"current_steps": 2003, "total_steps": 5472, "loss": 0.2018, "accuracy": 1.0, "learning_rate": 3.9979619932783716e-07, "epoch": 1.46337899543379, "percentage": 36.6, "elapsed_time": "5:31:06", "remaining_time": "9:33:26"} +{"current_steps": 2004, "total_steps": 5472, "loss": 0.1808, "accuracy": 1.0, "learning_rate": 3.9966846815448725e-07, "epoch": 1.464109589041096, "percentage": 36.62, "elapsed_time": "5:31:15", "remaining_time": "9:33:14"} +{"current_steps": 2005, "total_steps": 5472, "loss": 0.1767, "accuracy": 0.875, "learning_rate": 3.9954067605635925e-07, "epoch": 1.4648401826484019, "percentage": 36.64, "elapsed_time": "5:31:24", "remaining_time": "9:33:03"} +{"current_steps": 2006, "total_steps": 5472, "loss": 0.1916, "accuracy": 0.75, "learning_rate": 3.9941282308547285e-07, "epoch": 1.4655707762557078, "percentage": 36.66, "elapsed_time": "5:31:34", "remaining_time": "9:32:54"} +{"current_steps": 2007, "total_steps": 5472, "loss": 0.2342, "accuracy": 0.875, "learning_rate": 3.992849092938726e-07, "epoch": 1.4663013698630136, "percentage": 36.68, "elapsed_time": "5:31:43", "remaining_time": "9:32:42"} +{"current_steps": 2008, "total_steps": 5472, "loss": 0.2604, "accuracy": 0.875, "learning_rate": 3.9915693473362755e-07, "epoch": 1.4670319634703195, "percentage": 36.7, "elapsed_time": "5:31:52", "remaining_time": "9:32:31"} +{"current_steps": 2009, "total_steps": 5472, "loss": 0.2095, "accuracy": 0.875, "learning_rate": 3.9902889945683184e-07, "epoch": 1.4677625570776256, "percentage": 36.71, "elapsed_time": "5:32:01", "remaining_time": "9:32:19"} +{"current_steps": 2010, "total_steps": 5472, "loss": 0.2215, "accuracy": 1.0, "learning_rate": 3.9890080351560384e-07, "epoch": 1.4684931506849315, "percentage": 36.73, "elapsed_time": "5:32:10", "remaining_time": "9:32:08"} +{"current_steps": 2011, "total_steps": 5472, "loss": 0.1291, "accuracy": 0.875, "learning_rate": 3.987726469620872e-07, "epoch": 1.4692237442922376, "percentage": 36.75, "elapsed_time": "5:32:19", "remaining_time": "9:31:57"} +{"current_steps": 2012, "total_steps": 5472, "loss": 0.1327, "accuracy": 1.0, "learning_rate": 3.986444298484498e-07, "epoch": 1.4699543378995434, "percentage": 36.77, "elapsed_time": "5:32:30", "remaining_time": "9:31:48"} +{"current_steps": 2013, "total_steps": 5472, "loss": 0.1097, "accuracy": 1.0, "learning_rate": 3.985161522268845e-07, "epoch": 1.4706849315068493, "percentage": 36.79, "elapsed_time": "5:32:40", "remaining_time": "9:31:37"} +{"current_steps": 2014, "total_steps": 5472, "loss": 0.141, "accuracy": 0.75, "learning_rate": 3.983878141496083e-07, "epoch": 1.4714155251141552, "percentage": 36.81, "elapsed_time": "5:32:51", "remaining_time": "9:31:30"} +{"current_steps": 2015, "total_steps": 5472, "loss": 0.2386, "accuracy": 0.875, "learning_rate": 3.9825941566886345e-07, "epoch": 1.472146118721461, "percentage": 36.82, "elapsed_time": "5:33:00", "remaining_time": "9:31:19"} +{"current_steps": 2016, "total_steps": 5472, "loss": 0.0826, "accuracy": 1.0, "learning_rate": 3.981309568369162e-07, "epoch": 1.4728767123287672, "percentage": 36.84, "elapsed_time": "5:33:11", "remaining_time": "9:31:11"} +{"current_steps": 2017, "total_steps": 5472, "loss": 0.175, "accuracy": 0.75, "learning_rate": 3.980024377060578e-07, "epoch": 1.473607305936073, "percentage": 36.86, "elapsed_time": "5:33:22", "remaining_time": "9:31:02"} +{"current_steps": 2018, "total_steps": 5472, "loss": 0.2496, "accuracy": 1.0, "learning_rate": 3.9787385832860386e-07, "epoch": 1.4743378995433791, "percentage": 36.88, "elapsed_time": "5:33:32", "remaining_time": "9:30:52"} +{"current_steps": 2019, "total_steps": 5472, "loss": 0.2263, "accuracy": 1.0, "learning_rate": 3.977452187568945e-07, "epoch": 1.475068493150685, "percentage": 36.9, "elapsed_time": "5:33:42", "remaining_time": "9:30:44"} +{"current_steps": 2020, "total_steps": 5472, "loss": 0.1227, "accuracy": 0.875, "learning_rate": 3.9761651904329435e-07, "epoch": 1.4757990867579909, "percentage": 36.92, "elapsed_time": "5:33:52", "remaining_time": "9:30:34"} +{"current_steps": 2021, "total_steps": 5472, "loss": 0.2085, "accuracy": 0.875, "learning_rate": 3.974877592401925e-07, "epoch": 1.4765296803652967, "percentage": 36.93, "elapsed_time": "5:34:01", "remaining_time": "9:30:22"} +{"current_steps": 2022, "total_steps": 5472, "loss": 0.1886, "accuracy": 0.875, "learning_rate": 3.9735893940000275e-07, "epoch": 1.4772602739726026, "percentage": 36.95, "elapsed_time": "5:34:10", "remaining_time": "9:30:11"} +{"current_steps": 2023, "total_steps": 5472, "loss": 0.1344, "accuracy": 0.875, "learning_rate": 3.9723005957516287e-07, "epoch": 1.4779908675799087, "percentage": 36.97, "elapsed_time": "5:34:20", "remaining_time": "9:30:01"} +{"current_steps": 2024, "total_steps": 5472, "loss": 0.1377, "accuracy": 1.0, "learning_rate": 3.9710111981813553e-07, "epoch": 1.4787214611872146, "percentage": 36.99, "elapsed_time": "5:34:29", "remaining_time": "9:29:50"} +{"current_steps": 2025, "total_steps": 5472, "loss": 0.2214, "accuracy": 0.875, "learning_rate": 3.969721201814074e-07, "epoch": 1.4794520547945205, "percentage": 37.01, "elapsed_time": "5:34:40", "remaining_time": "9:29:40"} +{"current_steps": 2026, "total_steps": 5472, "loss": 0.1498, "accuracy": 1.0, "learning_rate": 3.9684306071748983e-07, "epoch": 1.4801826484018266, "percentage": 37.02, "elapsed_time": "5:34:49", "remaining_time": "9:29:29"} +{"current_steps": 2027, "total_steps": 5472, "loss": 0.187, "accuracy": 1.0, "learning_rate": 3.9671394147891837e-07, "epoch": 1.4809132420091324, "percentage": 37.04, "elapsed_time": "5:34:59", "remaining_time": "9:29:20"} +{"current_steps": 2028, "total_steps": 5472, "loss": 0.1998, "accuracy": 1.0, "learning_rate": 3.9658476251825286e-07, "epoch": 1.4816438356164383, "percentage": 37.06, "elapsed_time": "5:35:10", "remaining_time": "9:29:12"} +{"current_steps": 2029, "total_steps": 5472, "loss": 0.1368, "accuracy": 1.0, "learning_rate": 3.9645552388807757e-07, "epoch": 1.4823744292237442, "percentage": 37.08, "elapsed_time": "5:35:19", "remaining_time": "9:29:01"} +{"current_steps": 2030, "total_steps": 5472, "loss": 0.0923, "accuracy": 1.0, "learning_rate": 3.9632622564100104e-07, "epoch": 1.4831050228310503, "percentage": 37.1, "elapsed_time": "5:35:29", "remaining_time": "9:28:51"} +{"current_steps": 2031, "total_steps": 5472, "loss": 0.0884, "accuracy": 1.0, "learning_rate": 3.96196867829656e-07, "epoch": 1.4838356164383562, "percentage": 37.12, "elapsed_time": "5:35:39", "remaining_time": "9:28:40"} +{"current_steps": 2032, "total_steps": 5472, "loss": 0.3841, "accuracy": 1.0, "learning_rate": 3.9606745050669944e-07, "epoch": 1.484566210045662, "percentage": 37.13, "elapsed_time": "5:35:50", "remaining_time": "9:28:32"} +{"current_steps": 2033, "total_steps": 5472, "loss": 0.2418, "accuracy": 0.875, "learning_rate": 3.9593797372481275e-07, "epoch": 1.4852968036529681, "percentage": 37.15, "elapsed_time": "5:35:59", "remaining_time": "9:28:21"} +{"current_steps": 2034, "total_steps": 5472, "loss": 0.3451, "accuracy": 1.0, "learning_rate": 3.958084375367012e-07, "epoch": 1.486027397260274, "percentage": 37.17, "elapsed_time": "5:36:09", "remaining_time": "9:28:11"} +{"current_steps": 2035, "total_steps": 5472, "loss": 0.1846, "accuracy": 0.875, "learning_rate": 3.9567884199509456e-07, "epoch": 1.4867579908675799, "percentage": 37.19, "elapsed_time": "5:36:18", "remaining_time": "9:27:59"} +{"current_steps": 2036, "total_steps": 5472, "loss": 0.1267, "accuracy": 0.875, "learning_rate": 3.9554918715274654e-07, "epoch": 1.4874885844748857, "percentage": 37.21, "elapsed_time": "5:36:27", "remaining_time": "9:27:49"} +{"current_steps": 2037, "total_steps": 5472, "loss": 0.1826, "accuracy": 0.875, "learning_rate": 3.954194730624351e-07, "epoch": 1.4882191780821918, "percentage": 37.23, "elapsed_time": "5:36:36", "remaining_time": "9:27:37"} +{"current_steps": 2038, "total_steps": 5472, "loss": 0.1167, "accuracy": 1.0, "learning_rate": 3.952896997769623e-07, "epoch": 1.4889497716894977, "percentage": 37.24, "elapsed_time": "5:36:47", "remaining_time": "9:27:28"} +{"current_steps": 2039, "total_steps": 5472, "loss": 0.1629, "accuracy": 1.0, "learning_rate": 3.951598673491543e-07, "epoch": 1.4896803652968036, "percentage": 37.26, "elapsed_time": "5:36:56", "remaining_time": "9:27:17"} +{"current_steps": 2040, "total_steps": 5472, "loss": 0.2006, "accuracy": 0.875, "learning_rate": 3.950299758318614e-07, "epoch": 1.4904109589041097, "percentage": 37.28, "elapsed_time": "5:37:07", "remaining_time": "9:27:09"} +{"current_steps": 2041, "total_steps": 5472, "loss": 0.2469, "accuracy": 0.875, "learning_rate": 3.9490002527795763e-07, "epoch": 1.4911415525114156, "percentage": 37.3, "elapsed_time": "5:37:17", "remaining_time": "9:27:00"} +{"current_steps": 2042, "total_steps": 5472, "loss": 0.3837, "accuracy": 0.75, "learning_rate": 3.947700157403415e-07, "epoch": 1.4918721461187214, "percentage": 37.32, "elapsed_time": "5:37:29", "remaining_time": "9:26:52"} +{"current_steps": 2043, "total_steps": 5472, "loss": 0.1332, "accuracy": 1.0, "learning_rate": 3.946399472719353e-07, "epoch": 1.4926027397260273, "percentage": 37.34, "elapsed_time": "5:37:39", "remaining_time": "9:26:43"} +{"current_steps": 2044, "total_steps": 5472, "loss": 0.14, "accuracy": 0.875, "learning_rate": 3.9450981992568534e-07, "epoch": 1.4933333333333334, "percentage": 37.35, "elapsed_time": "5:37:48", "remaining_time": "9:26:32"} +{"current_steps": 2045, "total_steps": 5472, "loss": 0.2143, "accuracy": 1.0, "learning_rate": 3.9437963375456184e-07, "epoch": 1.4940639269406393, "percentage": 37.37, "elapsed_time": "5:37:58", "remaining_time": "9:26:22"} +{"current_steps": 2046, "total_steps": 5472, "loss": 0.2034, "accuracy": 0.875, "learning_rate": 3.94249388811559e-07, "epoch": 1.4947945205479451, "percentage": 37.39, "elapsed_time": "5:38:07", "remaining_time": "9:26:11"} +{"current_steps": 2047, "total_steps": 5472, "loss": 0.1191, "accuracy": 1.0, "learning_rate": 3.941190851496951e-07, "epoch": 1.4955251141552512, "percentage": 37.41, "elapsed_time": "5:38:18", "remaining_time": "9:26:02"} +{"current_steps": 2048, "total_steps": 5472, "loss": 0.2409, "accuracy": 0.875, "learning_rate": 3.939887228220121e-07, "epoch": 1.4962557077625571, "percentage": 37.43, "elapsed_time": "5:38:28", "remaining_time": "9:25:54"} +{"current_steps": 2049, "total_steps": 5472, "loss": 0.1068, "accuracy": 1.0, "learning_rate": 3.938583018815759e-07, "epoch": 1.496986301369863, "percentage": 37.45, "elapsed_time": "5:38:39", "remaining_time": "9:25:44"} +{"current_steps": 2050, "total_steps": 5472, "loss": 0.1812, "accuracy": 1.0, "learning_rate": 3.937278223814763e-07, "epoch": 1.4977168949771689, "percentage": 37.46, "elapsed_time": "5:38:47", "remaining_time": "9:25:32"} +{"current_steps": 2051, "total_steps": 5472, "loss": 0.169, "accuracy": 1.0, "learning_rate": 3.935972843748269e-07, "epoch": 1.498447488584475, "percentage": 37.48, "elapsed_time": "5:38:58", "remaining_time": "9:25:23"} +{"current_steps": 2052, "total_steps": 5472, "loss": 0.0946, "accuracy": 1.0, "learning_rate": 3.934666879147652e-07, "epoch": 1.4991780821917808, "percentage": 37.5, "elapsed_time": "5:39:08", "remaining_time": "9:25:14"} +{"current_steps": 2053, "total_steps": 5472, "loss": 0.142, "accuracy": 0.875, "learning_rate": 3.933360330544523e-07, "epoch": 1.4999086757990867, "percentage": 37.52, "elapsed_time": "5:39:17", "remaining_time": "9:25:02"} +{"current_steps": 2054, "total_steps": 5472, "loss": 0.2144, "accuracy": 0.875, "learning_rate": 3.9320531984707347e-07, "epoch": 1.5006392694063928, "percentage": 37.54, "elapsed_time": "5:39:27", "remaining_time": "9:24:52"} +{"current_steps": 2055, "total_steps": 5472, "loss": 0.1415, "accuracy": 1.0, "learning_rate": 3.930745483458372e-07, "epoch": 1.5013698630136987, "percentage": 37.55, "elapsed_time": "5:39:37", "remaining_time": "9:24:43"} +{"current_steps": 2056, "total_steps": 5472, "loss": 0.2095, "accuracy": 0.875, "learning_rate": 3.929437186039761e-07, "epoch": 1.5021004566210046, "percentage": 37.57, "elapsed_time": "5:39:46", "remaining_time": "9:24:31"} +{"current_steps": 2057, "total_steps": 5472, "loss": 0.1311, "accuracy": 1.0, "learning_rate": 3.928128306747465e-07, "epoch": 1.5028310502283104, "percentage": 37.59, "elapsed_time": "5:39:55", "remaining_time": "9:24:20"} +{"current_steps": 2058, "total_steps": 5472, "loss": 0.0933, "accuracy": 1.0, "learning_rate": 3.926818846114279e-07, "epoch": 1.5035616438356163, "percentage": 37.61, "elapsed_time": "5:40:04", "remaining_time": "9:24:08"} +{"current_steps": 2059, "total_steps": 5472, "loss": 0.1815, "accuracy": 0.875, "learning_rate": 3.925508804673242e-07, "epoch": 1.5042922374429224, "percentage": 37.63, "elapsed_time": "5:40:13", "remaining_time": "9:23:56"} +{"current_steps": 2060, "total_steps": 5472, "loss": 0.2951, "accuracy": 0.875, "learning_rate": 3.924198182957624e-07, "epoch": 1.5050228310502283, "percentage": 37.65, "elapsed_time": "5:40:22", "remaining_time": "9:23:46"} +{"current_steps": 2061, "total_steps": 5472, "loss": 0.2407, "accuracy": 0.875, "learning_rate": 3.9228869815009346e-07, "epoch": 1.5057534246575344, "percentage": 37.66, "elapsed_time": "5:40:33", "remaining_time": "9:23:37"} +{"current_steps": 2062, "total_steps": 5472, "loss": 0.1154, "accuracy": 0.875, "learning_rate": 3.921575200836916e-07, "epoch": 1.5064840182648402, "percentage": 37.68, "elapsed_time": "5:40:43", "remaining_time": "9:23:28"} +{"current_steps": 2063, "total_steps": 5472, "loss": 0.1718, "accuracy": 0.875, "learning_rate": 3.9202628414995497e-07, "epoch": 1.5072146118721461, "percentage": 37.7, "elapsed_time": "5:40:53", "remaining_time": "9:23:18"} +{"current_steps": 2064, "total_steps": 5472, "loss": 0.1485, "accuracy": 1.0, "learning_rate": 3.91894990402305e-07, "epoch": 1.507945205479452, "percentage": 37.72, "elapsed_time": "5:41:02", "remaining_time": "9:23:07"} +{"current_steps": 2065, "total_steps": 5472, "loss": 0.1189, "accuracy": 0.75, "learning_rate": 3.9176363889418677e-07, "epoch": 1.5086757990867579, "percentage": 37.74, "elapsed_time": "5:41:11", "remaining_time": "9:22:56"} +{"current_steps": 2066, "total_steps": 5472, "loss": 0.2136, "accuracy": 0.875, "learning_rate": 3.9163222967906897e-07, "epoch": 1.509406392694064, "percentage": 37.76, "elapsed_time": "5:41:22", "remaining_time": "9:22:46"} +{"current_steps": 2067, "total_steps": 5472, "loss": 0.164, "accuracy": 1.0, "learning_rate": 3.9150076281044355e-07, "epoch": 1.5101369863013698, "percentage": 37.77, "elapsed_time": "5:41:31", "remaining_time": "9:22:36"} +{"current_steps": 2068, "total_steps": 5472, "loss": 0.164, "accuracy": 1.0, "learning_rate": 3.9136923834182616e-07, "epoch": 1.510867579908676, "percentage": 37.79, "elapsed_time": "5:41:40", "remaining_time": "9:22:23"} +{"current_steps": 2069, "total_steps": 5472, "loss": 0.1658, "accuracy": 1.0, "learning_rate": 3.9123765632675574e-07, "epoch": 1.5115981735159818, "percentage": 37.81, "elapsed_time": "5:41:50", "remaining_time": "9:22:15"} +{"current_steps": 2070, "total_steps": 5472, "loss": 0.2485, "accuracy": 1.0, "learning_rate": 3.9110601681879474e-07, "epoch": 1.5123287671232877, "percentage": 37.83, "elapsed_time": "5:42:01", "remaining_time": "9:22:06"} +{"current_steps": 2071, "total_steps": 5472, "loss": 0.2368, "accuracy": 1.0, "learning_rate": 3.9097431987152883e-07, "epoch": 1.5130593607305935, "percentage": 37.85, "elapsed_time": "5:42:11", "remaining_time": "9:21:56"} +{"current_steps": 2072, "total_steps": 5472, "loss": 0.1957, "accuracy": 1.0, "learning_rate": 3.908425655385675e-07, "epoch": 1.5137899543378994, "percentage": 37.87, "elapsed_time": "5:42:21", "remaining_time": "9:21:47"} +{"current_steps": 2073, "total_steps": 5472, "loss": 0.2365, "accuracy": 1.0, "learning_rate": 3.9071075387354303e-07, "epoch": 1.5145205479452055, "percentage": 37.88, "elapsed_time": "5:42:31", "remaining_time": "9:21:36"} +{"current_steps": 2074, "total_steps": 5472, "loss": 0.1694, "accuracy": 1.0, "learning_rate": 3.9057888493011155e-07, "epoch": 1.5152511415525114, "percentage": 37.9, "elapsed_time": "5:42:40", "remaining_time": "9:21:25"} +{"current_steps": 2075, "total_steps": 5472, "loss": 0.1988, "accuracy": 1.0, "learning_rate": 3.904469587619521e-07, "epoch": 1.5159817351598175, "percentage": 37.92, "elapsed_time": "5:42:49", "remaining_time": "9:21:13"} +{"current_steps": 2076, "total_steps": 5472, "loss": 0.2292, "accuracy": 1.0, "learning_rate": 3.9031497542276727e-07, "epoch": 1.5167123287671234, "percentage": 37.94, "elapsed_time": "5:42:58", "remaining_time": "9:21:02"} +{"current_steps": 2077, "total_steps": 5472, "loss": 0.1605, "accuracy": 0.875, "learning_rate": 3.9018293496628287e-07, "epoch": 1.5174429223744292, "percentage": 37.96, "elapsed_time": "5:43:08", "remaining_time": "9:20:52"} +{"current_steps": 2078, "total_steps": 5472, "loss": 0.1324, "accuracy": 0.875, "learning_rate": 3.9005083744624776e-07, "epoch": 1.5181735159817351, "percentage": 37.98, "elapsed_time": "5:43:17", "remaining_time": "9:20:42"} +{"current_steps": 2079, "total_steps": 5472, "loss": 0.2286, "accuracy": 0.75, "learning_rate": 3.8991868291643446e-07, "epoch": 1.518904109589041, "percentage": 37.99, "elapsed_time": "5:43:27", "remaining_time": "9:20:32"} +{"current_steps": 2080, "total_steps": 5472, "loss": 0.2352, "accuracy": 1.0, "learning_rate": 3.897864714306384e-07, "epoch": 1.519634703196347, "percentage": 38.01, "elapsed_time": "5:43:36", "remaining_time": "9:20:20"} +{"current_steps": 2081, "total_steps": 5472, "loss": 0.1775, "accuracy": 1.0, "learning_rate": 3.8965420304267796e-07, "epoch": 1.520365296803653, "percentage": 38.03, "elapsed_time": "5:43:46", "remaining_time": "9:20:10"} +{"current_steps": 2082, "total_steps": 5472, "loss": 0.0712, "accuracy": 1.0, "learning_rate": 3.895218778063952e-07, "epoch": 1.521095890410959, "percentage": 38.05, "elapsed_time": "5:43:56", "remaining_time": "9:20:01"} +{"current_steps": 2083, "total_steps": 5472, "loss": 0.199, "accuracy": 1.0, "learning_rate": 3.8938949577565516e-07, "epoch": 1.521826484018265, "percentage": 38.07, "elapsed_time": "5:44:05", "remaining_time": "9:19:49"} +{"current_steps": 2084, "total_steps": 5472, "loss": 0.1031, "accuracy": 1.0, "learning_rate": 3.8925705700434565e-07, "epoch": 1.5225570776255708, "percentage": 38.08, "elapsed_time": "5:44:15", "remaining_time": "9:19:39"} +{"current_steps": 2085, "total_steps": 5472, "loss": 0.1802, "accuracy": 0.75, "learning_rate": 3.891245615463781e-07, "epoch": 1.5232876712328767, "percentage": 38.1, "elapsed_time": "5:44:25", "remaining_time": "9:19:29"} +{"current_steps": 2086, "total_steps": 5472, "loss": 0.2681, "accuracy": 0.875, "learning_rate": 3.8899200945568644e-07, "epoch": 1.5240182648401825, "percentage": 38.12, "elapsed_time": "5:44:34", "remaining_time": "9:19:18"} +{"current_steps": 2087, "total_steps": 5472, "loss": 0.168, "accuracy": 0.875, "learning_rate": 3.888594007862283e-07, "epoch": 1.5247488584474884, "percentage": 38.14, "elapsed_time": "5:44:44", "remaining_time": "9:19:09"} +{"current_steps": 2088, "total_steps": 5472, "loss": 0.1268, "accuracy": 1.0, "learning_rate": 3.8872673559198384e-07, "epoch": 1.5254794520547945, "percentage": 38.16, "elapsed_time": "5:44:54", "remaining_time": "9:18:58"} +{"current_steps": 2089, "total_steps": 5472, "loss": 0.1394, "accuracy": 1.0, "learning_rate": 3.8859401392695645e-07, "epoch": 1.5262100456621006, "percentage": 38.18, "elapsed_time": "5:45:03", "remaining_time": "9:18:47"} +{"current_steps": 2090, "total_steps": 5472, "loss": 0.1302, "accuracy": 1.0, "learning_rate": 3.8846123584517244e-07, "epoch": 1.5269406392694065, "percentage": 38.19, "elapsed_time": "5:45:12", "remaining_time": "9:18:36"} +{"current_steps": 2091, "total_steps": 5472, "loss": 0.1163, "accuracy": 0.875, "learning_rate": 3.883284014006811e-07, "epoch": 1.5276712328767124, "percentage": 38.21, "elapsed_time": "5:45:24", "remaining_time": "9:18:29"} +{"current_steps": 2092, "total_steps": 5472, "loss": 0.1664, "accuracy": 0.75, "learning_rate": 3.8819551064755474e-07, "epoch": 1.5284018264840182, "percentage": 38.23, "elapsed_time": "5:45:35", "remaining_time": "9:18:22"} +{"current_steps": 2093, "total_steps": 5472, "loss": 0.2455, "accuracy": 0.875, "learning_rate": 3.880625636398884e-07, "epoch": 1.529132420091324, "percentage": 38.25, "elapsed_time": "5:45:44", "remaining_time": "9:18:11"} +{"current_steps": 2094, "total_steps": 5472, "loss": 0.1641, "accuracy": 1.0, "learning_rate": 3.8792956043180024e-07, "epoch": 1.52986301369863, "percentage": 38.27, "elapsed_time": "5:45:53", "remaining_time": "9:17:59"} +{"current_steps": 2095, "total_steps": 5472, "loss": 0.1137, "accuracy": 1.0, "learning_rate": 3.877965010774311e-07, "epoch": 1.530593607305936, "percentage": 38.29, "elapsed_time": "5:46:04", "remaining_time": "9:17:50"} +{"current_steps": 2096, "total_steps": 5472, "loss": 0.1764, "accuracy": 1.0, "learning_rate": 3.876633856309449e-07, "epoch": 1.5313242009132422, "percentage": 38.3, "elapsed_time": "5:46:15", "remaining_time": "9:17:42"} +{"current_steps": 2097, "total_steps": 5472, "loss": 0.1411, "accuracy": 1.0, "learning_rate": 3.8753021414652814e-07, "epoch": 1.532054794520548, "percentage": 38.32, "elapsed_time": "5:46:25", "remaining_time": "9:17:33"} +{"current_steps": 2098, "total_steps": 5472, "loss": 0.3213, "accuracy": 0.75, "learning_rate": 3.873969866783904e-07, "epoch": 1.532785388127854, "percentage": 38.34, "elapsed_time": "5:46:35", "remaining_time": "9:17:23"} +{"current_steps": 2099, "total_steps": 5472, "loss": 0.1252, "accuracy": 1.0, "learning_rate": 3.8726370328076366e-07, "epoch": 1.5335159817351598, "percentage": 38.36, "elapsed_time": "5:46:44", "remaining_time": "9:17:12"} +{"current_steps": 2100, "total_steps": 5472, "loss": 0.2072, "accuracy": 1.0, "learning_rate": 3.871303640079032e-07, "epoch": 1.5342465753424657, "percentage": 38.38, "elapsed_time": "5:46:53", "remaining_time": "9:16:59"} +{"current_steps": 2101, "total_steps": 5472, "loss": 0.2198, "accuracy": 1.0, "learning_rate": 3.869969689140865e-07, "epoch": 1.5349771689497715, "percentage": 38.4, "elapsed_time": "5:47:04", "remaining_time": "9:16:51"} +{"current_steps": 2102, "total_steps": 5472, "loss": 0.1575, "accuracy": 0.75, "learning_rate": 3.8686351805361424e-07, "epoch": 1.5357077625570776, "percentage": 38.41, "elapsed_time": "5:47:14", "remaining_time": "9:16:42"} +{"current_steps": 2103, "total_steps": 5472, "loss": 0.1385, "accuracy": 1.0, "learning_rate": 3.867300114808094e-07, "epoch": 1.5364383561643835, "percentage": 38.43, "elapsed_time": "5:47:24", "remaining_time": "9:16:32"} +{"current_steps": 2104, "total_steps": 5472, "loss": 0.1568, "accuracy": 0.875, "learning_rate": 3.8659644925001794e-07, "epoch": 1.5371689497716896, "percentage": 38.45, "elapsed_time": "5:47:33", "remaining_time": "9:16:20"} +{"current_steps": 2105, "total_steps": 5472, "loss": 0.2167, "accuracy": 1.0, "learning_rate": 3.864628314156083e-07, "epoch": 1.5378995433789955, "percentage": 38.47, "elapsed_time": "5:47:42", "remaining_time": "9:16:09"} +{"current_steps": 2106, "total_steps": 5472, "loss": 0.1489, "accuracy": 1.0, "learning_rate": 3.8632915803197164e-07, "epoch": 1.5386301369863014, "percentage": 38.49, "elapsed_time": "5:47:51", "remaining_time": "9:15:59"} +{"current_steps": 2107, "total_steps": 5472, "loss": 0.1845, "accuracy": 0.875, "learning_rate": 3.8619542915352164e-07, "epoch": 1.5393607305936072, "percentage": 38.51, "elapsed_time": "5:48:01", "remaining_time": "9:15:49"} +{"current_steps": 2108, "total_steps": 5472, "loss": 0.2193, "accuracy": 1.0, "learning_rate": 3.860616448346947e-07, "epoch": 1.540091324200913, "percentage": 38.52, "elapsed_time": "5:48:11", "remaining_time": "9:15:38"} +{"current_steps": 2109, "total_steps": 5472, "loss": 0.1157, "accuracy": 1.0, "learning_rate": 3.8592780512994967e-07, "epoch": 1.5408219178082192, "percentage": 38.54, "elapsed_time": "5:48:20", "remaining_time": "9:15:27"} +{"current_steps": 2110, "total_steps": 5472, "loss": 0.1339, "accuracy": 1.0, "learning_rate": 3.85793910093768e-07, "epoch": 1.541552511415525, "percentage": 38.56, "elapsed_time": "5:48:31", "remaining_time": "9:15:19"} +{"current_steps": 2111, "total_steps": 5472, "loss": 0.1187, "accuracy": 1.0, "learning_rate": 3.856599597806537e-07, "epoch": 1.5422831050228312, "percentage": 38.58, "elapsed_time": "5:48:40", "remaining_time": "9:15:08"} +{"current_steps": 2112, "total_steps": 5472, "loss": 0.2048, "accuracy": 1.0, "learning_rate": 3.8552595424513316e-07, "epoch": 1.543013698630137, "percentage": 38.6, "elapsed_time": "5:48:50", "remaining_time": "9:14:58"} +{"current_steps": 2113, "total_steps": 5472, "loss": 0.2293, "accuracy": 0.875, "learning_rate": 3.8539189354175547e-07, "epoch": 1.543744292237443, "percentage": 38.61, "elapsed_time": "5:48:59", "remaining_time": "9:14:47"} +{"current_steps": 2114, "total_steps": 5472, "loss": 0.114, "accuracy": 1.0, "learning_rate": 3.8525777772509184e-07, "epoch": 1.5444748858447488, "percentage": 38.63, "elapsed_time": "5:49:09", "remaining_time": "9:14:37"} +{"current_steps": 2115, "total_steps": 5472, "loss": 0.1244, "accuracy": 1.0, "learning_rate": 3.851236068497362e-07, "epoch": 1.5452054794520547, "percentage": 38.65, "elapsed_time": "5:49:18", "remaining_time": "9:14:26"} +{"current_steps": 2116, "total_steps": 5472, "loss": 0.1396, "accuracy": 0.875, "learning_rate": 3.849893809703049e-07, "epoch": 1.5459360730593608, "percentage": 38.67, "elapsed_time": "5:49:27", "remaining_time": "9:14:15"} +{"current_steps": 2117, "total_steps": 5472, "loss": 0.1905, "accuracy": 0.875, "learning_rate": 3.848551001414365e-07, "epoch": 1.5466666666666666, "percentage": 38.69, "elapsed_time": "5:49:38", "remaining_time": "9:14:05"} +{"current_steps": 2118, "total_steps": 5472, "loss": 0.3088, "accuracy": 0.875, "learning_rate": 3.84720764417792e-07, "epoch": 1.5473972602739727, "percentage": 38.71, "elapsed_time": "5:49:47", "remaining_time": "9:13:54"} +{"current_steps": 2119, "total_steps": 5472, "loss": 0.1355, "accuracy": 1.0, "learning_rate": 3.845863738540547e-07, "epoch": 1.5481278538812786, "percentage": 38.72, "elapsed_time": "5:49:57", "remaining_time": "9:13:45"} +{"current_steps": 2120, "total_steps": 5472, "loss": 0.2283, "accuracy": 0.875, "learning_rate": 3.844519285049304e-07, "epoch": 1.5488584474885845, "percentage": 38.74, "elapsed_time": "5:50:06", "remaining_time": "9:13:33"} +{"current_steps": 2121, "total_steps": 5472, "loss": 0.1447, "accuracy": 1.0, "learning_rate": 3.84317428425147e-07, "epoch": 1.5495890410958904, "percentage": 38.76, "elapsed_time": "5:50:19", "remaining_time": "9:13:28"} +{"current_steps": 2122, "total_steps": 5472, "loss": 0.0771, "accuracy": 1.0, "learning_rate": 3.841828736694548e-07, "epoch": 1.5503196347031962, "percentage": 38.78, "elapsed_time": "5:50:27", "remaining_time": "9:13:16"} +{"current_steps": 2123, "total_steps": 5472, "loss": 0.1465, "accuracy": 0.875, "learning_rate": 3.840482642926263e-07, "epoch": 1.5510502283105023, "percentage": 38.8, "elapsed_time": "5:50:36", "remaining_time": "9:13:04"} +{"current_steps": 2124, "total_steps": 5472, "loss": 0.1358, "accuracy": 0.875, "learning_rate": 3.839136003494562e-07, "epoch": 1.5517808219178082, "percentage": 38.82, "elapsed_time": "5:50:46", "remaining_time": "9:12:55"} +{"current_steps": 2125, "total_steps": 5472, "loss": 0.1157, "accuracy": 1.0, "learning_rate": 3.837788818947616e-07, "epoch": 1.5525114155251143, "percentage": 38.83, "elapsed_time": "5:50:56", "remaining_time": "9:12:46"} +{"current_steps": 2126, "total_steps": 5472, "loss": 0.1362, "accuracy": 1.0, "learning_rate": 3.836441089833815e-07, "epoch": 1.5532420091324202, "percentage": 38.85, "elapsed_time": "5:51:05", "remaining_time": "9:12:34"} +{"current_steps": 2127, "total_steps": 5472, "loss": 0.216, "accuracy": 0.875, "learning_rate": 3.8350928167017724e-07, "epoch": 1.553972602739726, "percentage": 38.87, "elapsed_time": "5:51:15", "remaining_time": "9:12:24"} +{"current_steps": 2128, "total_steps": 5472, "loss": 0.1341, "accuracy": 1.0, "learning_rate": 3.833744000100324e-07, "epoch": 1.554703196347032, "percentage": 38.89, "elapsed_time": "5:51:25", "remaining_time": "9:12:13"} +{"current_steps": 2129, "total_steps": 5472, "loss": 0.2125, "accuracy": 1.0, "learning_rate": 3.8323946405785256e-07, "epoch": 1.5554337899543378, "percentage": 38.91, "elapsed_time": "5:51:34", "remaining_time": "9:12:03"} +{"current_steps": 2130, "total_steps": 5472, "loss": 0.1885, "accuracy": 1.0, "learning_rate": 3.831044738685653e-07, "epoch": 1.5561643835616439, "percentage": 38.93, "elapsed_time": "5:51:45", "remaining_time": "9:11:55"} +{"current_steps": 2131, "total_steps": 5472, "loss": 0.2103, "accuracy": 1.0, "learning_rate": 3.829694294971204e-07, "epoch": 1.5568949771689498, "percentage": 38.94, "elapsed_time": "5:51:55", "remaining_time": "9:11:45"} +{"current_steps": 2132, "total_steps": 5472, "loss": 0.1667, "accuracy": 0.875, "learning_rate": 3.828343309984897e-07, "epoch": 1.5576255707762559, "percentage": 38.96, "elapsed_time": "5:52:04", "remaining_time": "9:11:34"} +{"current_steps": 2133, "total_steps": 5472, "loss": 0.2641, "accuracy": 0.875, "learning_rate": 3.826991784276671e-07, "epoch": 1.5583561643835617, "percentage": 38.98, "elapsed_time": "5:52:14", "remaining_time": "9:11:24"} +{"current_steps": 2134, "total_steps": 5472, "loss": 0.2262, "accuracy": 0.875, "learning_rate": 3.825639718396684e-07, "epoch": 1.5590867579908676, "percentage": 39.0, "elapsed_time": "5:52:24", "remaining_time": "9:11:13"} +{"current_steps": 2135, "total_steps": 5472, "loss": 0.2139, "accuracy": 1.0, "learning_rate": 3.824287112895316e-07, "epoch": 1.5598173515981735, "percentage": 39.02, "elapsed_time": "5:52:32", "remaining_time": "9:11:01"} +{"current_steps": 2136, "total_steps": 5472, "loss": 0.1213, "accuracy": 1.0, "learning_rate": 3.8229339683231633e-07, "epoch": 1.5605479452054793, "percentage": 39.04, "elapsed_time": "5:52:41", "remaining_time": "9:10:50"} +{"current_steps": 2137, "total_steps": 5472, "loss": 0.1667, "accuracy": 0.75, "learning_rate": 3.8215802852310444e-07, "epoch": 1.5612785388127854, "percentage": 39.05, "elapsed_time": "5:52:51", "remaining_time": "9:10:40"} +{"current_steps": 2138, "total_steps": 5472, "loss": 0.1706, "accuracy": 0.875, "learning_rate": 3.8202260641699957e-07, "epoch": 1.5620091324200913, "percentage": 39.07, "elapsed_time": "5:53:01", "remaining_time": "9:10:30"} +{"current_steps": 2139, "total_steps": 5472, "loss": 0.2123, "accuracy": 0.875, "learning_rate": 3.818871305691274e-07, "epoch": 1.5627397260273974, "percentage": 39.09, "elapsed_time": "5:53:10", "remaining_time": "9:10:18"} +{"current_steps": 2140, "total_steps": 5472, "loss": 0.1643, "accuracy": 1.0, "learning_rate": 3.817516010346353e-07, "epoch": 1.5634703196347033, "percentage": 39.11, "elapsed_time": "5:53:19", "remaining_time": "9:10:08"} +{"current_steps": 2141, "total_steps": 5472, "loss": 0.1642, "accuracy": 0.875, "learning_rate": 3.816160178686927e-07, "epoch": 1.5642009132420092, "percentage": 39.13, "elapsed_time": "5:53:29", "remaining_time": "9:09:58"} +{"current_steps": 2142, "total_steps": 5472, "loss": 0.1962, "accuracy": 1.0, "learning_rate": 3.814803811264906e-07, "epoch": 1.564931506849315, "percentage": 39.14, "elapsed_time": "5:53:38", "remaining_time": "9:09:47"} +{"current_steps": 2143, "total_steps": 5472, "loss": 0.135, "accuracy": 1.0, "learning_rate": 3.81344690863242e-07, "epoch": 1.565662100456621, "percentage": 39.16, "elapsed_time": "5:53:50", "remaining_time": "9:09:40"} +{"current_steps": 2144, "total_steps": 5472, "loss": 0.1178, "accuracy": 1.0, "learning_rate": 3.812089471341817e-07, "epoch": 1.5663926940639268, "percentage": 39.18, "elapsed_time": "5:54:00", "remaining_time": "9:09:30"} +{"current_steps": 2145, "total_steps": 5472, "loss": 0.1163, "accuracy": 1.0, "learning_rate": 3.8107314999456613e-07, "epoch": 1.5671232876712329, "percentage": 39.2, "elapsed_time": "5:54:10", "remaining_time": "9:09:20"} +{"current_steps": 2146, "total_steps": 5472, "loss": 0.2556, "accuracy": 1.0, "learning_rate": 3.809372994996737e-07, "epoch": 1.567853881278539, "percentage": 39.22, "elapsed_time": "5:54:21", "remaining_time": "9:09:11"} +{"current_steps": 2147, "total_steps": 5472, "loss": 0.0963, "accuracy": 1.0, "learning_rate": 3.808013957048041e-07, "epoch": 1.5685844748858448, "percentage": 39.24, "elapsed_time": "5:54:29", "remaining_time": "9:08:59"} +{"current_steps": 2148, "total_steps": 5472, "loss": 0.1584, "accuracy": 1.0, "learning_rate": 3.806654386652792e-07, "epoch": 1.5693150684931507, "percentage": 39.25, "elapsed_time": "5:54:39", "remaining_time": "9:08:50"} +{"current_steps": 2149, "total_steps": 5472, "loss": 0.1223, "accuracy": 1.0, "learning_rate": 3.805294284364423e-07, "epoch": 1.5700456621004566, "percentage": 39.27, "elapsed_time": "5:54:48", "remaining_time": "9:08:39"} +{"current_steps": 2150, "total_steps": 5472, "loss": 0.2517, "accuracy": 0.625, "learning_rate": 3.8039336507365837e-07, "epoch": 1.5707762557077625, "percentage": 39.29, "elapsed_time": "5:54:58", "remaining_time": "9:08:28"} +{"current_steps": 2151, "total_steps": 5472, "loss": 0.2081, "accuracy": 0.75, "learning_rate": 3.8025724863231403e-07, "epoch": 1.5715068493150683, "percentage": 39.31, "elapsed_time": "5:55:09", "remaining_time": "9:08:21"} +{"current_steps": 2152, "total_steps": 5472, "loss": 0.1589, "accuracy": 1.0, "learning_rate": 3.801210791678175e-07, "epoch": 1.5722374429223744, "percentage": 39.33, "elapsed_time": "5:55:20", "remaining_time": "9:08:12"} +{"current_steps": 2153, "total_steps": 5472, "loss": 0.106, "accuracy": 1.0, "learning_rate": 3.7998485673559854e-07, "epoch": 1.5729680365296803, "percentage": 39.35, "elapsed_time": "5:55:30", "remaining_time": "9:08:01"} +{"current_steps": 2154, "total_steps": 5472, "loss": 0.1162, "accuracy": 1.0, "learning_rate": 3.7984858139110867e-07, "epoch": 1.5736986301369864, "percentage": 39.36, "elapsed_time": "5:55:40", "remaining_time": "9:07:52"} +{"current_steps": 2155, "total_steps": 5472, "loss": 0.1621, "accuracy": 1.0, "learning_rate": 3.797122531898206e-07, "epoch": 1.5744292237442923, "percentage": 39.38, "elapsed_time": "5:55:48", "remaining_time": "9:07:40"} +{"current_steps": 2156, "total_steps": 5472, "loss": 0.2349, "accuracy": 0.875, "learning_rate": 3.7957587218722887e-07, "epoch": 1.5751598173515982, "percentage": 39.4, "elapsed_time": "5:55:57", "remaining_time": "9:07:29"} +{"current_steps": 2157, "total_steps": 5472, "loss": 0.1903, "accuracy": 1.0, "learning_rate": 3.794394384388494e-07, "epoch": 1.575890410958904, "percentage": 39.42, "elapsed_time": "5:56:09", "remaining_time": "9:07:21"} +{"current_steps": 2158, "total_steps": 5472, "loss": 0.1597, "accuracy": 0.875, "learning_rate": 3.7930295200021957e-07, "epoch": 1.57662100456621, "percentage": 39.44, "elapsed_time": "5:56:19", "remaining_time": "9:07:11"} +{"current_steps": 2159, "total_steps": 5472, "loss": 0.248, "accuracy": 0.75, "learning_rate": 3.791664129268982e-07, "epoch": 1.577351598173516, "percentage": 39.46, "elapsed_time": "5:56:30", "remaining_time": "9:07:03"} +{"current_steps": 2160, "total_steps": 5472, "loss": 0.2095, "accuracy": 1.0, "learning_rate": 3.790298212744655e-07, "epoch": 1.5780821917808219, "percentage": 39.47, "elapsed_time": "5:56:40", "remaining_time": "9:06:54"} +{"current_steps": 2161, "total_steps": 5472, "loss": 0.2933, "accuracy": 0.875, "learning_rate": 3.788931770985232e-07, "epoch": 1.578812785388128, "percentage": 39.49, "elapsed_time": "5:56:50", "remaining_time": "9:06:44"} +{"current_steps": 2162, "total_steps": 5472, "loss": 0.217, "accuracy": 1.0, "learning_rate": 3.787564804546943e-07, "epoch": 1.5795433789954338, "percentage": 39.51, "elapsed_time": "5:57:00", "remaining_time": "9:06:33"} +{"current_steps": 2163, "total_steps": 5472, "loss": 0.1477, "accuracy": 1.0, "learning_rate": 3.7861973139862336e-07, "epoch": 1.5802739726027397, "percentage": 39.53, "elapsed_time": "5:57:09", "remaining_time": "9:06:22"} +{"current_steps": 2164, "total_steps": 5472, "loss": 0.1753, "accuracy": 0.875, "learning_rate": 3.7848292998597597e-07, "epoch": 1.5810045662100456, "percentage": 39.55, "elapsed_time": "5:57:19", "remaining_time": "9:06:13"} +{"current_steps": 2165, "total_steps": 5472, "loss": 0.0986, "accuracy": 1.0, "learning_rate": 3.7834607627243915e-07, "epoch": 1.5817351598173515, "percentage": 39.57, "elapsed_time": "5:57:29", "remaining_time": "9:06:04"} +{"current_steps": 2166, "total_steps": 5472, "loss": 0.1026, "accuracy": 1.0, "learning_rate": 3.7820917031372137e-07, "epoch": 1.5824657534246576, "percentage": 39.58, "elapsed_time": "5:57:39", "remaining_time": "9:05:54"} +{"current_steps": 2167, "total_steps": 5472, "loss": 0.2291, "accuracy": 1.0, "learning_rate": 3.7807221216555214e-07, "epoch": 1.5831963470319634, "percentage": 39.6, "elapsed_time": "5:57:50", "remaining_time": "9:05:45"} +{"current_steps": 2168, "total_steps": 5472, "loss": 0.2153, "accuracy": 1.0, "learning_rate": 3.7793520188368233e-07, "epoch": 1.5839269406392695, "percentage": 39.62, "elapsed_time": "5:57:59", "remaining_time": "9:05:34"} +{"current_steps": 2169, "total_steps": 5472, "loss": 0.1459, "accuracy": 0.875, "learning_rate": 3.77798139523884e-07, "epoch": 1.5846575342465754, "percentage": 39.64, "elapsed_time": "5:58:08", "remaining_time": "9:05:22"} +{"current_steps": 2170, "total_steps": 5472, "loss": 0.3491, "accuracy": 0.875, "learning_rate": 3.776610251419505e-07, "epoch": 1.5853881278538813, "percentage": 39.66, "elapsed_time": "5:58:19", "remaining_time": "9:05:14"} +{"current_steps": 2171, "total_steps": 5472, "loss": 0.2117, "accuracy": 1.0, "learning_rate": 3.7752385879369626e-07, "epoch": 1.5861187214611872, "percentage": 39.67, "elapsed_time": "5:58:28", "remaining_time": "9:05:02"} +{"current_steps": 2172, "total_steps": 5472, "loss": 0.1909, "accuracy": 0.875, "learning_rate": 3.7738664053495685e-07, "epoch": 1.586849315068493, "percentage": 39.69, "elapsed_time": "5:58:37", "remaining_time": "9:04:52"} +{"current_steps": 2173, "total_steps": 5472, "loss": 0.15, "accuracy": 1.0, "learning_rate": 3.7724937042158896e-07, "epoch": 1.5875799086757991, "percentage": 39.71, "elapsed_time": "5:58:46", "remaining_time": "9:04:40"} +{"current_steps": 2174, "total_steps": 5472, "loss": 0.1532, "accuracy": 0.875, "learning_rate": 3.7711204850947056e-07, "epoch": 1.588310502283105, "percentage": 39.73, "elapsed_time": "5:58:55", "remaining_time": "9:04:29"} +{"current_steps": 2175, "total_steps": 5472, "loss": 0.256, "accuracy": 0.875, "learning_rate": 3.769746748545004e-07, "epoch": 1.589041095890411, "percentage": 39.75, "elapsed_time": "5:59:06", "remaining_time": "9:04:21"} +{"current_steps": 2176, "total_steps": 5472, "loss": 0.1581, "accuracy": 0.75, "learning_rate": 3.7683724951259867e-07, "epoch": 1.589771689497717, "percentage": 39.77, "elapsed_time": "5:59:15", "remaining_time": "9:04:09"} +{"current_steps": 2177, "total_steps": 5472, "loss": 0.3197, "accuracy": 0.875, "learning_rate": 3.7669977253970626e-07, "epoch": 1.5905022831050228, "percentage": 39.78, "elapsed_time": "5:59:23", "remaining_time": "9:03:58"} +{"current_steps": 2178, "total_steps": 5472, "loss": 0.1134, "accuracy": 0.875, "learning_rate": 3.765622439917853e-07, "epoch": 1.5912328767123287, "percentage": 39.8, "elapsed_time": "5:59:34", "remaining_time": "9:03:49"} +{"current_steps": 2179, "total_steps": 5472, "loss": 0.1841, "accuracy": 0.875, "learning_rate": 3.7642466392481874e-07, "epoch": 1.5919634703196346, "percentage": 39.82, "elapsed_time": "5:59:43", "remaining_time": "9:03:37"} +{"current_steps": 2180, "total_steps": 5472, "loss": 0.1539, "accuracy": 0.875, "learning_rate": 3.7628703239481066e-07, "epoch": 1.5926940639269407, "percentage": 39.84, "elapsed_time": "5:59:54", "remaining_time": "9:03:29"} +{"current_steps": 2181, "total_steps": 5472, "loss": 0.2951, "accuracy": 0.75, "learning_rate": 3.761493494577861e-07, "epoch": 1.5934246575342466, "percentage": 39.86, "elapsed_time": "6:00:04", "remaining_time": "9:03:20"} +{"current_steps": 2182, "total_steps": 5472, "loss": 0.1729, "accuracy": 0.875, "learning_rate": 3.7601161516979074e-07, "epoch": 1.5941552511415527, "percentage": 39.88, "elapsed_time": "6:00:13", "remaining_time": "9:03:08"} +{"current_steps": 2183, "total_steps": 5472, "loss": 0.1098, "accuracy": 0.875, "learning_rate": 3.758738295868916e-07, "epoch": 1.5948858447488585, "percentage": 39.89, "elapsed_time": "6:00:23", "remaining_time": "9:02:59"} +{"current_steps": 2184, "total_steps": 5472, "loss": 0.0831, "accuracy": 1.0, "learning_rate": 3.757359927651762e-07, "epoch": 1.5956164383561644, "percentage": 39.91, "elapsed_time": "6:00:35", "remaining_time": "9:02:51"} +{"current_steps": 2185, "total_steps": 5472, "loss": 0.1554, "accuracy": 1.0, "learning_rate": 3.7559810476075317e-07, "epoch": 1.5963470319634703, "percentage": 39.93, "elapsed_time": "6:00:43", "remaining_time": "9:02:39"} +{"current_steps": 2186, "total_steps": 5472, "loss": 0.3319, "accuracy": 0.875, "learning_rate": 3.7546016562975176e-07, "epoch": 1.5970776255707761, "percentage": 39.95, "elapsed_time": "6:00:52", "remaining_time": "9:02:27"} +{"current_steps": 2187, "total_steps": 5472, "loss": 0.1793, "accuracy": 1.0, "learning_rate": 3.753221754283223e-07, "epoch": 1.5978082191780822, "percentage": 39.97, "elapsed_time": "6:01:02", "remaining_time": "9:02:17"} +{"current_steps": 2188, "total_steps": 5472, "loss": 0.1991, "accuracy": 0.875, "learning_rate": 3.7518413421263557e-07, "epoch": 1.5985388127853881, "percentage": 39.99, "elapsed_time": "6:01:11", "remaining_time": "9:02:07"} +{"current_steps": 2189, "total_steps": 5472, "loss": 0.1505, "accuracy": 1.0, "learning_rate": 3.7504604203888347e-07, "epoch": 1.5992694063926942, "percentage": 40.0, "elapsed_time": "6:01:20", "remaining_time": "9:01:56"} +{"current_steps": 2190, "total_steps": 5472, "loss": 0.1416, "accuracy": 0.875, "learning_rate": 3.7490789896327833e-07, "epoch": 1.6, "percentage": 40.02, "elapsed_time": "6:01:30", "remaining_time": "9:01:46"} +{"current_steps": 2191, "total_steps": 5472, "loss": 0.2169, "accuracy": 1.0, "learning_rate": 3.747697050420534e-07, "epoch": 1.600730593607306, "percentage": 40.04, "elapsed_time": "6:01:39", "remaining_time": "9:01:34"} +{"current_steps": 2192, "total_steps": 5472, "loss": 0.2225, "accuracy": 1.0, "learning_rate": 3.7463146033146275e-07, "epoch": 1.6014611872146118, "percentage": 40.06, "elapsed_time": "6:01:48", "remaining_time": "9:01:22"} +{"current_steps": 2193, "total_steps": 5472, "loss": 0.0984, "accuracy": 0.875, "learning_rate": 3.7449316488778063e-07, "epoch": 1.6021917808219177, "percentage": 40.08, "elapsed_time": "6:01:58", "remaining_time": "9:01:13"} +{"current_steps": 2194, "total_steps": 5472, "loss": 0.1953, "accuracy": 1.0, "learning_rate": 3.7435481876730255e-07, "epoch": 1.6029223744292236, "percentage": 40.1, "elapsed_time": "6:02:07", "remaining_time": "9:01:02"} +{"current_steps": 2195, "total_steps": 5472, "loss": 0.2182, "accuracy": 1.0, "learning_rate": 3.7421642202634417e-07, "epoch": 1.6036529680365297, "percentage": 40.11, "elapsed_time": "6:02:17", "remaining_time": "9:00:52"} +{"current_steps": 2196, "total_steps": 5472, "loss": 0.2178, "accuracy": 0.75, "learning_rate": 3.7407797472124197e-07, "epoch": 1.6043835616438358, "percentage": 40.13, "elapsed_time": "6:02:30", "remaining_time": "9:00:48"} +{"current_steps": 2197, "total_steps": 5472, "loss": 0.1894, "accuracy": 1.0, "learning_rate": 3.7393947690835303e-07, "epoch": 1.6051141552511416, "percentage": 40.15, "elapsed_time": "6:02:41", "remaining_time": "9:00:39"} +{"current_steps": 2198, "total_steps": 5472, "loss": 0.0966, "accuracy": 1.0, "learning_rate": 3.73800928644055e-07, "epoch": 1.6058447488584475, "percentage": 40.17, "elapsed_time": "6:02:50", "remaining_time": "9:00:28"} +{"current_steps": 2199, "total_steps": 5472, "loss": 0.1697, "accuracy": 1.0, "learning_rate": 3.736623299847459e-07, "epoch": 1.6065753424657534, "percentage": 40.19, "elapsed_time": "6:03:01", "remaining_time": "9:00:19"} +{"current_steps": 2200, "total_steps": 5472, "loss": 0.1173, "accuracy": 1.0, "learning_rate": 3.7352368098684445e-07, "epoch": 1.6073059360730593, "percentage": 40.2, "elapsed_time": "6:03:11", "remaining_time": "9:00:09"} +{"current_steps": 2201, "total_steps": 5472, "loss": 0.1058, "accuracy": 1.0, "learning_rate": 3.7338498170678974e-07, "epoch": 1.6080365296803651, "percentage": 40.22, "elapsed_time": "6:03:21", "remaining_time": "9:00:00"} +{"current_steps": 2202, "total_steps": 5472, "loss": 0.1484, "accuracy": 0.625, "learning_rate": 3.7324623220104134e-07, "epoch": 1.6087671232876712, "percentage": 40.24, "elapsed_time": "6:03:31", "remaining_time": "8:59:49"} +{"current_steps": 2203, "total_steps": 5472, "loss": 0.094, "accuracy": 1.0, "learning_rate": 3.731074325260794e-07, "epoch": 1.6094977168949771, "percentage": 40.26, "elapsed_time": "6:03:41", "remaining_time": "8:59:39"} +{"current_steps": 2204, "total_steps": 5472, "loss": 0.1979, "accuracy": 1.0, "learning_rate": 3.729685827384044e-07, "epoch": 1.6102283105022832, "percentage": 40.28, "elapsed_time": "6:03:50", "remaining_time": "8:59:29"} +{"current_steps": 2205, "total_steps": 5472, "loss": 0.147, "accuracy": 1.0, "learning_rate": 3.728296828945372e-07, "epoch": 1.610958904109589, "percentage": 40.3, "elapsed_time": "6:04:00", "remaining_time": "8:59:18"} +{"current_steps": 2206, "total_steps": 5472, "loss": 0.1689, "accuracy": 0.875, "learning_rate": 3.7269073305101896e-07, "epoch": 1.611689497716895, "percentage": 40.31, "elapsed_time": "6:04:12", "remaining_time": "8:59:12"} +{"current_steps": 2207, "total_steps": 5472, "loss": 0.1692, "accuracy": 1.0, "learning_rate": 3.7255173326441136e-07, "epoch": 1.6124200913242008, "percentage": 40.33, "elapsed_time": "6:04:20", "remaining_time": "8:59:00"} +{"current_steps": 2208, "total_steps": 5472, "loss": 0.1493, "accuracy": 0.875, "learning_rate": 3.724126835912963e-07, "epoch": 1.6131506849315067, "percentage": 40.35, "elapsed_time": "6:04:31", "remaining_time": "8:58:51"} +{"current_steps": 2209, "total_steps": 5472, "loss": 0.1813, "accuracy": 1.0, "learning_rate": 3.7227358408827604e-07, "epoch": 1.6138812785388128, "percentage": 40.37, "elapsed_time": "6:04:40", "remaining_time": "8:58:40"} +{"current_steps": 2210, "total_steps": 5472, "loss": 0.1649, "accuracy": 1.0, "learning_rate": 3.7213443481197306e-07, "epoch": 1.6146118721461187, "percentage": 40.39, "elapsed_time": "6:04:50", "remaining_time": "8:58:31"} +{"current_steps": 2211, "total_steps": 5472, "loss": 0.1079, "accuracy": 1.0, "learning_rate": 3.7199523581903027e-07, "epoch": 1.6153424657534248, "percentage": 40.41, "elapsed_time": "6:04:59", "remaining_time": "8:58:19"} +{"current_steps": 2212, "total_steps": 5472, "loss": 0.1717, "accuracy": 0.875, "learning_rate": 3.718559871661105e-07, "epoch": 1.6160730593607306, "percentage": 40.42, "elapsed_time": "6:05:09", "remaining_time": "8:58:09"} +{"current_steps": 2213, "total_steps": 5472, "loss": 0.0994, "accuracy": 1.0, "learning_rate": 3.7171668890989714e-07, "epoch": 1.6168036529680365, "percentage": 40.44, "elapsed_time": "6:05:18", "remaining_time": "8:57:59"} +{"current_steps": 2214, "total_steps": 5472, "loss": 0.1405, "accuracy": 1.0, "learning_rate": 3.7157734110709354e-07, "epoch": 1.6175342465753424, "percentage": 40.46, "elapsed_time": "6:05:29", "remaining_time": "8:57:50"} +{"current_steps": 2215, "total_steps": 5472, "loss": 0.2147, "accuracy": 1.0, "learning_rate": 3.7143794381442334e-07, "epoch": 1.6182648401826483, "percentage": 40.48, "elapsed_time": "6:05:41", "remaining_time": "8:57:43"} +{"current_steps": 2216, "total_steps": 5472, "loss": 0.2179, "accuracy": 0.875, "learning_rate": 3.712984970886303e-07, "epoch": 1.6189954337899544, "percentage": 40.5, "elapsed_time": "6:05:50", "remaining_time": "8:57:31"} +{"current_steps": 2217, "total_steps": 5472, "loss": 0.1188, "accuracy": 1.0, "learning_rate": 3.7115900098647826e-07, "epoch": 1.6197260273972602, "percentage": 40.52, "elapsed_time": "6:05:59", "remaining_time": "8:57:21"} +{"current_steps": 2218, "total_steps": 5472, "loss": 0.1866, "accuracy": 0.875, "learning_rate": 3.710194555647512e-07, "epoch": 1.6204566210045663, "percentage": 40.53, "elapsed_time": "6:06:09", "remaining_time": "8:57:10"} +{"current_steps": 2219, "total_steps": 5472, "loss": 0.1356, "accuracy": 0.875, "learning_rate": 3.7087986088025307e-07, "epoch": 1.6211872146118722, "percentage": 40.55, "elapsed_time": "6:06:21", "remaining_time": "8:57:04"} +{"current_steps": 2220, "total_steps": 5472, "loss": 0.247, "accuracy": 1.0, "learning_rate": 3.7074021698980807e-07, "epoch": 1.621917808219178, "percentage": 40.57, "elapsed_time": "6:06:32", "remaining_time": "8:56:56"} +{"current_steps": 2221, "total_steps": 5472, "loss": 0.1164, "accuracy": 1.0, "learning_rate": 3.706005239502603e-07, "epoch": 1.622648401826484, "percentage": 40.59, "elapsed_time": "6:06:42", "remaining_time": "8:56:45"} +{"current_steps": 2222, "total_steps": 5472, "loss": 0.1158, "accuracy": 1.0, "learning_rate": 3.704607818184739e-07, "epoch": 1.6233789954337898, "percentage": 40.61, "elapsed_time": "6:06:52", "remaining_time": "8:56:36"} +{"current_steps": 2223, "total_steps": 5472, "loss": 0.2122, "accuracy": 0.875, "learning_rate": 3.703209906513329e-07, "epoch": 1.624109589041096, "percentage": 40.62, "elapsed_time": "6:07:01", "remaining_time": "8:56:25"} +{"current_steps": 2224, "total_steps": 5472, "loss": 0.1252, "accuracy": 0.875, "learning_rate": 3.7018115050574155e-07, "epoch": 1.6248401826484018, "percentage": 40.64, "elapsed_time": "6:07:10", "remaining_time": "8:56:13"} +{"current_steps": 2225, "total_steps": 5472, "loss": 0.17, "accuracy": 1.0, "learning_rate": 3.700412614386237e-07, "epoch": 1.625570776255708, "percentage": 40.66, "elapsed_time": "6:07:20", "remaining_time": "8:56:04"} +{"current_steps": 2226, "total_steps": 5472, "loss": 0.0832, "accuracy": 1.0, "learning_rate": 3.699013235069233e-07, "epoch": 1.6263013698630138, "percentage": 40.68, "elapsed_time": "6:07:30", "remaining_time": "8:55:53"} +{"current_steps": 2227, "total_steps": 5472, "loss": 0.2605, "accuracy": 0.875, "learning_rate": 3.6976133676760426e-07, "epoch": 1.6270319634703196, "percentage": 40.7, "elapsed_time": "6:07:39", "remaining_time": "8:55:43"} +{"current_steps": 2228, "total_steps": 5472, "loss": 0.2558, "accuracy": 0.875, "learning_rate": 3.696213012776501e-07, "epoch": 1.6277625570776255, "percentage": 40.72, "elapsed_time": "6:07:48", "remaining_time": "8:55:32"} +{"current_steps": 2229, "total_steps": 5472, "loss": 0.2286, "accuracy": 0.75, "learning_rate": 3.6948121709406467e-07, "epoch": 1.6284931506849314, "percentage": 40.73, "elapsed_time": "6:07:57", "remaining_time": "8:55:21"} +{"current_steps": 2230, "total_steps": 5472, "loss": 0.1865, "accuracy": 0.875, "learning_rate": 3.693410842738709e-07, "epoch": 1.6292237442922375, "percentage": 40.75, "elapsed_time": "6:08:06", "remaining_time": "8:55:10"} +{"current_steps": 2231, "total_steps": 5472, "loss": 0.1008, "accuracy": 1.0, "learning_rate": 3.6920090287411226e-07, "epoch": 1.6299543378995434, "percentage": 40.77, "elapsed_time": "6:08:16", "remaining_time": "8:54:59"} +{"current_steps": 2232, "total_steps": 5472, "loss": 0.1661, "accuracy": 0.75, "learning_rate": 3.6906067295185153e-07, "epoch": 1.6306849315068495, "percentage": 40.79, "elapsed_time": "6:08:27", "remaining_time": "8:54:51"} +{"current_steps": 2233, "total_steps": 5472, "loss": 0.1294, "accuracy": 1.0, "learning_rate": 3.689203945641715e-07, "epoch": 1.6314155251141553, "percentage": 40.81, "elapsed_time": "6:08:37", "remaining_time": "8:54:41"} +{"current_steps": 2234, "total_steps": 5472, "loss": 0.2031, "accuracy": 0.875, "learning_rate": 3.6878006776817437e-07, "epoch": 1.6321461187214612, "percentage": 40.83, "elapsed_time": "6:08:46", "remaining_time": "8:54:31"} +{"current_steps": 2235, "total_steps": 5472, "loss": 0.1242, "accuracy": 0.875, "learning_rate": 3.686396926209825e-07, "epoch": 1.632876712328767, "percentage": 40.84, "elapsed_time": "6:08:56", "remaining_time": "8:54:20"} +{"current_steps": 2236, "total_steps": 5472, "loss": 0.1238, "accuracy": 1.0, "learning_rate": 3.684992691797375e-07, "epoch": 1.633607305936073, "percentage": 40.86, "elapsed_time": "6:09:06", "remaining_time": "8:54:11"} +{"current_steps": 2237, "total_steps": 5472, "loss": 0.1383, "accuracy": 1.0, "learning_rate": 3.683587975016009e-07, "epoch": 1.634337899543379, "percentage": 40.88, "elapsed_time": "6:09:15", "remaining_time": "8:54:00"} +{"current_steps": 2238, "total_steps": 5472, "loss": 0.1442, "accuracy": 0.875, "learning_rate": 3.6821827764375377e-07, "epoch": 1.635068493150685, "percentage": 40.9, "elapsed_time": "6:09:26", "remaining_time": "8:53:51"} +{"current_steps": 2239, "total_steps": 5472, "loss": 0.0879, "accuracy": 1.0, "learning_rate": 3.680777096633969e-07, "epoch": 1.635799086757991, "percentage": 40.92, "elapsed_time": "6:09:38", "remaining_time": "8:53:44"} +{"current_steps": 2240, "total_steps": 5472, "loss": 0.1461, "accuracy": 0.875, "learning_rate": 3.679370936177504e-07, "epoch": 1.636529680365297, "percentage": 40.94, "elapsed_time": "6:09:47", "remaining_time": "8:53:33"} +{"current_steps": 2241, "total_steps": 5472, "loss": 0.1433, "accuracy": 1.0, "learning_rate": 3.6779642956405424e-07, "epoch": 1.6372602739726028, "percentage": 40.95, "elapsed_time": "6:09:59", "remaining_time": "8:53:26"} +{"current_steps": 2242, "total_steps": 5472, "loss": 0.1661, "accuracy": 0.875, "learning_rate": 3.6765571755956783e-07, "epoch": 1.6379908675799086, "percentage": 40.97, "elapsed_time": "6:10:10", "remaining_time": "8:53:18"} +{"current_steps": 2243, "total_steps": 5472, "loss": 0.2121, "accuracy": 0.875, "learning_rate": 3.6751495766156997e-07, "epoch": 1.6387214611872145, "percentage": 40.99, "elapsed_time": "6:10:21", "remaining_time": "8:53:09"} +{"current_steps": 2244, "total_steps": 5472, "loss": 0.1765, "accuracy": 0.875, "learning_rate": 3.673741499273592e-07, "epoch": 1.6394520547945204, "percentage": 41.01, "elapsed_time": "6:10:30", "remaining_time": "8:52:58"} +{"current_steps": 2245, "total_steps": 5472, "loss": 0.2022, "accuracy": 0.875, "learning_rate": 3.672332944142534e-07, "epoch": 1.6401826484018265, "percentage": 41.03, "elapsed_time": "6:10:39", "remaining_time": "8:52:47"} +{"current_steps": 2246, "total_steps": 5472, "loss": 0.2226, "accuracy": 1.0, "learning_rate": 3.6709239117958986e-07, "epoch": 1.6409132420091326, "percentage": 41.05, "elapsed_time": "6:10:49", "remaining_time": "8:52:37"} +{"current_steps": 2247, "total_steps": 5472, "loss": 0.1466, "accuracy": 1.0, "learning_rate": 3.669514402807253e-07, "epoch": 1.6416438356164385, "percentage": 41.06, "elapsed_time": "6:10:58", "remaining_time": "8:52:25"} +{"current_steps": 2248, "total_steps": 5472, "loss": 0.2562, "accuracy": 1.0, "learning_rate": 3.6681044177503594e-07, "epoch": 1.6423744292237443, "percentage": 41.08, "elapsed_time": "6:11:07", "remaining_time": "8:52:14"} +{"current_steps": 2249, "total_steps": 5472, "loss": 0.1626, "accuracy": 1.0, "learning_rate": 3.666693957199173e-07, "epoch": 1.6431050228310502, "percentage": 41.1, "elapsed_time": "6:11:15", "remaining_time": "8:52:03"} +{"current_steps": 2250, "total_steps": 5472, "loss": 0.151, "accuracy": 0.875, "learning_rate": 3.665283021727843e-07, "epoch": 1.643835616438356, "percentage": 41.12, "elapsed_time": "6:11:26", "remaining_time": "8:51:53"} +{"current_steps": 2251, "total_steps": 5472, "loss": 0.1696, "accuracy": 0.875, "learning_rate": 3.6638716119107116e-07, "epoch": 1.644566210045662, "percentage": 41.14, "elapsed_time": "6:11:34", "remaining_time": "8:51:42"} +{"current_steps": 2252, "total_steps": 5472, "loss": 0.1513, "accuracy": 1.0, "learning_rate": 3.6624597283223135e-07, "epoch": 1.645296803652968, "percentage": 41.15, "elapsed_time": "6:11:46", "remaining_time": "8:51:34"} +{"current_steps": 2253, "total_steps": 5472, "loss": 0.159, "accuracy": 0.875, "learning_rate": 3.661047371537378e-07, "epoch": 1.6460273972602741, "percentage": 41.17, "elapsed_time": "6:11:56", "remaining_time": "8:51:25"} +{"current_steps": 2254, "total_steps": 5472, "loss": 0.2051, "accuracy": 0.875, "learning_rate": 3.6596345421308253e-07, "epoch": 1.64675799086758, "percentage": 41.19, "elapsed_time": "6:12:05", "remaining_time": "8:51:13"} +{"current_steps": 2255, "total_steps": 5472, "loss": 0.1904, "accuracy": 1.0, "learning_rate": 3.658221240677769e-07, "epoch": 1.6474885844748859, "percentage": 41.21, "elapsed_time": "6:12:17", "remaining_time": "8:51:06"} +{"current_steps": 2256, "total_steps": 5472, "loss": 0.0798, "accuracy": 1.0, "learning_rate": 3.656807467753514e-07, "epoch": 1.6482191780821918, "percentage": 41.23, "elapsed_time": "6:12:27", "remaining_time": "8:50:57"} +{"current_steps": 2257, "total_steps": 5472, "loss": 0.0817, "accuracy": 1.0, "learning_rate": 3.655393223933558e-07, "epoch": 1.6489497716894976, "percentage": 41.25, "elapsed_time": "6:12:36", "remaining_time": "8:50:45"} +{"current_steps": 2258, "total_steps": 5472, "loss": 0.2404, "accuracy": 1.0, "learning_rate": 3.6539785097935904e-07, "epoch": 1.6496803652968035, "percentage": 41.26, "elapsed_time": "6:12:45", "remaining_time": "8:50:34"} +{"current_steps": 2259, "total_steps": 5472, "loss": 0.1718, "accuracy": 1.0, "learning_rate": 3.652563325909491e-07, "epoch": 1.6504109589041096, "percentage": 41.28, "elapsed_time": "6:12:54", "remaining_time": "8:50:23"} +{"current_steps": 2260, "total_steps": 5472, "loss": 0.22, "accuracy": 0.875, "learning_rate": 3.651147672857331e-07, "epoch": 1.6511415525114155, "percentage": 41.3, "elapsed_time": "6:13:05", "remaining_time": "8:50:15"} +{"current_steps": 2261, "total_steps": 5472, "loss": 0.2729, "accuracy": 0.875, "learning_rate": 3.649731551213374e-07, "epoch": 1.6518721461187216, "percentage": 41.32, "elapsed_time": "6:13:14", "remaining_time": "8:50:04"} +{"current_steps": 2262, "total_steps": 5472, "loss": 0.1262, "accuracy": 0.875, "learning_rate": 3.648314961554073e-07, "epoch": 1.6526027397260274, "percentage": 41.34, "elapsed_time": "6:13:24", "remaining_time": "8:49:53"} +{"current_steps": 2263, "total_steps": 5472, "loss": 0.1557, "accuracy": 1.0, "learning_rate": 3.646897904456073e-07, "epoch": 1.6533333333333333, "percentage": 41.36, "elapsed_time": "6:13:35", "remaining_time": "8:49:45"} +{"current_steps": 2264, "total_steps": 5472, "loss": 0.0974, "accuracy": 1.0, "learning_rate": 3.6454803804962067e-07, "epoch": 1.6540639269406392, "percentage": 41.37, "elapsed_time": "6:13:43", "remaining_time": "8:49:33"} +{"current_steps": 2265, "total_steps": 5472, "loss": 0.13, "accuracy": 0.875, "learning_rate": 3.6440623902514977e-07, "epoch": 1.654794520547945, "percentage": 41.39, "elapsed_time": "6:13:54", "remaining_time": "8:49:24"} +{"current_steps": 2266, "total_steps": 5472, "loss": 0.0979, "accuracy": 1.0, "learning_rate": 3.642643934299163e-07, "epoch": 1.6555251141552512, "percentage": 41.41, "elapsed_time": "6:14:03", "remaining_time": "8:49:13"} +{"current_steps": 2267, "total_steps": 5472, "loss": 0.1808, "accuracy": 1.0, "learning_rate": 3.641225013216602e-07, "epoch": 1.656255707762557, "percentage": 41.43, "elapsed_time": "6:14:12", "remaining_time": "8:49:02"} +{"current_steps": 2268, "total_steps": 5472, "loss": 0.228, "accuracy": 0.875, "learning_rate": 3.639805627581412e-07, "epoch": 1.6569863013698631, "percentage": 41.45, "elapsed_time": "6:14:21", "remaining_time": "8:48:51"} +{"current_steps": 2269, "total_steps": 5472, "loss": 0.1586, "accuracy": 0.875, "learning_rate": 3.6383857779713723e-07, "epoch": 1.657716894977169, "percentage": 41.47, "elapsed_time": "6:14:30", "remaining_time": "8:48:40"} +{"current_steps": 2270, "total_steps": 5472, "loss": 0.1429, "accuracy": 1.0, "learning_rate": 3.636965464964455e-07, "epoch": 1.6584474885844749, "percentage": 41.48, "elapsed_time": "6:14:41", "remaining_time": "8:48:31"} +{"current_steps": 2271, "total_steps": 5472, "loss": 0.3416, "accuracy": 0.75, "learning_rate": 3.6355446891388185e-07, "epoch": 1.6591780821917808, "percentage": 41.5, "elapsed_time": "6:14:52", "remaining_time": "8:48:22"} +{"current_steps": 2272, "total_steps": 5472, "loss": 0.0746, "accuracy": 1.0, "learning_rate": 3.6341234510728126e-07, "epoch": 1.6599086757990866, "percentage": 41.52, "elapsed_time": "6:15:01", "remaining_time": "8:48:12"} +{"current_steps": 2273, "total_steps": 5472, "loss": 0.1247, "accuracy": 0.875, "learning_rate": 3.632701751344971e-07, "epoch": 1.6606392694063927, "percentage": 41.54, "elapsed_time": "6:15:10", "remaining_time": "8:48:00"} +{"current_steps": 2274, "total_steps": 5472, "loss": 0.1673, "accuracy": 1.0, "learning_rate": 3.6312795905340204e-07, "epoch": 1.6613698630136986, "percentage": 41.56, "elapsed_time": "6:15:18", "remaining_time": "8:47:48"} +{"current_steps": 2275, "total_steps": 5472, "loss": 0.1556, "accuracy": 1.0, "learning_rate": 3.62985696921887e-07, "epoch": 1.6621004566210047, "percentage": 41.58, "elapsed_time": "6:15:28", "remaining_time": "8:47:38"} +{"current_steps": 2276, "total_steps": 5472, "loss": 0.2078, "accuracy": 0.875, "learning_rate": 3.6284338879786215e-07, "epoch": 1.6628310502283106, "percentage": 41.59, "elapsed_time": "6:15:37", "remaining_time": "8:47:27"} +{"current_steps": 2277, "total_steps": 5472, "loss": 0.1522, "accuracy": 1.0, "learning_rate": 3.6270103473925587e-07, "epoch": 1.6635616438356164, "percentage": 41.61, "elapsed_time": "6:15:46", "remaining_time": "8:47:15"} +{"current_steps": 2278, "total_steps": 5472, "loss": 0.2147, "accuracy": 0.75, "learning_rate": 3.6255863480401564e-07, "epoch": 1.6642922374429223, "percentage": 41.63, "elapsed_time": "6:15:56", "remaining_time": "8:47:06"} +{"current_steps": 2279, "total_steps": 5472, "loss": 0.1514, "accuracy": 0.875, "learning_rate": 3.6241618905010754e-07, "epoch": 1.6650228310502282, "percentage": 41.65, "elapsed_time": "6:16:06", "remaining_time": "8:46:57"} +{"current_steps": 2280, "total_steps": 5472, "loss": 0.1524, "accuracy": 0.875, "learning_rate": 3.622736975355161e-07, "epoch": 1.6657534246575343, "percentage": 41.67, "elapsed_time": "6:16:17", "remaining_time": "8:46:47"} +{"current_steps": 2281, "total_steps": 5472, "loss": 0.198, "accuracy": 0.875, "learning_rate": 3.621311603182446e-07, "epoch": 1.6664840182648402, "percentage": 41.68, "elapsed_time": "6:16:26", "remaining_time": "8:46:37"} +{"current_steps": 2282, "total_steps": 5472, "loss": 0.2924, "accuracy": 0.5, "learning_rate": 3.619885774563151e-07, "epoch": 1.6672146118721463, "percentage": 41.7, "elapsed_time": "6:16:37", "remaining_time": "8:46:29"} +{"current_steps": 2283, "total_steps": 5472, "loss": 0.1889, "accuracy": 0.875, "learning_rate": 3.61845949007768e-07, "epoch": 1.6679452054794521, "percentage": 41.72, "elapsed_time": "6:16:47", "remaining_time": "8:46:19"} +{"current_steps": 2284, "total_steps": 5472, "loss": 0.1297, "accuracy": 1.0, "learning_rate": 3.617032750306622e-07, "epoch": 1.668675799086758, "percentage": 41.74, "elapsed_time": "6:16:58", "remaining_time": "8:46:11"} +{"current_steps": 2285, "total_steps": 5472, "loss": 0.1275, "accuracy": 1.0, "learning_rate": 3.615605555830755e-07, "epoch": 1.6694063926940639, "percentage": 41.76, "elapsed_time": "6:17:08", "remaining_time": "8:46:01"} +{"current_steps": 2286, "total_steps": 5472, "loss": 0.1658, "accuracy": 1.0, "learning_rate": 3.6141779072310376e-07, "epoch": 1.6701369863013698, "percentage": 41.78, "elapsed_time": "6:17:18", "remaining_time": "8:45:51"} +{"current_steps": 2287, "total_steps": 5472, "loss": 0.0763, "accuracy": 1.0, "learning_rate": 3.612749805088617e-07, "epoch": 1.6708675799086758, "percentage": 41.79, "elapsed_time": "6:17:27", "remaining_time": "8:45:40"} +{"current_steps": 2288, "total_steps": 5472, "loss": 0.1315, "accuracy": 0.875, "learning_rate": 3.611321249984822e-07, "epoch": 1.6715981735159817, "percentage": 41.81, "elapsed_time": "6:17:36", "remaining_time": "8:45:29"} +{"current_steps": 2289, "total_steps": 5472, "loss": 0.0968, "accuracy": 1.0, "learning_rate": 3.6098922425011686e-07, "epoch": 1.6723287671232878, "percentage": 41.83, "elapsed_time": "6:17:45", "remaining_time": "8:45:18"} +{"current_steps": 2290, "total_steps": 5472, "loss": 0.2207, "accuracy": 0.875, "learning_rate": 3.6084627832193547e-07, "epoch": 1.6730593607305937, "percentage": 41.85, "elapsed_time": "6:17:55", "remaining_time": "8:45:07"} +{"current_steps": 2291, "total_steps": 5472, "loss": 0.1449, "accuracy": 1.0, "learning_rate": 3.6070328727212633e-07, "epoch": 1.6737899543378996, "percentage": 41.87, "elapsed_time": "6:18:04", "remaining_time": "8:44:57"} +{"current_steps": 2292, "total_steps": 5472, "loss": 0.1497, "accuracy": 0.875, "learning_rate": 3.6056025115889613e-07, "epoch": 1.6745205479452054, "percentage": 41.89, "elapsed_time": "6:18:15", "remaining_time": "8:44:48"} +{"current_steps": 2293, "total_steps": 5472, "loss": 0.1537, "accuracy": 1.0, "learning_rate": 3.604171700404698e-07, "epoch": 1.6752511415525113, "percentage": 41.9, "elapsed_time": "6:18:25", "remaining_time": "8:44:38"} +{"current_steps": 2294, "total_steps": 5472, "loss": 0.1637, "accuracy": 1.0, "learning_rate": 3.602740439750906e-07, "epoch": 1.6759817351598172, "percentage": 41.92, "elapsed_time": "6:18:35", "remaining_time": "8:44:28"} +{"current_steps": 2295, "total_steps": 5472, "loss": 0.1803, "accuracy": 1.0, "learning_rate": 3.601308730210201e-07, "epoch": 1.6767123287671233, "percentage": 41.94, "elapsed_time": "6:18:43", "remaining_time": "8:44:16"} +{"current_steps": 2296, "total_steps": 5472, "loss": 0.1632, "accuracy": 1.0, "learning_rate": 3.5998765723653825e-07, "epoch": 1.6774429223744294, "percentage": 41.96, "elapsed_time": "6:18:53", "remaining_time": "8:44:06"} +{"current_steps": 2297, "total_steps": 5472, "loss": 0.1967, "accuracy": 1.0, "learning_rate": 3.5984439667994314e-07, "epoch": 1.6781735159817353, "percentage": 41.98, "elapsed_time": "6:19:03", "remaining_time": "8:43:57"} +{"current_steps": 2298, "total_steps": 5472, "loss": 0.1093, "accuracy": 1.0, "learning_rate": 3.597010914095512e-07, "epoch": 1.6789041095890411, "percentage": 42.0, "elapsed_time": "6:19:12", "remaining_time": "8:43:45"} +{"current_steps": 2299, "total_steps": 5472, "loss": 0.168, "accuracy": 1.0, "learning_rate": 3.5955774148369677e-07, "epoch": 1.679634703196347, "percentage": 42.01, "elapsed_time": "6:19:22", "remaining_time": "8:43:35"} +{"current_steps": 2300, "total_steps": 5472, "loss": 0.0917, "accuracy": 0.875, "learning_rate": 3.594143469607328e-07, "epoch": 1.6803652968036529, "percentage": 42.03, "elapsed_time": "6:19:31", "remaining_time": "8:43:25"} +{"current_steps": 2301, "total_steps": 5472, "loss": 0.1439, "accuracy": 1.0, "learning_rate": 3.5927090789902994e-07, "epoch": 1.6810958904109587, "percentage": 42.05, "elapsed_time": "6:19:40", "remaining_time": "8:43:13"} +{"current_steps": 2302, "total_steps": 5472, "loss": 0.2305, "accuracy": 1.0, "learning_rate": 3.591274243569773e-07, "epoch": 1.6818264840182648, "percentage": 42.07, "elapsed_time": "6:19:49", "remaining_time": "8:43:03"} +{"current_steps": 2303, "total_steps": 5472, "loss": 0.265, "accuracy": 0.875, "learning_rate": 3.589838963929821e-07, "epoch": 1.682557077625571, "percentage": 42.09, "elapsed_time": "6:20:00", "remaining_time": "8:42:54"} +{"current_steps": 2304, "total_steps": 5472, "loss": 0.2605, "accuracy": 0.75, "learning_rate": 3.5884032406546936e-07, "epoch": 1.6832876712328768, "percentage": 42.11, "elapsed_time": "6:20:09", "remaining_time": "8:42:43"} +{"current_steps": 2305, "total_steps": 5472, "loss": 0.1738, "accuracy": 1.0, "learning_rate": 3.586967074328825e-07, "epoch": 1.6840182648401827, "percentage": 42.12, "elapsed_time": "6:20:18", "remaining_time": "8:42:31"} +{"current_steps": 2306, "total_steps": 5472, "loss": 0.2887, "accuracy": 0.75, "learning_rate": 3.585530465536827e-07, "epoch": 1.6847488584474886, "percentage": 42.14, "elapsed_time": "6:20:27", "remaining_time": "8:42:20"} +{"current_steps": 2307, "total_steps": 5472, "loss": 0.1764, "accuracy": 1.0, "learning_rate": 3.5840934148634915e-07, "epoch": 1.6854794520547944, "percentage": 42.16, "elapsed_time": "6:20:37", "remaining_time": "8:42:11"} +{"current_steps": 2308, "total_steps": 5472, "loss": 0.0782, "accuracy": 1.0, "learning_rate": 3.5826559228937937e-07, "epoch": 1.6862100456621003, "percentage": 42.18, "elapsed_time": "6:20:46", "remaining_time": "8:42:00"} +{"current_steps": 2309, "total_steps": 5472, "loss": 0.0949, "accuracy": 1.0, "learning_rate": 3.581217990212885e-07, "epoch": 1.6869406392694064, "percentage": 42.2, "elapsed_time": "6:20:57", "remaining_time": "8:41:51"} +{"current_steps": 2310, "total_steps": 5472, "loss": 0.1853, "accuracy": 1.0, "learning_rate": 3.579779617406097e-07, "epoch": 1.6876712328767123, "percentage": 42.21, "elapsed_time": "6:21:07", "remaining_time": "8:41:41"} +{"current_steps": 2311, "total_steps": 5472, "loss": 0.1844, "accuracy": 0.875, "learning_rate": 3.5783408050589424e-07, "epoch": 1.6884018264840184, "percentage": 42.23, "elapsed_time": "6:21:16", "remaining_time": "8:41:30"} +{"current_steps": 2312, "total_steps": 5472, "loss": 0.2199, "accuracy": 0.875, "learning_rate": 3.5769015537571084e-07, "epoch": 1.6891324200913242, "percentage": 42.25, "elapsed_time": "6:21:26", "remaining_time": "8:41:20"} +{"current_steps": 2313, "total_steps": 5472, "loss": 0.1898, "accuracy": 0.75, "learning_rate": 3.575461864086466e-07, "epoch": 1.6898630136986301, "percentage": 42.27, "elapsed_time": "6:21:36", "remaining_time": "8:41:11"} +{"current_steps": 2314, "total_steps": 5472, "loss": 0.1219, "accuracy": 1.0, "learning_rate": 3.5740217366330605e-07, "epoch": 1.690593607305936, "percentage": 42.29, "elapsed_time": "6:21:45", "remaining_time": "8:40:59"} +{"current_steps": 2315, "total_steps": 5472, "loss": 0.1209, "accuracy": 1.0, "learning_rate": 3.572581171983119e-07, "epoch": 1.6913242009132419, "percentage": 42.31, "elapsed_time": "6:21:55", "remaining_time": "8:40:49"} +{"current_steps": 2316, "total_steps": 5472, "loss": 0.1094, "accuracy": 1.0, "learning_rate": 3.5711401707230444e-07, "epoch": 1.692054794520548, "percentage": 42.32, "elapsed_time": "6:22:04", "remaining_time": "8:40:38"} +{"current_steps": 2317, "total_steps": 5472, "loss": 0.1123, "accuracy": 1.0, "learning_rate": 3.569698733439416e-07, "epoch": 1.6927853881278538, "percentage": 42.34, "elapsed_time": "6:22:13", "remaining_time": "8:40:27"} +{"current_steps": 2318, "total_steps": 5472, "loss": 0.1193, "accuracy": 1.0, "learning_rate": 3.568256860718995e-07, "epoch": 1.69351598173516, "percentage": 42.36, "elapsed_time": "6:22:22", "remaining_time": "8:40:16"} +{"current_steps": 2319, "total_steps": 5472, "loss": 0.1075, "accuracy": 1.0, "learning_rate": 3.566814553148715e-07, "epoch": 1.6942465753424658, "percentage": 42.38, "elapsed_time": "6:22:32", "remaining_time": "8:40:07"} +{"current_steps": 2320, "total_steps": 5472, "loss": 0.2341, "accuracy": 0.75, "learning_rate": 3.565371811315689e-07, "epoch": 1.6949771689497717, "percentage": 42.4, "elapsed_time": "6:22:41", "remaining_time": "8:39:56"} +{"current_steps": 2321, "total_steps": 5472, "loss": 0.113, "accuracy": 1.0, "learning_rate": 3.563928635807208e-07, "epoch": 1.6957077625570776, "percentage": 42.42, "elapsed_time": "6:22:51", "remaining_time": "8:39:46"} +{"current_steps": 2322, "total_steps": 5472, "loss": 0.1803, "accuracy": 0.875, "learning_rate": 3.5624850272107374e-07, "epoch": 1.6964383561643834, "percentage": 42.43, "elapsed_time": "6:23:00", "remaining_time": "8:39:35"} +{"current_steps": 2323, "total_steps": 5472, "loss": 0.2699, "accuracy": 1.0, "learning_rate": 3.5610409861139183e-07, "epoch": 1.6971689497716895, "percentage": 42.45, "elapsed_time": "6:23:10", "remaining_time": "8:39:25"} +{"current_steps": 2324, "total_steps": 5472, "loss": 0.1419, "accuracy": 0.875, "learning_rate": 3.559596513104571e-07, "epoch": 1.6978995433789954, "percentage": 42.47, "elapsed_time": "6:23:20", "remaining_time": "8:39:15"} +{"current_steps": 2325, "total_steps": 5472, "loss": 0.2544, "accuracy": 0.875, "learning_rate": 3.558151608770688e-07, "epoch": 1.6986301369863015, "percentage": 42.49, "elapsed_time": "6:23:30", "remaining_time": "8:39:05"} +{"current_steps": 2326, "total_steps": 5472, "loss": 0.1775, "accuracy": 1.0, "learning_rate": 3.556706273700441e-07, "epoch": 1.6993607305936074, "percentage": 42.51, "elapsed_time": "6:23:40", "remaining_time": "8:38:56"} +{"current_steps": 2327, "total_steps": 5472, "loss": 0.2483, "accuracy": 1.0, "learning_rate": 3.5552605084821734e-07, "epoch": 1.7000913242009132, "percentage": 42.53, "elapsed_time": "6:23:49", "remaining_time": "8:38:45"} +{"current_steps": 2328, "total_steps": 5472, "loss": 0.1433, "accuracy": 1.0, "learning_rate": 3.5538143137044065e-07, "epoch": 1.7008219178082191, "percentage": 42.54, "elapsed_time": "6:23:58", "remaining_time": "8:38:33"} +{"current_steps": 2329, "total_steps": 5472, "loss": 0.1588, "accuracy": 1.0, "learning_rate": 3.552367689955836e-07, "epoch": 1.701552511415525, "percentage": 42.56, "elapsed_time": "6:24:08", "remaining_time": "8:38:23"} +{"current_steps": 2330, "total_steps": 5472, "loss": 0.1665, "accuracy": 1.0, "learning_rate": 3.5509206378253293e-07, "epoch": 1.702283105022831, "percentage": 42.58, "elapsed_time": "6:24:17", "remaining_time": "8:38:13"} +{"current_steps": 2331, "total_steps": 5472, "loss": 0.1402, "accuracy": 1.0, "learning_rate": 3.5494731579019326e-07, "epoch": 1.703013698630137, "percentage": 42.6, "elapsed_time": "6:24:27", "remaining_time": "8:38:03"} +{"current_steps": 2332, "total_steps": 5472, "loss": 0.1822, "accuracy": 1.0, "learning_rate": 3.5480252507748634e-07, "epoch": 1.703744292237443, "percentage": 42.62, "elapsed_time": "6:24:38", "remaining_time": "8:37:54"} +{"current_steps": 2333, "total_steps": 5472, "loss": 0.1525, "accuracy": 1.0, "learning_rate": 3.5465769170335145e-07, "epoch": 1.704474885844749, "percentage": 42.64, "elapsed_time": "6:24:48", "remaining_time": "8:37:45"} +{"current_steps": 2334, "total_steps": 5472, "loss": 0.0913, "accuracy": 1.0, "learning_rate": 3.5451281572674507e-07, "epoch": 1.7052054794520548, "percentage": 42.65, "elapsed_time": "6:24:59", "remaining_time": "8:37:37"} +{"current_steps": 2335, "total_steps": 5472, "loss": 0.1159, "accuracy": 0.875, "learning_rate": 3.5436789720664116e-07, "epoch": 1.7059360730593607, "percentage": 42.67, "elapsed_time": "6:25:09", "remaining_time": "8:37:27"} +{"current_steps": 2336, "total_steps": 5472, "loss": 0.2183, "accuracy": 1.0, "learning_rate": 3.5422293620203103e-07, "epoch": 1.7066666666666666, "percentage": 42.69, "elapsed_time": "6:25:23", "remaining_time": "8:37:22"} +{"current_steps": 2337, "total_steps": 5472, "loss": 0.0882, "accuracy": 1.0, "learning_rate": 3.540779327719231e-07, "epoch": 1.7073972602739727, "percentage": 42.71, "elapsed_time": "6:25:32", "remaining_time": "8:37:11"} +{"current_steps": 2338, "total_steps": 5472, "loss": 0.1446, "accuracy": 1.0, "learning_rate": 3.539328869753432e-07, "epoch": 1.7081278538812785, "percentage": 42.73, "elapsed_time": "6:25:42", "remaining_time": "8:37:01"} +{"current_steps": 2339, "total_steps": 5472, "loss": 0.2029, "accuracy": 0.875, "learning_rate": 3.537877988713345e-07, "epoch": 1.7088584474885846, "percentage": 42.74, "elapsed_time": "6:25:52", "remaining_time": "8:36:52"} +{"current_steps": 2340, "total_steps": 5472, "loss": 0.1354, "accuracy": 1.0, "learning_rate": 3.536426685189572e-07, "epoch": 1.7095890410958905, "percentage": 42.76, "elapsed_time": "6:26:03", "remaining_time": "8:36:43"} +{"current_steps": 2341, "total_steps": 5472, "loss": 0.0747, "accuracy": 1.0, "learning_rate": 3.5349749597728867e-07, "epoch": 1.7103196347031964, "percentage": 42.78, "elapsed_time": "6:26:12", "remaining_time": "8:36:32"} +{"current_steps": 2342, "total_steps": 5472, "loss": 0.1851, "accuracy": 1.0, "learning_rate": 3.5335228130542366e-07, "epoch": 1.7110502283105022, "percentage": 42.8, "elapsed_time": "6:26:21", "remaining_time": "8:36:21"} +{"current_steps": 2343, "total_steps": 5472, "loss": 0.109, "accuracy": 1.0, "learning_rate": 3.5320702456247395e-07, "epoch": 1.7117808219178081, "percentage": 42.82, "elapsed_time": "6:26:30", "remaining_time": "8:36:10"} +{"current_steps": 2344, "total_steps": 5472, "loss": 0.2893, "accuracy": 1.0, "learning_rate": 3.5306172580756854e-07, "epoch": 1.712511415525114, "percentage": 42.84, "elapsed_time": "6:26:39", "remaining_time": "8:35:58"} +{"current_steps": 2345, "total_steps": 5472, "loss": 0.143, "accuracy": 1.0, "learning_rate": 3.529163850998533e-07, "epoch": 1.71324200913242, "percentage": 42.85, "elapsed_time": "6:26:50", "remaining_time": "8:35:50"} +{"current_steps": 2346, "total_steps": 5472, "loss": 0.1384, "accuracy": 1.0, "learning_rate": 3.527710024984914e-07, "epoch": 1.7139726027397262, "percentage": 42.87, "elapsed_time": "6:27:00", "remaining_time": "8:35:40"} +{"current_steps": 2347, "total_steps": 5472, "loss": 0.1395, "accuracy": 1.0, "learning_rate": 3.5262557806266297e-07, "epoch": 1.714703196347032, "percentage": 42.89, "elapsed_time": "6:27:09", "remaining_time": "8:35:29"} +{"current_steps": 2348, "total_steps": 5472, "loss": 0.2292, "accuracy": 0.875, "learning_rate": 3.5248011185156523e-07, "epoch": 1.715433789954338, "percentage": 42.91, "elapsed_time": "6:27:19", "remaining_time": "8:35:19"} +{"current_steps": 2349, "total_steps": 5472, "loss": 0.2338, "accuracy": 1.0, "learning_rate": 3.5233460392441227e-07, "epoch": 1.7161643835616438, "percentage": 42.93, "elapsed_time": "6:27:29", "remaining_time": "8:35:10"} +{"current_steps": 2350, "total_steps": 5472, "loss": 0.0771, "accuracy": 1.0, "learning_rate": 3.5218905434043545e-07, "epoch": 1.7168949771689497, "percentage": 42.95, "elapsed_time": "6:27:38", "remaining_time": "8:34:58"} +{"current_steps": 2351, "total_steps": 5472, "loss": 0.1384, "accuracy": 1.0, "learning_rate": 3.520434631588827e-07, "epoch": 1.7176255707762556, "percentage": 42.96, "elapsed_time": "6:27:47", "remaining_time": "8:34:48"} +{"current_steps": 2352, "total_steps": 5472, "loss": 0.0977, "accuracy": 1.0, "learning_rate": 3.518978304390192e-07, "epoch": 1.7183561643835616, "percentage": 42.98, "elapsed_time": "6:27:57", "remaining_time": "8:34:37"} +{"current_steps": 2353, "total_steps": 5472, "loss": 0.2101, "accuracy": 1.0, "learning_rate": 3.517521562401269e-07, "epoch": 1.7190867579908677, "percentage": 43.0, "elapsed_time": "6:28:09", "remaining_time": "8:34:31"} +{"current_steps": 2354, "total_steps": 5472, "loss": 0.2393, "accuracy": 1.0, "learning_rate": 3.5160644062150456e-07, "epoch": 1.7198173515981736, "percentage": 43.02, "elapsed_time": "6:28:18", "remaining_time": "8:34:20"} +{"current_steps": 2355, "total_steps": 5472, "loss": 0.3192, "accuracy": 0.75, "learning_rate": 3.5146068364246797e-07, "epoch": 1.7205479452054795, "percentage": 43.04, "elapsed_time": "6:28:28", "remaining_time": "8:34:09"} +{"current_steps": 2356, "total_steps": 5472, "loss": 0.2708, "accuracy": 1.0, "learning_rate": 3.5131488536234966e-07, "epoch": 1.7212785388127854, "percentage": 43.06, "elapsed_time": "6:28:39", "remaining_time": "8:34:02"} +{"current_steps": 2357, "total_steps": 5472, "loss": 0.1156, "accuracy": 1.0, "learning_rate": 3.51169045840499e-07, "epoch": 1.7220091324200912, "percentage": 43.07, "elapsed_time": "6:28:49", "remaining_time": "8:33:52"} +{"current_steps": 2358, "total_steps": 5472, "loss": 0.1881, "accuracy": 1.0, "learning_rate": 3.510231651362821e-07, "epoch": 1.7227397260273971, "percentage": 43.09, "elapsed_time": "6:29:02", "remaining_time": "8:33:46"} +{"current_steps": 2359, "total_steps": 5472, "loss": 0.0938, "accuracy": 1.0, "learning_rate": 3.50877243309082e-07, "epoch": 1.7234703196347032, "percentage": 43.11, "elapsed_time": "6:29:12", "remaining_time": "8:33:36"} +{"current_steps": 2360, "total_steps": 5472, "loss": 0.1557, "accuracy": 1.0, "learning_rate": 3.507312804182981e-07, "epoch": 1.724200913242009, "percentage": 43.13, "elapsed_time": "6:29:20", "remaining_time": "8:33:24"} +{"current_steps": 2361, "total_steps": 5472, "loss": 0.1, "accuracy": 1.0, "learning_rate": 3.5058527652334707e-07, "epoch": 1.7249315068493152, "percentage": 43.15, "elapsed_time": "6:29:32", "remaining_time": "8:33:17"} +{"current_steps": 2362, "total_steps": 5472, "loss": 0.1267, "accuracy": 1.0, "learning_rate": 3.504392316836618e-07, "epoch": 1.725662100456621, "percentage": 43.17, "elapsed_time": "6:29:41", "remaining_time": "8:33:06"} +{"current_steps": 2363, "total_steps": 5472, "loss": 0.1413, "accuracy": 1.0, "learning_rate": 3.5029314595869203e-07, "epoch": 1.726392694063927, "percentage": 43.18, "elapsed_time": "6:29:50", "remaining_time": "8:32:55"} +{"current_steps": 2364, "total_steps": 5472, "loss": 0.1726, "accuracy": 0.875, "learning_rate": 3.5014701940790416e-07, "epoch": 1.7271232876712328, "percentage": 43.2, "elapsed_time": "6:29:59", "remaining_time": "8:32:44"} +{"current_steps": 2365, "total_steps": 5472, "loss": 0.1407, "accuracy": 1.0, "learning_rate": 3.500008520907811e-07, "epoch": 1.7278538812785387, "percentage": 43.22, "elapsed_time": "6:30:09", "remaining_time": "8:32:34"} +{"current_steps": 2366, "total_steps": 5472, "loss": 0.1817, "accuracy": 0.875, "learning_rate": 3.4985464406682247e-07, "epoch": 1.7285844748858448, "percentage": 43.24, "elapsed_time": "6:30:18", "remaining_time": "8:32:23"} +{"current_steps": 2367, "total_steps": 5472, "loss": 0.2217, "accuracy": 0.875, "learning_rate": 3.4970839539554446e-07, "epoch": 1.7293150684931506, "percentage": 43.26, "elapsed_time": "6:30:28", "remaining_time": "8:32:13"} +{"current_steps": 2368, "total_steps": 5472, "loss": 0.3442, "accuracy": 1.0, "learning_rate": 3.495621061364798e-07, "epoch": 1.7300456621004567, "percentage": 43.27, "elapsed_time": "6:30:37", "remaining_time": "8:32:02"} +{"current_steps": 2369, "total_steps": 5472, "loss": 0.2169, "accuracy": 1.0, "learning_rate": 3.494157763491776e-07, "epoch": 1.7307762557077626, "percentage": 43.29, "elapsed_time": "6:30:46", "remaining_time": "8:31:50"} +{"current_steps": 2370, "total_steps": 5472, "loss": 0.1558, "accuracy": 0.875, "learning_rate": 3.4926940609320377e-07, "epoch": 1.7315068493150685, "percentage": 43.31, "elapsed_time": "6:30:55", "remaining_time": "8:31:39"} +{"current_steps": 2371, "total_steps": 5472, "loss": 0.1808, "accuracy": 1.0, "learning_rate": 3.491229954281402e-07, "epoch": 1.7322374429223744, "percentage": 43.33, "elapsed_time": "6:31:06", "remaining_time": "8:31:30"} +{"current_steps": 2372, "total_steps": 5472, "loss": 0.1678, "accuracy": 0.875, "learning_rate": 3.489765444135858e-07, "epoch": 1.7329680365296802, "percentage": 43.35, "elapsed_time": "6:31:17", "remaining_time": "8:31:22"} +{"current_steps": 2373, "total_steps": 5472, "loss": 0.0943, "accuracy": 1.0, "learning_rate": 3.4883005310915546e-07, "epoch": 1.7336986301369863, "percentage": 43.37, "elapsed_time": "6:31:26", "remaining_time": "8:31:12"} +{"current_steps": 2374, "total_steps": 5472, "loss": 0.2594, "accuracy": 0.75, "learning_rate": 3.4868352157448086e-07, "epoch": 1.7344292237442922, "percentage": 43.38, "elapsed_time": "6:31:35", "remaining_time": "8:31:00"} +{"current_steps": 2375, "total_steps": 5472, "loss": 0.1722, "accuracy": 1.0, "learning_rate": 3.485369498692096e-07, "epoch": 1.7351598173515983, "percentage": 43.4, "elapsed_time": "6:31:44", "remaining_time": "8:30:49"} +{"current_steps": 2376, "total_steps": 5472, "loss": 0.3037, "accuracy": 0.875, "learning_rate": 3.48390338053006e-07, "epoch": 1.7358904109589042, "percentage": 43.42, "elapsed_time": "6:31:55", "remaining_time": "8:30:40"} +{"current_steps": 2377, "total_steps": 5472, "loss": 0.1875, "accuracy": 1.0, "learning_rate": 3.4824368618555054e-07, "epoch": 1.73662100456621, "percentage": 43.44, "elapsed_time": "6:32:04", "remaining_time": "8:30:30"} +{"current_steps": 2378, "total_steps": 5472, "loss": 0.1894, "accuracy": 0.75, "learning_rate": 3.4809699432654015e-07, "epoch": 1.737351598173516, "percentage": 43.46, "elapsed_time": "6:32:16", "remaining_time": "8:30:22"} +{"current_steps": 2379, "total_steps": 5472, "loss": 0.168, "accuracy": 0.875, "learning_rate": 3.479502625356878e-07, "epoch": 1.7380821917808218, "percentage": 43.48, "elapsed_time": "6:32:25", "remaining_time": "8:30:11"} +{"current_steps": 2380, "total_steps": 5472, "loss": 0.1012, "accuracy": 1.0, "learning_rate": 3.478034908727229e-07, "epoch": 1.738812785388128, "percentage": 43.49, "elapsed_time": "6:32:34", "remaining_time": "8:30:00"} +{"current_steps": 2381, "total_steps": 5472, "loss": 0.2287, "accuracy": 0.875, "learning_rate": 3.476566793973911e-07, "epoch": 1.7395433789954338, "percentage": 43.51, "elapsed_time": "6:32:43", "remaining_time": "8:29:49"} +{"current_steps": 2382, "total_steps": 5472, "loss": 0.172, "accuracy": 1.0, "learning_rate": 3.475098281694541e-07, "epoch": 1.7402739726027399, "percentage": 43.53, "elapsed_time": "6:32:53", "remaining_time": "8:29:40"} +{"current_steps": 2383, "total_steps": 5472, "loss": 0.1472, "accuracy": 1.0, "learning_rate": 3.473629372486899e-07, "epoch": 1.7410045662100457, "percentage": 43.55, "elapsed_time": "6:33:03", "remaining_time": "8:29:30"} +{"current_steps": 2384, "total_steps": 5472, "loss": 0.1462, "accuracy": 1.0, "learning_rate": 3.472160066948927e-07, "epoch": 1.7417351598173516, "percentage": 43.57, "elapsed_time": "6:33:12", "remaining_time": "8:29:18"} +{"current_steps": 2385, "total_steps": 5472, "loss": 0.1196, "accuracy": 1.0, "learning_rate": 3.4706903656787275e-07, "epoch": 1.7424657534246575, "percentage": 43.59, "elapsed_time": "6:33:22", "remaining_time": "8:29:09"} +{"current_steps": 2386, "total_steps": 5472, "loss": 0.2294, "accuracy": 1.0, "learning_rate": 3.469220269274563e-07, "epoch": 1.7431963470319634, "percentage": 43.6, "elapsed_time": "6:33:32", "remaining_time": "8:29:00"} +{"current_steps": 2387, "total_steps": 5472, "loss": 0.0981, "accuracy": 0.875, "learning_rate": 3.46774977833486e-07, "epoch": 1.7439269406392695, "percentage": 43.62, "elapsed_time": "6:33:46", "remaining_time": "8:28:55"} +{"current_steps": 2388, "total_steps": 5472, "loss": 0.2475, "accuracy": 1.0, "learning_rate": 3.466278893458203e-07, "epoch": 1.7446575342465753, "percentage": 43.64, "elapsed_time": "6:33:57", "remaining_time": "8:28:46"} +{"current_steps": 2389, "total_steps": 5472, "loss": 0.2335, "accuracy": 0.875, "learning_rate": 3.464807615243337e-07, "epoch": 1.7453881278538814, "percentage": 43.66, "elapsed_time": "6:34:08", "remaining_time": "8:28:38"} +{"current_steps": 2390, "total_steps": 5472, "loss": 0.0679, "accuracy": 1.0, "learning_rate": 3.463335944289168e-07, "epoch": 1.7461187214611873, "percentage": 43.68, "elapsed_time": "6:34:19", "remaining_time": "8:28:29"} +{"current_steps": 2391, "total_steps": 5472, "loss": 0.1453, "accuracy": 0.875, "learning_rate": 3.461863881194762e-07, "epoch": 1.7468493150684932, "percentage": 43.7, "elapsed_time": "6:34:28", "remaining_time": "8:28:18"} +{"current_steps": 2392, "total_steps": 5472, "loss": 0.1873, "accuracy": 0.875, "learning_rate": 3.4603914265593443e-07, "epoch": 1.747579908675799, "percentage": 43.71, "elapsed_time": "6:34:38", "remaining_time": "8:28:08"} +{"current_steps": 2393, "total_steps": 5472, "loss": 0.1945, "accuracy": 1.0, "learning_rate": 3.4589185809822983e-07, "epoch": 1.748310502283105, "percentage": 43.73, "elapsed_time": "6:34:46", "remaining_time": "8:27:56"} +{"current_steps": 2394, "total_steps": 5472, "loss": 0.1495, "accuracy": 0.875, "learning_rate": 3.45744534506317e-07, "epoch": 1.749041095890411, "percentage": 43.75, "elapsed_time": "6:34:57", "remaining_time": "8:27:48"} +{"current_steps": 2395, "total_steps": 5472, "loss": 0.1589, "accuracy": 1.0, "learning_rate": 3.455971719401659e-07, "epoch": 1.7497716894977169, "percentage": 43.77, "elapsed_time": "6:35:07", "remaining_time": "8:27:38"} +{"current_steps": 2396, "total_steps": 5472, "loss": 0.1718, "accuracy": 0.875, "learning_rate": 3.454497704597629e-07, "epoch": 1.750502283105023, "percentage": 43.79, "elapsed_time": "6:35:17", "remaining_time": "8:27:28"} +{"current_steps": 2397, "total_steps": 5472, "loss": 0.1435, "accuracy": 0.875, "learning_rate": 3.453023301251098e-07, "epoch": 1.7512328767123289, "percentage": 43.8, "elapsed_time": "6:35:26", "remaining_time": "8:27:17"} +{"current_steps": 2398, "total_steps": 5472, "loss": 0.2646, "accuracy": 1.0, "learning_rate": 3.451548509962246e-07, "epoch": 1.7519634703196347, "percentage": 43.82, "elapsed_time": "6:35:35", "remaining_time": "8:27:07"} +{"current_steps": 2399, "total_steps": 5472, "loss": 0.2135, "accuracy": 0.875, "learning_rate": 3.450073331331406e-07, "epoch": 1.7526940639269406, "percentage": 43.84, "elapsed_time": "6:35:46", "remaining_time": "8:26:58"} +{"current_steps": 2400, "total_steps": 5472, "loss": 0.1426, "accuracy": 1.0, "learning_rate": 3.448597765959074e-07, "epoch": 1.7534246575342465, "percentage": 43.86, "elapsed_time": "6:35:57", "remaining_time": "8:26:49"} +{"current_steps": 2401, "total_steps": 5472, "loss": 0.1655, "accuracy": 1.0, "learning_rate": 3.447121814445898e-07, "epoch": 1.7541552511415524, "percentage": 43.88, "elapsed_time": "6:36:08", "remaining_time": "8:26:40"} +{"current_steps": 2402, "total_steps": 5472, "loss": 0.217, "accuracy": 0.875, "learning_rate": 3.445645477392689e-07, "epoch": 1.7548858447488584, "percentage": 43.9, "elapsed_time": "6:36:18", "remaining_time": "8:26:30"} +{"current_steps": 2403, "total_steps": 5472, "loss": 0.2819, "accuracy": 0.75, "learning_rate": 3.4441687554004105e-07, "epoch": 1.7556164383561645, "percentage": 43.91, "elapsed_time": "6:36:29", "remaining_time": "8:26:23"} +{"current_steps": 2404, "total_steps": 5472, "loss": 0.2153, "accuracy": 0.875, "learning_rate": 3.4426916490701843e-07, "epoch": 1.7563470319634704, "percentage": 43.93, "elapsed_time": "6:36:39", "remaining_time": "8:26:13"} +{"current_steps": 2405, "total_steps": 5472, "loss": 0.2328, "accuracy": 0.875, "learning_rate": 3.4412141590032883e-07, "epoch": 1.7570776255707763, "percentage": 43.95, "elapsed_time": "6:36:50", "remaining_time": "8:26:04"} +{"current_steps": 2406, "total_steps": 5472, "loss": 0.1465, "accuracy": 0.875, "learning_rate": 3.4397362858011567e-07, "epoch": 1.7578082191780822, "percentage": 43.97, "elapsed_time": "6:36:59", "remaining_time": "8:25:52"} +{"current_steps": 2407, "total_steps": 5472, "loss": 0.141, "accuracy": 1.0, "learning_rate": 3.438258030065381e-07, "epoch": 1.758538812785388, "percentage": 43.99, "elapsed_time": "6:37:08", "remaining_time": "8:25:42"} +{"current_steps": 2408, "total_steps": 5472, "loss": 0.2855, "accuracy": 0.875, "learning_rate": 3.436779392397706e-07, "epoch": 1.759269406392694, "percentage": 44.01, "elapsed_time": "6:37:17", "remaining_time": "8:25:31"} +{"current_steps": 2409, "total_steps": 5472, "loss": 0.1479, "accuracy": 1.0, "learning_rate": 3.4353003734000335e-07, "epoch": 1.76, "percentage": 44.02, "elapsed_time": "6:37:26", "remaining_time": "8:25:20"} +{"current_steps": 2410, "total_steps": 5472, "loss": 0.1696, "accuracy": 1.0, "learning_rate": 3.433820973674421e-07, "epoch": 1.7607305936073059, "percentage": 44.04, "elapsed_time": "6:37:38", "remaining_time": "8:25:13"} +{"current_steps": 2411, "total_steps": 5472, "loss": 0.0985, "accuracy": 1.0, "learning_rate": 3.4323411938230784e-07, "epoch": 1.761461187214612, "percentage": 44.06, "elapsed_time": "6:37:47", "remaining_time": "8:25:02"} +{"current_steps": 2412, "total_steps": 5472, "loss": 0.0766, "accuracy": 1.0, "learning_rate": 3.4308610344483733e-07, "epoch": 1.7621917808219179, "percentage": 44.08, "elapsed_time": "6:37:56", "remaining_time": "8:24:51"} +{"current_steps": 2413, "total_steps": 5472, "loss": 0.1973, "accuracy": 1.0, "learning_rate": 3.4293804961528266e-07, "epoch": 1.7629223744292237, "percentage": 44.1, "elapsed_time": "6:38:06", "remaining_time": "8:24:40"} +{"current_steps": 2414, "total_steps": 5472, "loss": 0.0835, "accuracy": 1.0, "learning_rate": 3.427899579539113e-07, "epoch": 1.7636529680365296, "percentage": 44.12, "elapsed_time": "6:38:16", "remaining_time": "8:24:31"} +{"current_steps": 2415, "total_steps": 5472, "loss": 0.1517, "accuracy": 0.875, "learning_rate": 3.426418285210062e-07, "epoch": 1.7643835616438355, "percentage": 44.13, "elapsed_time": "6:38:26", "remaining_time": "8:24:21"} +{"current_steps": 2416, "total_steps": 5472, "loss": 0.1448, "accuracy": 1.0, "learning_rate": 3.4249366137686575e-07, "epoch": 1.7651141552511416, "percentage": 44.15, "elapsed_time": "6:38:37", "remaining_time": "8:24:13"} +{"current_steps": 2417, "total_steps": 5472, "loss": 0.0854, "accuracy": 0.875, "learning_rate": 3.4234545658180335e-07, "epoch": 1.7658447488584474, "percentage": 44.17, "elapsed_time": "6:38:46", "remaining_time": "8:24:02"} +{"current_steps": 2418, "total_steps": 5472, "loss": 0.2123, "accuracy": 0.875, "learning_rate": 3.4219721419614815e-07, "epoch": 1.7665753424657535, "percentage": 44.19, "elapsed_time": "6:38:57", "remaining_time": "8:23:53"} +{"current_steps": 2419, "total_steps": 5472, "loss": 0.2032, "accuracy": 0.75, "learning_rate": 3.420489342802444e-07, "epoch": 1.7673059360730594, "percentage": 44.21, "elapsed_time": "6:39:06", "remaining_time": "8:23:42"} +{"current_steps": 2420, "total_steps": 5472, "loss": 0.1577, "accuracy": 0.75, "learning_rate": 3.419006168944517e-07, "epoch": 1.7680365296803653, "percentage": 44.23, "elapsed_time": "6:39:16", "remaining_time": "8:23:33"} +{"current_steps": 2421, "total_steps": 5472, "loss": 0.1778, "accuracy": 1.0, "learning_rate": 3.417522620991447e-07, "epoch": 1.7687671232876712, "percentage": 44.24, "elapsed_time": "6:39:27", "remaining_time": "8:23:24"} +{"current_steps": 2422, "total_steps": 5472, "loss": 0.1583, "accuracy": 0.875, "learning_rate": 3.416038699547135e-07, "epoch": 1.769497716894977, "percentage": 44.26, "elapsed_time": "6:39:37", "remaining_time": "8:23:14"} +{"current_steps": 2423, "total_steps": 5472, "loss": 0.194, "accuracy": 1.0, "learning_rate": 3.4145544052156325e-07, "epoch": 1.7702283105022831, "percentage": 44.28, "elapsed_time": "6:39:46", "remaining_time": "8:23:03"} +{"current_steps": 2424, "total_steps": 5472, "loss": 0.1227, "accuracy": 1.0, "learning_rate": 3.4130697386011453e-07, "epoch": 1.770958904109589, "percentage": 44.3, "elapsed_time": "6:39:55", "remaining_time": "8:22:52"} +{"current_steps": 2425, "total_steps": 5472, "loss": 0.301, "accuracy": 0.875, "learning_rate": 3.4115847003080286e-07, "epoch": 1.771689497716895, "percentage": 44.32, "elapsed_time": "6:40:04", "remaining_time": "8:22:41"} +{"current_steps": 2426, "total_steps": 5472, "loss": 0.189, "accuracy": 0.875, "learning_rate": 3.410099290940788e-07, "epoch": 1.772420091324201, "percentage": 44.33, "elapsed_time": "6:40:16", "remaining_time": "8:22:34"} +{"current_steps": 2427, "total_steps": 5472, "loss": 0.1485, "accuracy": 0.875, "learning_rate": 3.4086135111040834e-07, "epoch": 1.7731506849315068, "percentage": 44.35, "elapsed_time": "6:40:27", "remaining_time": "8:22:25"} +{"current_steps": 2428, "total_steps": 5472, "loss": 0.1323, "accuracy": 1.0, "learning_rate": 3.4071273614027216e-07, "epoch": 1.7738812785388127, "percentage": 44.37, "elapsed_time": "6:40:36", "remaining_time": "8:22:14"} +{"current_steps": 2429, "total_steps": 5472, "loss": 0.1269, "accuracy": 1.0, "learning_rate": 3.4056408424416637e-07, "epoch": 1.7746118721461186, "percentage": 44.39, "elapsed_time": "6:40:46", "remaining_time": "8:22:05"} +{"current_steps": 2430, "total_steps": 5472, "loss": 0.1062, "accuracy": 0.875, "learning_rate": 3.404153954826018e-07, "epoch": 1.7753424657534247, "percentage": 44.41, "elapsed_time": "6:40:57", "remaining_time": "8:21:56"} +{"current_steps": 2431, "total_steps": 5472, "loss": 0.2035, "accuracy": 0.875, "learning_rate": 3.4026666991610457e-07, "epoch": 1.7760730593607306, "percentage": 44.43, "elapsed_time": "6:41:06", "remaining_time": "8:21:45"} +{"current_steps": 2432, "total_steps": 5472, "loss": 0.2124, "accuracy": 1.0, "learning_rate": 3.401179076052155e-07, "epoch": 1.7768036529680367, "percentage": 44.44, "elapsed_time": "6:41:16", "remaining_time": "8:21:36"} +{"current_steps": 2433, "total_steps": 5472, "loss": 0.2884, "accuracy": 1.0, "learning_rate": 3.3996910861049067e-07, "epoch": 1.7775342465753425, "percentage": 44.46, "elapsed_time": "6:41:26", "remaining_time": "8:21:26"} +{"current_steps": 2434, "total_steps": 5472, "loss": 0.1358, "accuracy": 1.0, "learning_rate": 3.3982027299250065e-07, "epoch": 1.7782648401826484, "percentage": 44.48, "elapsed_time": "6:41:37", "remaining_time": "8:21:16"} +{"current_steps": 2435, "total_steps": 5472, "loss": 0.1534, "accuracy": 0.75, "learning_rate": 3.3967140081183144e-07, "epoch": 1.7789954337899543, "percentage": 44.5, "elapsed_time": "6:41:50", "remaining_time": "8:21:10"} +{"current_steps": 2436, "total_steps": 5472, "loss": 0.182, "accuracy": 1.0, "learning_rate": 3.395224921290836e-07, "epoch": 1.7797260273972602, "percentage": 44.52, "elapsed_time": "6:41:58", "remaining_time": "8:20:59"} +{"current_steps": 2437, "total_steps": 5472, "loss": 0.1767, "accuracy": 1.0, "learning_rate": 3.3937354700487267e-07, "epoch": 1.7804566210045663, "percentage": 44.54, "elapsed_time": "6:42:08", "remaining_time": "8:20:49"} +{"current_steps": 2438, "total_steps": 5472, "loss": 0.1453, "accuracy": 1.0, "learning_rate": 3.3922456549982883e-07, "epoch": 1.7811872146118721, "percentage": 44.55, "elapsed_time": "6:42:17", "remaining_time": "8:20:38"} +{"current_steps": 2439, "total_steps": 5472, "loss": 0.1327, "accuracy": 1.0, "learning_rate": 3.3907554767459735e-07, "epoch": 1.7819178082191782, "percentage": 44.57, "elapsed_time": "6:42:27", "remaining_time": "8:20:28"} +{"current_steps": 2440, "total_steps": 5472, "loss": 0.11, "accuracy": 0.875, "learning_rate": 3.389264935898382e-07, "epoch": 1.782648401826484, "percentage": 44.59, "elapsed_time": "6:42:36", "remaining_time": "8:20:17"} +{"current_steps": 2441, "total_steps": 5472, "loss": 0.1622, "accuracy": 0.875, "learning_rate": 3.387774033062259e-07, "epoch": 1.78337899543379, "percentage": 44.61, "elapsed_time": "6:42:45", "remaining_time": "8:20:06"} +{"current_steps": 2442, "total_steps": 5472, "loss": 0.1254, "accuracy": 1.0, "learning_rate": 3.3862827688444994e-07, "epoch": 1.7841095890410958, "percentage": 44.63, "elapsed_time": "6:42:55", "remaining_time": "8:19:56"} +{"current_steps": 2443, "total_steps": 5472, "loss": 0.1772, "accuracy": 0.875, "learning_rate": 3.3847911438521456e-07, "epoch": 1.7848401826484017, "percentage": 44.65, "elapsed_time": "6:43:06", "remaining_time": "8:19:47"} +{"current_steps": 2444, "total_steps": 5472, "loss": 0.1086, "accuracy": 1.0, "learning_rate": 3.383299158692385e-07, "epoch": 1.7855707762557078, "percentage": 44.66, "elapsed_time": "6:43:16", "remaining_time": "8:19:38"} +{"current_steps": 2445, "total_steps": 5472, "loss": 0.1945, "accuracy": 0.875, "learning_rate": 3.3818068139725513e-07, "epoch": 1.7863013698630137, "percentage": 44.68, "elapsed_time": "6:43:25", "remaining_time": "8:19:27"} +{"current_steps": 2446, "total_steps": 5472, "loss": 0.2489, "accuracy": 0.875, "learning_rate": 3.3803141103001276e-07, "epoch": 1.7870319634703198, "percentage": 44.7, "elapsed_time": "6:43:34", "remaining_time": "8:19:16"} +{"current_steps": 2447, "total_steps": 5472, "loss": 0.0874, "accuracy": 1.0, "learning_rate": 3.3788210482827393e-07, "epoch": 1.7877625570776257, "percentage": 44.72, "elapsed_time": "6:43:43", "remaining_time": "8:19:04"} +{"current_steps": 2448, "total_steps": 5472, "loss": 0.1852, "accuracy": 1.0, "learning_rate": 3.37732762852816e-07, "epoch": 1.7884931506849315, "percentage": 44.74, "elapsed_time": "6:43:52", "remaining_time": "8:18:54"} +{"current_steps": 2449, "total_steps": 5472, "loss": 0.1694, "accuracy": 1.0, "learning_rate": 3.37583385164431e-07, "epoch": 1.7892237442922374, "percentage": 44.76, "elapsed_time": "6:44:01", "remaining_time": "8:18:43"} +{"current_steps": 2450, "total_steps": 5472, "loss": 0.1217, "accuracy": 1.0, "learning_rate": 3.374339718239251e-07, "epoch": 1.7899543378995433, "percentage": 44.77, "elapsed_time": "6:44:10", "remaining_time": "8:18:32"} +{"current_steps": 2451, "total_steps": 5472, "loss": 0.115, "accuracy": 1.0, "learning_rate": 3.372845228921194e-07, "epoch": 1.7906849315068492, "percentage": 44.79, "elapsed_time": "6:44:20", "remaining_time": "8:18:22"} +{"current_steps": 2452, "total_steps": 5472, "loss": 0.2202, "accuracy": 1.0, "learning_rate": 3.371350384298493e-07, "epoch": 1.7914155251141552, "percentage": 44.81, "elapsed_time": "6:44:30", "remaining_time": "8:18:12"} +{"current_steps": 2453, "total_steps": 5472, "loss": 0.1, "accuracy": 0.875, "learning_rate": 3.369855184979645e-07, "epoch": 1.7921461187214613, "percentage": 44.83, "elapsed_time": "6:44:40", "remaining_time": "8:18:03"} +{"current_steps": 2454, "total_steps": 5472, "loss": 0.1222, "accuracy": 1.0, "learning_rate": 3.3683596315732955e-07, "epoch": 1.7928767123287672, "percentage": 44.85, "elapsed_time": "6:44:50", "remaining_time": "8:17:53"} +{"current_steps": 2455, "total_steps": 5472, "loss": 0.1561, "accuracy": 1.0, "learning_rate": 3.366863724688231e-07, "epoch": 1.793607305936073, "percentage": 44.86, "elapsed_time": "6:45:00", "remaining_time": "8:17:43"} +{"current_steps": 2456, "total_steps": 5472, "loss": 0.1775, "accuracy": 1.0, "learning_rate": 3.3653674649333816e-07, "epoch": 1.794337899543379, "percentage": 44.88, "elapsed_time": "6:45:10", "remaining_time": "8:17:33"} +{"current_steps": 2457, "total_steps": 5472, "loss": 0.0816, "accuracy": 1.0, "learning_rate": 3.363870852917824e-07, "epoch": 1.7950684931506848, "percentage": 44.9, "elapsed_time": "6:45:19", "remaining_time": "8:17:22"} +{"current_steps": 2458, "total_steps": 5472, "loss": 0.2093, "accuracy": 0.875, "learning_rate": 3.3623738892507745e-07, "epoch": 1.7957990867579907, "percentage": 44.92, "elapsed_time": "6:45:28", "remaining_time": "8:17:11"} +{"current_steps": 2459, "total_steps": 5472, "loss": 0.1787, "accuracy": 1.0, "learning_rate": 3.360876574541595e-07, "epoch": 1.7965296803652968, "percentage": 44.94, "elapsed_time": "6:45:36", "remaining_time": "8:16:59"} +{"current_steps": 2460, "total_steps": 5472, "loss": 0.2055, "accuracy": 0.875, "learning_rate": 3.3593789093997904e-07, "epoch": 1.7972602739726027, "percentage": 44.96, "elapsed_time": "6:45:45", "remaining_time": "8:16:48"} +{"current_steps": 2461, "total_steps": 5472, "loss": 0.1299, "accuracy": 1.0, "learning_rate": 3.357880894435008e-07, "epoch": 1.7979908675799088, "percentage": 44.97, "elapsed_time": "6:45:58", "remaining_time": "8:16:42"} +{"current_steps": 2462, "total_steps": 5472, "loss": 0.1419, "accuracy": 1.0, "learning_rate": 3.3563825302570355e-07, "epoch": 1.7987214611872147, "percentage": 44.99, "elapsed_time": "6:46:09", "remaining_time": "8:16:33"} +{"current_steps": 2463, "total_steps": 5472, "loss": 0.1512, "accuracy": 0.875, "learning_rate": 3.354883817475805e-07, "epoch": 1.7994520547945205, "percentage": 45.01, "elapsed_time": "6:46:19", "remaining_time": "8:16:24"} +{"current_steps": 2464, "total_steps": 5472, "loss": 0.2472, "accuracy": 1.0, "learning_rate": 3.35338475670139e-07, "epoch": 1.8001826484018264, "percentage": 45.03, "elapsed_time": "6:46:28", "remaining_time": "8:16:13"} +{"current_steps": 2465, "total_steps": 5472, "loss": 0.2176, "accuracy": 0.875, "learning_rate": 3.3518853485440055e-07, "epoch": 1.8009132420091323, "percentage": 45.05, "elapsed_time": "6:46:38", "remaining_time": "8:16:02"} +{"current_steps": 2466, "total_steps": 5472, "loss": 0.1246, "accuracy": 1.0, "learning_rate": 3.350385593614008e-07, "epoch": 1.8016438356164384, "percentage": 45.07, "elapsed_time": "6:46:47", "remaining_time": "8:15:52"} +{"current_steps": 2467, "total_steps": 5472, "loss": 0.1247, "accuracy": 0.875, "learning_rate": 3.3488854925218954e-07, "epoch": 1.8023744292237442, "percentage": 45.08, "elapsed_time": "6:46:57", "remaining_time": "8:15:42"} +{"current_steps": 2468, "total_steps": 5472, "loss": 0.188, "accuracy": 1.0, "learning_rate": 3.3473850458783056e-07, "epoch": 1.8031050228310503, "percentage": 45.1, "elapsed_time": "6:47:07", "remaining_time": "8:15:32"} +{"current_steps": 2469, "total_steps": 5472, "loss": 0.1384, "accuracy": 0.875, "learning_rate": 3.3458842542940175e-07, "epoch": 1.8038356164383562, "percentage": 45.12, "elapsed_time": "6:47:17", "remaining_time": "8:15:23"} +{"current_steps": 2470, "total_steps": 5472, "loss": 0.1644, "accuracy": 0.875, "learning_rate": 3.344383118379951e-07, "epoch": 1.804566210045662, "percentage": 45.14, "elapsed_time": "6:47:27", "remaining_time": "8:15:13"} +{"current_steps": 2471, "total_steps": 5472, "loss": 0.2185, "accuracy": 1.0, "learning_rate": 3.342881638747166e-07, "epoch": 1.805296803652968, "percentage": 45.16, "elapsed_time": "6:47:37", "remaining_time": "8:15:03"} +{"current_steps": 2472, "total_steps": 5472, "loss": 0.2279, "accuracy": 1.0, "learning_rate": 3.341379816006863e-07, "epoch": 1.8060273972602738, "percentage": 45.18, "elapsed_time": "6:47:46", "remaining_time": "8:14:52"} +{"current_steps": 2473, "total_steps": 5472, "loss": 0.2545, "accuracy": 1.0, "learning_rate": 3.339877650770379e-07, "epoch": 1.80675799086758, "percentage": 45.19, "elapsed_time": "6:47:55", "remaining_time": "8:14:41"} +{"current_steps": 2474, "total_steps": 5472, "loss": 0.1583, "accuracy": 0.75, "learning_rate": 3.338375143649195e-07, "epoch": 1.8074885844748858, "percentage": 45.21, "elapsed_time": "6:48:05", "remaining_time": "8:14:31"} +{"current_steps": 2475, "total_steps": 5472, "loss": 0.119, "accuracy": 1.0, "learning_rate": 3.336872295254927e-07, "epoch": 1.808219178082192, "percentage": 45.23, "elapsed_time": "6:48:15", "remaining_time": "8:14:21"} +{"current_steps": 2476, "total_steps": 5472, "loss": 0.1728, "accuracy": 0.875, "learning_rate": 3.335369106199333e-07, "epoch": 1.8089497716894978, "percentage": 45.25, "elapsed_time": "6:48:26", "remaining_time": "8:14:12"} +{"current_steps": 2477, "total_steps": 5472, "loss": 0.1003, "accuracy": 1.0, "learning_rate": 3.3338655770943086e-07, "epoch": 1.8096803652968037, "percentage": 45.27, "elapsed_time": "6:48:36", "remaining_time": "8:14:02"} +{"current_steps": 2478, "total_steps": 5472, "loss": 0.1504, "accuracy": 0.875, "learning_rate": 3.3323617085518867e-07, "epoch": 1.8104109589041095, "percentage": 45.29, "elapsed_time": "6:48:45", "remaining_time": "8:13:51"} +{"current_steps": 2479, "total_steps": 5472, "loss": 0.1925, "accuracy": 1.0, "learning_rate": 3.330857501184241e-07, "epoch": 1.8111415525114154, "percentage": 45.3, "elapsed_time": "6:48:54", "remaining_time": "8:13:41"} +{"current_steps": 2480, "total_steps": 5472, "loss": 0.21, "accuracy": 1.0, "learning_rate": 3.32935295560368e-07, "epoch": 1.8118721461187215, "percentage": 45.32, "elapsed_time": "6:49:04", "remaining_time": "8:13:32"} +{"current_steps": 2481, "total_steps": 5472, "loss": 0.1336, "accuracy": 1.0, "learning_rate": 3.327848072422652e-07, "epoch": 1.8126027397260274, "percentage": 45.34, "elapsed_time": "6:49:14", "remaining_time": "8:13:21"} +{"current_steps": 2482, "total_steps": 5472, "loss": 0.2271, "accuracy": 0.75, "learning_rate": 3.326342852253742e-07, "epoch": 1.8133333333333335, "percentage": 45.36, "elapsed_time": "6:49:23", "remaining_time": "8:13:11"} +{"current_steps": 2483, "total_steps": 5472, "loss": 0.3021, "accuracy": 0.625, "learning_rate": 3.324837295709672e-07, "epoch": 1.8140639269406393, "percentage": 45.38, "elapsed_time": "6:49:32", "remaining_time": "8:13:00"} +{"current_steps": 2484, "total_steps": 5472, "loss": 0.2293, "accuracy": 0.875, "learning_rate": 3.3233314034033013e-07, "epoch": 1.8147945205479452, "percentage": 45.39, "elapsed_time": "6:49:42", "remaining_time": "8:12:50"} +{"current_steps": 2485, "total_steps": 5472, "loss": 0.2325, "accuracy": 0.875, "learning_rate": 3.321825175947627e-07, "epoch": 1.815525114155251, "percentage": 45.41, "elapsed_time": "6:49:51", "remaining_time": "8:12:39"} +{"current_steps": 2486, "total_steps": 5472, "loss": 0.1308, "accuracy": 1.0, "learning_rate": 3.320318613955779e-07, "epoch": 1.816255707762557, "percentage": 45.43, "elapsed_time": "6:50:00", "remaining_time": "8:12:28"} +{"current_steps": 2487, "total_steps": 5472, "loss": 0.0743, "accuracy": 1.0, "learning_rate": 3.3188117180410287e-07, "epoch": 1.816986301369863, "percentage": 45.45, "elapsed_time": "6:50:09", "remaining_time": "8:12:17"} +{"current_steps": 2488, "total_steps": 5472, "loss": 0.1396, "accuracy": 0.875, "learning_rate": 3.317304488816777e-07, "epoch": 1.817716894977169, "percentage": 45.47, "elapsed_time": "6:50:19", "remaining_time": "8:12:07"} +{"current_steps": 2489, "total_steps": 5472, "loss": 0.08, "accuracy": 1.0, "learning_rate": 3.3157969268965666e-07, "epoch": 1.818447488584475, "percentage": 45.49, "elapsed_time": "6:50:28", "remaining_time": "8:11:56"} +{"current_steps": 2490, "total_steps": 5472, "loss": 0.1853, "accuracy": 1.0, "learning_rate": 3.314289032894074e-07, "epoch": 1.819178082191781, "percentage": 45.5, "elapsed_time": "6:50:38", "remaining_time": "8:11:46"} +{"current_steps": 2491, "total_steps": 5472, "loss": 0.2069, "accuracy": 0.875, "learning_rate": 3.3127808074231067e-07, "epoch": 1.8199086757990868, "percentage": 45.52, "elapsed_time": "6:50:48", "remaining_time": "8:11:36"} +{"current_steps": 2492, "total_steps": 5472, "loss": 0.1316, "accuracy": 0.875, "learning_rate": 3.3112722510976125e-07, "epoch": 1.8206392694063926, "percentage": 45.54, "elapsed_time": "6:50:57", "remaining_time": "8:11:26"} +{"current_steps": 2493, "total_steps": 5472, "loss": 0.1806, "accuracy": 1.0, "learning_rate": 3.309763364531671e-07, "epoch": 1.8213698630136985, "percentage": 45.56, "elapsed_time": "6:51:07", "remaining_time": "8:11:16"} +{"current_steps": 2494, "total_steps": 5472, "loss": 0.1828, "accuracy": 0.75, "learning_rate": 3.3082541483394967e-07, "epoch": 1.8221004566210046, "percentage": 45.58, "elapsed_time": "6:51:16", "remaining_time": "8:11:05"} +{"current_steps": 2495, "total_steps": 5472, "loss": 0.1954, "accuracy": 0.875, "learning_rate": 3.306744603135439e-07, "epoch": 1.8228310502283105, "percentage": 45.6, "elapsed_time": "6:51:26", "remaining_time": "8:10:55"} +{"current_steps": 2496, "total_steps": 5472, "loss": 0.1099, "accuracy": 0.875, "learning_rate": 3.305234729533981e-07, "epoch": 1.8235616438356166, "percentage": 45.61, "elapsed_time": "6:51:36", "remaining_time": "8:10:45"} +{"current_steps": 2497, "total_steps": 5472, "loss": 0.2793, "accuracy": 1.0, "learning_rate": 3.303724528149739e-07, "epoch": 1.8242922374429225, "percentage": 45.63, "elapsed_time": "6:51:44", "remaining_time": "8:10:34"} +{"current_steps": 2498, "total_steps": 5472, "loss": 0.1586, "accuracy": 1.0, "learning_rate": 3.302213999597463e-07, "epoch": 1.8250228310502283, "percentage": 45.65, "elapsed_time": "6:51:54", "remaining_time": "8:10:23"} +{"current_steps": 2499, "total_steps": 5472, "loss": 0.1776, "accuracy": 1.0, "learning_rate": 3.300703144492035e-07, "epoch": 1.8257534246575342, "percentage": 45.67, "elapsed_time": "6:52:04", "remaining_time": "8:10:13"} +{"current_steps": 2500, "total_steps": 5472, "loss": 0.1683, "accuracy": 1.0, "learning_rate": 3.299191963448472e-07, "epoch": 1.82648401826484, "percentage": 45.69, "elapsed_time": "6:52:13", "remaining_time": "8:10:03"} +{"current_steps": 2501, "total_steps": 5472, "loss": 1.0872, "accuracy": 1.0, "learning_rate": 3.2976804570819236e-07, "epoch": 1.827214611872146, "percentage": 45.71, "elapsed_time": "6:52:23", "remaining_time": "8:09:53"} +{"current_steps": 2502, "total_steps": 5472, "loss": 0.1155, "accuracy": 1.0, "learning_rate": 3.296168626007669e-07, "epoch": 1.827945205479452, "percentage": 45.72, "elapsed_time": "6:52:33", "remaining_time": "8:09:44"} +{"current_steps": 2503, "total_steps": 5472, "loss": 0.136, "accuracy": 0.875, "learning_rate": 3.294656470841124e-07, "epoch": 1.8286757990867581, "percentage": 45.74, "elapsed_time": "6:52:44", "remaining_time": "8:09:34"} +{"current_steps": 2504, "total_steps": 5472, "loss": 0.2335, "accuracy": 0.875, "learning_rate": 3.2931439921978324e-07, "epoch": 1.829406392694064, "percentage": 45.76, "elapsed_time": "6:52:56", "remaining_time": "8:09:27"} +{"current_steps": 2505, "total_steps": 5472, "loss": 0.1468, "accuracy": 1.0, "learning_rate": 3.2916311906934707e-07, "epoch": 1.83013698630137, "percentage": 45.78, "elapsed_time": "6:53:06", "remaining_time": "8:09:17"} +{"current_steps": 2506, "total_steps": 5472, "loss": 0.096, "accuracy": 1.0, "learning_rate": 3.2901180669438474e-07, "epoch": 1.8308675799086758, "percentage": 45.8, "elapsed_time": "6:53:15", "remaining_time": "8:09:07"} +{"current_steps": 2507, "total_steps": 5472, "loss": 0.2484, "accuracy": 1.0, "learning_rate": 3.288604621564903e-07, "epoch": 1.8315981735159816, "percentage": 45.82, "elapsed_time": "6:53:26", "remaining_time": "8:08:57"} +{"current_steps": 2508, "total_steps": 5472, "loss": 0.0976, "accuracy": 1.0, "learning_rate": 3.287090855172708e-07, "epoch": 1.8323287671232875, "percentage": 45.83, "elapsed_time": "6:53:35", "remaining_time": "8:08:46"} +{"current_steps": 2509, "total_steps": 5472, "loss": 0.0977, "accuracy": 1.0, "learning_rate": 3.2855767683834627e-07, "epoch": 1.8330593607305936, "percentage": 45.85, "elapsed_time": "6:53:46", "remaining_time": "8:08:38"} +{"current_steps": 2510, "total_steps": 5472, "loss": 0.178, "accuracy": 0.875, "learning_rate": 3.284062361813499e-07, "epoch": 1.8337899543378997, "percentage": 45.87, "elapsed_time": "6:53:54", "remaining_time": "8:08:27"} +{"current_steps": 2511, "total_steps": 5472, "loss": 0.2305, "accuracy": 0.875, "learning_rate": 3.282547636079278e-07, "epoch": 1.8345205479452056, "percentage": 45.89, "elapsed_time": "6:54:04", "remaining_time": "8:08:17"} +{"current_steps": 2512, "total_steps": 5472, "loss": 0.1938, "accuracy": 1.0, "learning_rate": 3.281032591797392e-07, "epoch": 1.8352511415525115, "percentage": 45.91, "elapsed_time": "6:54:14", "remaining_time": "8:08:06"} +{"current_steps": 2513, "total_steps": 5472, "loss": 0.1418, "accuracy": 1.0, "learning_rate": 3.279517229584563e-07, "epoch": 1.8359817351598173, "percentage": 45.92, "elapsed_time": "6:54:25", "remaining_time": "8:07:58"} +{"current_steps": 2514, "total_steps": 5472, "loss": 0.2155, "accuracy": 1.0, "learning_rate": 3.278001550057642e-07, "epoch": 1.8367123287671232, "percentage": 45.94, "elapsed_time": "6:54:34", "remaining_time": "8:07:47"} +{"current_steps": 2515, "total_steps": 5472, "loss": 0.1679, "accuracy": 1.0, "learning_rate": 3.2764855538336065e-07, "epoch": 1.837442922374429, "percentage": 45.96, "elapsed_time": "6:54:44", "remaining_time": "8:07:37"} +{"current_steps": 2516, "total_steps": 5472, "loss": 0.2023, "accuracy": 0.875, "learning_rate": 3.274969241529568e-07, "epoch": 1.8381735159817352, "percentage": 45.98, "elapsed_time": "6:54:52", "remaining_time": "8:07:26"} +{"current_steps": 2517, "total_steps": 5472, "loss": 0.1661, "accuracy": 1.0, "learning_rate": 3.2734526137627617e-07, "epoch": 1.838904109589041, "percentage": 46.0, "elapsed_time": "6:55:02", "remaining_time": "8:07:15"} +{"current_steps": 2518, "total_steps": 5472, "loss": 0.1685, "accuracy": 1.0, "learning_rate": 3.271935671150554e-07, "epoch": 1.8396347031963471, "percentage": 46.02, "elapsed_time": "6:55:13", "remaining_time": "8:07:06"} +{"current_steps": 2519, "total_steps": 5472, "loss": 0.1729, "accuracy": 1.0, "learning_rate": 3.2704184143104406e-07, "epoch": 1.840365296803653, "percentage": 46.03, "elapsed_time": "6:55:21", "remaining_time": "8:06:55"} +{"current_steps": 2520, "total_steps": 5472, "loss": 0.2177, "accuracy": 0.875, "learning_rate": 3.268900843860043e-07, "epoch": 1.841095890410959, "percentage": 46.05, "elapsed_time": "6:55:32", "remaining_time": "8:06:46"} +{"current_steps": 2521, "total_steps": 5472, "loss": 0.1148, "accuracy": 0.875, "learning_rate": 3.26738296041711e-07, "epoch": 1.8418264840182648, "percentage": 46.07, "elapsed_time": "6:55:45", "remaining_time": "8:06:39"} +{"current_steps": 2522, "total_steps": 5472, "loss": 0.1038, "accuracy": 0.875, "learning_rate": 3.2658647645995185e-07, "epoch": 1.8425570776255706, "percentage": 46.09, "elapsed_time": "6:55:55", "remaining_time": "8:06:31"} +{"current_steps": 2523, "total_steps": 5472, "loss": 0.2021, "accuracy": 1.0, "learning_rate": 3.2643462570252726e-07, "epoch": 1.8432876712328767, "percentage": 46.11, "elapsed_time": "6:56:04", "remaining_time": "8:06:19"} +{"current_steps": 2524, "total_steps": 5472, "loss": 0.1486, "accuracy": 1.0, "learning_rate": 3.2628274383125053e-07, "epoch": 1.8440182648401826, "percentage": 46.13, "elapsed_time": "6:56:14", "remaining_time": "8:06:09"} +{"current_steps": 2525, "total_steps": 5472, "loss": 0.1736, "accuracy": 0.875, "learning_rate": 3.2613083090794723e-07, "epoch": 1.8447488584474887, "percentage": 46.14, "elapsed_time": "6:56:23", "remaining_time": "8:05:58"} +{"current_steps": 2526, "total_steps": 5472, "loss": 0.0993, "accuracy": 1.0, "learning_rate": 3.259788869944559e-07, "epoch": 1.8454794520547946, "percentage": 46.16, "elapsed_time": "6:56:33", "remaining_time": "8:05:49"} +{"current_steps": 2527, "total_steps": 5472, "loss": 0.1802, "accuracy": 1.0, "learning_rate": 3.258269121526275e-07, "epoch": 1.8462100456621005, "percentage": 46.18, "elapsed_time": "6:56:45", "remaining_time": "8:05:41"} +{"current_steps": 2528, "total_steps": 5472, "loss": 0.1068, "accuracy": 1.0, "learning_rate": 3.2567490644432573e-07, "epoch": 1.8469406392694063, "percentage": 46.2, "elapsed_time": "6:56:56", "remaining_time": "8:05:32"} +{"current_steps": 2529, "total_steps": 5472, "loss": 0.1741, "accuracy": 1.0, "learning_rate": 3.2552286993142665e-07, "epoch": 1.8476712328767122, "percentage": 46.22, "elapsed_time": "6:57:06", "remaining_time": "8:05:22"} +{"current_steps": 2530, "total_steps": 5472, "loss": 0.1763, "accuracy": 1.0, "learning_rate": 3.2537080267581906e-07, "epoch": 1.8484018264840183, "percentage": 46.24, "elapsed_time": "6:57:15", "remaining_time": "8:05:12"} +{"current_steps": 2531, "total_steps": 5472, "loss": 0.1673, "accuracy": 1.0, "learning_rate": 3.252187047394043e-07, "epoch": 1.8491324200913242, "percentage": 46.25, "elapsed_time": "6:57:25", "remaining_time": "8:05:02"} +{"current_steps": 2532, "total_steps": 5472, "loss": 0.1229, "accuracy": 1.0, "learning_rate": 3.250665761840959e-07, "epoch": 1.8498630136986303, "percentage": 46.27, "elapsed_time": "6:57:35", "remaining_time": "8:04:52"} +{"current_steps": 2533, "total_steps": 5472, "loss": 0.1183, "accuracy": 1.0, "learning_rate": 3.2491441707182024e-07, "epoch": 1.8505936073059361, "percentage": 46.29, "elapsed_time": "6:57:45", "remaining_time": "8:04:42"} +{"current_steps": 2534, "total_steps": 5472, "loss": 0.1561, "accuracy": 1.0, "learning_rate": 3.2476222746451576e-07, "epoch": 1.851324200913242, "percentage": 46.31, "elapsed_time": "6:57:56", "remaining_time": "8:04:34"} +{"current_steps": 2535, "total_steps": 5472, "loss": 0.1845, "accuracy": 0.875, "learning_rate": 3.2461000742413366e-07, "epoch": 1.8520547945205479, "percentage": 46.33, "elapsed_time": "6:58:06", "remaining_time": "8:04:24"} +{"current_steps": 2536, "total_steps": 5472, "loss": 0.1553, "accuracy": 0.875, "learning_rate": 3.2445775701263725e-07, "epoch": 1.8527853881278538, "percentage": 46.35, "elapsed_time": "6:58:18", "remaining_time": "8:04:16"} +{"current_steps": 2537, "total_steps": 5472, "loss": 0.2567, "accuracy": 0.875, "learning_rate": 3.243054762920025e-07, "epoch": 1.8535159817351599, "percentage": 46.36, "elapsed_time": "6:58:27", "remaining_time": "8:04:06"} +{"current_steps": 2538, "total_steps": 5472, "loss": 0.1087, "accuracy": 0.875, "learning_rate": 3.241531653242174e-07, "epoch": 1.8542465753424657, "percentage": 46.38, "elapsed_time": "6:58:36", "remaining_time": "8:03:55"} +{"current_steps": 2539, "total_steps": 5472, "loss": 0.159, "accuracy": 0.875, "learning_rate": 3.2400082417128246e-07, "epoch": 1.8549771689497718, "percentage": 46.4, "elapsed_time": "6:58:46", "remaining_time": "8:03:46"} +{"current_steps": 2540, "total_steps": 5472, "loss": 0.3249, "accuracy": 0.875, "learning_rate": 3.238484528952104e-07, "epoch": 1.8557077625570777, "percentage": 46.42, "elapsed_time": "6:58:56", "remaining_time": "8:03:35"} +{"current_steps": 2541, "total_steps": 5472, "loss": 0.296, "accuracy": 0.75, "learning_rate": 3.2369605155802614e-07, "epoch": 1.8564383561643836, "percentage": 46.44, "elapsed_time": "6:59:06", "remaining_time": "8:03:25"} +{"current_steps": 2542, "total_steps": 5472, "loss": 0.2813, "accuracy": 1.0, "learning_rate": 3.2354362022176704e-07, "epoch": 1.8571689497716894, "percentage": 46.45, "elapsed_time": "6:59:16", "remaining_time": "8:03:16"} +{"current_steps": 2543, "total_steps": 5472, "loss": 0.1291, "accuracy": 1.0, "learning_rate": 3.233911589484825e-07, "epoch": 1.8578995433789953, "percentage": 46.47, "elapsed_time": "6:59:26", "remaining_time": "8:03:06"} +{"current_steps": 2544, "total_steps": 5472, "loss": 0.1617, "accuracy": 1.0, "learning_rate": 3.232386678002342e-07, "epoch": 1.8586301369863014, "percentage": 46.49, "elapsed_time": "6:59:36", "remaining_time": "8:02:57"} +{"current_steps": 2545, "total_steps": 5472, "loss": 0.2369, "accuracy": 0.875, "learning_rate": 3.2308614683909573e-07, "epoch": 1.8593607305936073, "percentage": 46.51, "elapsed_time": "6:59:47", "remaining_time": "8:02:47"} +{"current_steps": 2546, "total_steps": 5472, "loss": 0.1381, "accuracy": 1.0, "learning_rate": 3.229335961271532e-07, "epoch": 1.8600913242009134, "percentage": 46.53, "elapsed_time": "6:59:56", "remaining_time": "8:02:37"} +{"current_steps": 2547, "total_steps": 5472, "loss": 0.1199, "accuracy": 0.875, "learning_rate": 3.2278101572650467e-07, "epoch": 1.8608219178082193, "percentage": 46.55, "elapsed_time": "7:00:06", "remaining_time": "8:02:26"} +{"current_steps": 2548, "total_steps": 5472, "loss": 0.2701, "accuracy": 0.875, "learning_rate": 3.226284056992602e-07, "epoch": 1.8615525114155251, "percentage": 46.56, "elapsed_time": "7:00:15", "remaining_time": "8:02:16"} +{"current_steps": 2549, "total_steps": 5472, "loss": 0.1434, "accuracy": 0.875, "learning_rate": 3.224757661075419e-07, "epoch": 1.862283105022831, "percentage": 46.58, "elapsed_time": "7:00:25", "remaining_time": "8:02:07"} +{"current_steps": 2550, "total_steps": 5472, "loss": 0.1436, "accuracy": 1.0, "learning_rate": 3.2232309701348413e-07, "epoch": 1.8630136986301369, "percentage": 46.6, "elapsed_time": "7:00:36", "remaining_time": "8:01:57"} +{"current_steps": 2551, "total_steps": 5472, "loss": 0.1911, "accuracy": 1.0, "learning_rate": 3.221703984792331e-07, "epoch": 1.8637442922374428, "percentage": 46.62, "elapsed_time": "7:00:46", "remaining_time": "8:01:47"} +{"current_steps": 2552, "total_steps": 5472, "loss": 0.214, "accuracy": 1.0, "learning_rate": 3.220176705669468e-07, "epoch": 1.8644748858447489, "percentage": 46.64, "elapsed_time": "7:00:57", "remaining_time": "8:01:39"} +{"current_steps": 2553, "total_steps": 5472, "loss": 0.1757, "accuracy": 1.0, "learning_rate": 3.2186491333879574e-07, "epoch": 1.865205479452055, "percentage": 46.66, "elapsed_time": "7:01:06", "remaining_time": "8:01:28"} +{"current_steps": 2554, "total_steps": 5472, "loss": 0.139, "accuracy": 1.0, "learning_rate": 3.2171212685696173e-07, "epoch": 1.8659360730593608, "percentage": 46.67, "elapsed_time": "7:01:15", "remaining_time": "8:01:17"} +{"current_steps": 2555, "total_steps": 5472, "loss": 0.1478, "accuracy": 1.0, "learning_rate": 3.2155931118363904e-07, "epoch": 1.8666666666666667, "percentage": 46.69, "elapsed_time": "7:01:25", "remaining_time": "8:01:07"} +{"current_steps": 2556, "total_steps": 5472, "loss": 0.1697, "accuracy": 1.0, "learning_rate": 3.214064663810333e-07, "epoch": 1.8673972602739726, "percentage": 46.71, "elapsed_time": "7:01:34", "remaining_time": "8:00:56"} +{"current_steps": 2557, "total_steps": 5472, "loss": 0.2751, "accuracy": 1.0, "learning_rate": 3.2125359251136253e-07, "epoch": 1.8681278538812784, "percentage": 46.73, "elapsed_time": "7:01:43", "remaining_time": "8:00:46"} +{"current_steps": 2558, "total_steps": 5472, "loss": 0.2179, "accuracy": 0.875, "learning_rate": 3.211006896368561e-07, "epoch": 1.8688584474885843, "percentage": 46.75, "elapsed_time": "7:01:53", "remaining_time": "8:00:36"} +{"current_steps": 2559, "total_steps": 5472, "loss": 0.2202, "accuracy": 0.625, "learning_rate": 3.2094775781975546e-07, "epoch": 1.8695890410958904, "percentage": 46.77, "elapsed_time": "7:02:04", "remaining_time": "8:00:27"} +{"current_steps": 2560, "total_steps": 5472, "loss": 0.1893, "accuracy": 1.0, "learning_rate": 3.207947971223138e-07, "epoch": 1.8703196347031965, "percentage": 46.78, "elapsed_time": "7:02:14", "remaining_time": "8:00:17"} +{"current_steps": 2561, "total_steps": 5472, "loss": 0.178, "accuracy": 1.0, "learning_rate": 3.206418076067962e-07, "epoch": 1.8710502283105024, "percentage": 46.8, "elapsed_time": "7:02:22", "remaining_time": "8:00:06"} +{"current_steps": 2562, "total_steps": 5472, "loss": 0.1745, "accuracy": 0.875, "learning_rate": 3.2048878933547903e-07, "epoch": 1.8717808219178083, "percentage": 46.82, "elapsed_time": "7:02:32", "remaining_time": "7:59:56"} +{"current_steps": 2563, "total_steps": 5472, "loss": 0.2208, "accuracy": 0.75, "learning_rate": 3.203357423706508e-07, "epoch": 1.8725114155251141, "percentage": 46.84, "elapsed_time": "7:02:42", "remaining_time": "7:59:46"} +{"current_steps": 2564, "total_steps": 5472, "loss": 0.1448, "accuracy": 1.0, "learning_rate": 3.201826667746116e-07, "epoch": 1.87324200913242, "percentage": 46.86, "elapsed_time": "7:02:52", "remaining_time": "7:59:36"} +{"current_steps": 2565, "total_steps": 5472, "loss": 0.2538, "accuracy": 0.625, "learning_rate": 3.20029562609673e-07, "epoch": 1.8739726027397259, "percentage": 46.88, "elapsed_time": "7:03:01", "remaining_time": "7:59:25"} +{"current_steps": 2566, "total_steps": 5472, "loss": 0.2164, "accuracy": 1.0, "learning_rate": 3.1987642993815854e-07, "epoch": 1.874703196347032, "percentage": 46.89, "elapsed_time": "7:03:10", "remaining_time": "7:59:15"} +{"current_steps": 2567, "total_steps": 5472, "loss": 0.1742, "accuracy": 0.75, "learning_rate": 3.19723268822403e-07, "epoch": 1.8754337899543378, "percentage": 46.91, "elapsed_time": "7:03:20", "remaining_time": "7:59:04"} +{"current_steps": 2568, "total_steps": 5472, "loss": 0.1133, "accuracy": 1.0, "learning_rate": 3.1957007932475287e-07, "epoch": 1.876164383561644, "percentage": 46.93, "elapsed_time": "7:03:32", "remaining_time": "7:58:57"} +{"current_steps": 2569, "total_steps": 5472, "loss": 0.2295, "accuracy": 0.875, "learning_rate": 3.1941686150756626e-07, "epoch": 1.8768949771689498, "percentage": 46.95, "elapsed_time": "7:03:42", "remaining_time": "7:58:47"} +{"current_steps": 2570, "total_steps": 5472, "loss": 0.1034, "accuracy": 1.0, "learning_rate": 3.192636154332128e-07, "epoch": 1.8776255707762557, "percentage": 46.97, "elapsed_time": "7:03:52", "remaining_time": "7:58:37"} +{"current_steps": 2571, "total_steps": 5472, "loss": 0.2568, "accuracy": 1.0, "learning_rate": 3.1911034116407353e-07, "epoch": 1.8783561643835616, "percentage": 46.98, "elapsed_time": "7:04:03", "remaining_time": "7:58:29"} +{"current_steps": 2572, "total_steps": 5472, "loss": 0.2833, "accuracy": 0.875, "learning_rate": 3.189570387625411e-07, "epoch": 1.8790867579908674, "percentage": 47.0, "elapsed_time": "7:04:12", "remaining_time": "7:58:18"} +{"current_steps": 2573, "total_steps": 5472, "loss": 0.2049, "accuracy": 0.625, "learning_rate": 3.188037082910194e-07, "epoch": 1.8798173515981735, "percentage": 47.02, "elapsed_time": "7:04:22", "remaining_time": "7:58:08"} +{"current_steps": 2574, "total_steps": 5472, "loss": 0.1975, "accuracy": 1.0, "learning_rate": 3.1865034981192407e-07, "epoch": 1.8805479452054794, "percentage": 47.04, "elapsed_time": "7:04:32", "remaining_time": "7:57:58"} +{"current_steps": 2575, "total_steps": 5472, "loss": 0.1162, "accuracy": 1.0, "learning_rate": 3.184969633876818e-07, "epoch": 1.8812785388127855, "percentage": 47.06, "elapsed_time": "7:04:42", "remaining_time": "7:57:48"} +{"current_steps": 2576, "total_steps": 5472, "loss": 0.1611, "accuracy": 1.0, "learning_rate": 3.183435490807308e-07, "epoch": 1.8820091324200914, "percentage": 47.08, "elapsed_time": "7:04:52", "remaining_time": "7:57:38"} +{"current_steps": 2577, "total_steps": 5472, "loss": 0.1834, "accuracy": 1.0, "learning_rate": 3.181901069535208e-07, "epoch": 1.8827397260273973, "percentage": 47.09, "elapsed_time": "7:05:03", "remaining_time": "7:57:30"} +{"current_steps": 2578, "total_steps": 5472, "loss": 0.1572, "accuracy": 1.0, "learning_rate": 3.1803663706851256e-07, "epoch": 1.8834703196347031, "percentage": 47.11, "elapsed_time": "7:05:13", "remaining_time": "7:57:20"} +{"current_steps": 2579, "total_steps": 5472, "loss": 0.0889, "accuracy": 1.0, "learning_rate": 3.178831394881785e-07, "epoch": 1.884200913242009, "percentage": 47.13, "elapsed_time": "7:05:22", "remaining_time": "7:57:10"} +{"current_steps": 2580, "total_steps": 5472, "loss": 0.1431, "accuracy": 0.875, "learning_rate": 3.177296142750018e-07, "epoch": 1.884931506849315, "percentage": 47.15, "elapsed_time": "7:05:32", "remaining_time": "7:57:00"} +{"current_steps": 2581, "total_steps": 5472, "loss": 0.1154, "accuracy": 0.875, "learning_rate": 3.1757606149147734e-07, "epoch": 1.885662100456621, "percentage": 47.17, "elapsed_time": "7:05:43", "remaining_time": "7:56:51"} +{"current_steps": 2582, "total_steps": 5472, "loss": 0.1615, "accuracy": 1.0, "learning_rate": 3.17422481200111e-07, "epoch": 1.886392694063927, "percentage": 47.19, "elapsed_time": "7:05:54", "remaining_time": "7:56:42"} +{"current_steps": 2583, "total_steps": 5472, "loss": 0.1817, "accuracy": 1.0, "learning_rate": 3.1726887346342006e-07, "epoch": 1.887123287671233, "percentage": 47.2, "elapsed_time": "7:06:03", "remaining_time": "7:56:32"} +{"current_steps": 2584, "total_steps": 5472, "loss": 0.1506, "accuracy": 1.0, "learning_rate": 3.171152383439327e-07, "epoch": 1.8878538812785388, "percentage": 47.22, "elapsed_time": "7:06:14", "remaining_time": "7:56:23"} +{"current_steps": 2585, "total_steps": 5472, "loss": 0.2205, "accuracy": 0.75, "learning_rate": 3.1696157590418856e-07, "epoch": 1.8885844748858447, "percentage": 47.24, "elapsed_time": "7:06:23", "remaining_time": "7:56:12"} +{"current_steps": 2586, "total_steps": 5472, "loss": 0.1564, "accuracy": 0.75, "learning_rate": 3.168078862067379e-07, "epoch": 1.8893150684931506, "percentage": 47.26, "elapsed_time": "7:06:32", "remaining_time": "7:56:01"} +{"current_steps": 2587, "total_steps": 5472, "loss": 0.1517, "accuracy": 1.0, "learning_rate": 3.1665416931414276e-07, "epoch": 1.8900456621004567, "percentage": 47.28, "elapsed_time": "7:06:41", "remaining_time": "7:55:50"} +{"current_steps": 2588, "total_steps": 5472, "loss": 0.2456, "accuracy": 1.0, "learning_rate": 3.165004252889756e-07, "epoch": 1.8907762557077625, "percentage": 47.3, "elapsed_time": "7:06:51", "remaining_time": "7:55:40"} +{"current_steps": 2589, "total_steps": 5472, "loss": 0.2572, "accuracy": 0.75, "learning_rate": 3.1634665419382034e-07, "epoch": 1.8915068493150686, "percentage": 47.31, "elapsed_time": "7:07:01", "remaining_time": "7:55:30"} +{"current_steps": 2590, "total_steps": 5472, "loss": 0.1381, "accuracy": 1.0, "learning_rate": 3.161928560912719e-07, "epoch": 1.8922374429223745, "percentage": 47.33, "elapsed_time": "7:07:10", "remaining_time": "7:55:19"} +{"current_steps": 2591, "total_steps": 5472, "loss": 0.2414, "accuracy": 0.875, "learning_rate": 3.160390310439359e-07, "epoch": 1.8929680365296804, "percentage": 47.35, "elapsed_time": "7:07:20", "remaining_time": "7:55:10"} +{"current_steps": 2592, "total_steps": 5472, "loss": 0.0633, "accuracy": 1.0, "learning_rate": 3.1588517911442927e-07, "epoch": 1.8936986301369862, "percentage": 47.37, "elapsed_time": "7:07:29", "remaining_time": "7:54:59"} +{"current_steps": 2593, "total_steps": 5472, "loss": 0.2424, "accuracy": 0.75, "learning_rate": 3.1573130036537956e-07, "epoch": 1.8944292237442921, "percentage": 47.39, "elapsed_time": "7:07:39", "remaining_time": "7:54:49"} +{"current_steps": 2594, "total_steps": 5472, "loss": 0.1271, "accuracy": 0.875, "learning_rate": 3.155773948594255e-07, "epoch": 1.8951598173515982, "percentage": 47.4, "elapsed_time": "7:07:47", "remaining_time": "7:54:38"} +{"current_steps": 2595, "total_steps": 5472, "loss": 0.1971, "accuracy": 1.0, "learning_rate": 3.1542346265921664e-07, "epoch": 1.895890410958904, "percentage": 47.42, "elapsed_time": "7:07:59", "remaining_time": "7:54:30"} +{"current_steps": 2596, "total_steps": 5472, "loss": 0.1107, "accuracy": 0.875, "learning_rate": 3.1526950382741343e-07, "epoch": 1.8966210045662102, "percentage": 47.44, "elapsed_time": "7:08:09", "remaining_time": "7:54:20"} +{"current_steps": 2597, "total_steps": 5472, "loss": 0.1332, "accuracy": 0.875, "learning_rate": 3.1511551842668694e-07, "epoch": 1.897351598173516, "percentage": 47.46, "elapsed_time": "7:08:18", "remaining_time": "7:54:09"} +{"current_steps": 2598, "total_steps": 5472, "loss": 0.1685, "accuracy": 1.0, "learning_rate": 3.149615065197193e-07, "epoch": 1.898082191780822, "percentage": 47.48, "elapsed_time": "7:08:28", "remaining_time": "7:53:59"} +{"current_steps": 2599, "total_steps": 5472, "loss": 0.2209, "accuracy": 1.0, "learning_rate": 3.148074681692033e-07, "epoch": 1.8988127853881278, "percentage": 47.5, "elapsed_time": "7:08:37", "remaining_time": "7:53:48"} +{"current_steps": 2600, "total_steps": 5472, "loss": 0.2905, "accuracy": 0.75, "learning_rate": 3.146534034378427e-07, "epoch": 1.8995433789954337, "percentage": 47.51, "elapsed_time": "7:08:47", "remaining_time": "7:53:38"} +{"current_steps": 2601, "total_steps": 5472, "loss": 0.1702, "accuracy": 1.0, "learning_rate": 3.144993123883517e-07, "epoch": 1.9002739726027398, "percentage": 47.53, "elapsed_time": "7:08:56", "remaining_time": "7:53:28"} +{"current_steps": 2602, "total_steps": 5472, "loss": 0.1447, "accuracy": 1.0, "learning_rate": 3.1434519508345534e-07, "epoch": 1.9010045662100457, "percentage": 47.55, "elapsed_time": "7:09:08", "remaining_time": "7:53:20"} +{"current_steps": 2603, "total_steps": 5472, "loss": 0.213, "accuracy": 0.75, "learning_rate": 3.1419105158588955e-07, "epoch": 1.9017351598173518, "percentage": 47.57, "elapsed_time": "7:09:18", "remaining_time": "7:53:10"} +{"current_steps": 2604, "total_steps": 5472, "loss": 0.1261, "accuracy": 1.0, "learning_rate": 3.140368819584005e-07, "epoch": 1.9024657534246576, "percentage": 47.59, "elapsed_time": "7:09:29", "remaining_time": "7:53:01"} +{"current_steps": 2605, "total_steps": 5472, "loss": 0.1261, "accuracy": 1.0, "learning_rate": 3.1388268626374537e-07, "epoch": 1.9031963470319635, "percentage": 47.61, "elapsed_time": "7:09:40", "remaining_time": "7:52:53"} +{"current_steps": 2606, "total_steps": 5472, "loss": 0.285, "accuracy": 0.875, "learning_rate": 3.1372846456469175e-07, "epoch": 1.9039269406392694, "percentage": 47.62, "elapsed_time": "7:09:50", "remaining_time": "7:52:43"} +{"current_steps": 2607, "total_steps": 5472, "loss": 0.175, "accuracy": 1.0, "learning_rate": 3.13574216924018e-07, "epoch": 1.9046575342465752, "percentage": 47.64, "elapsed_time": "7:10:00", "remaining_time": "7:52:33"} +{"current_steps": 2608, "total_steps": 5472, "loss": 0.137, "accuracy": 0.875, "learning_rate": 3.134199434045127e-07, "epoch": 1.9053881278538811, "percentage": 47.66, "elapsed_time": "7:10:09", "remaining_time": "7:52:22"} +{"current_steps": 2609, "total_steps": 5472, "loss": 0.173, "accuracy": 1.0, "learning_rate": 3.1326564406897545e-07, "epoch": 1.9061187214611872, "percentage": 47.68, "elapsed_time": "7:10:19", "remaining_time": "7:52:12"} +{"current_steps": 2610, "total_steps": 5472, "loss": 0.1389, "accuracy": 1.0, "learning_rate": 3.131113189802158e-07, "epoch": 1.9068493150684933, "percentage": 47.7, "elapsed_time": "7:10:29", "remaining_time": "7:52:03"} +{"current_steps": 2611, "total_steps": 5472, "loss": 0.2755, "accuracy": 1.0, "learning_rate": 3.129569682010543e-07, "epoch": 1.9075799086757992, "percentage": 47.72, "elapsed_time": "7:10:40", "remaining_time": "7:51:54"} +{"current_steps": 2612, "total_steps": 5472, "loss": 0.1588, "accuracy": 1.0, "learning_rate": 3.1280259179432163e-07, "epoch": 1.908310502283105, "percentage": 47.73, "elapsed_time": "7:10:50", "remaining_time": "7:51:44"} +{"current_steps": 2613, "total_steps": 5472, "loss": 0.1121, "accuracy": 1.0, "learning_rate": 3.1264818982285903e-07, "epoch": 1.909041095890411, "percentage": 47.75, "elapsed_time": "7:10:58", "remaining_time": "7:51:33"} +{"current_steps": 2614, "total_steps": 5472, "loss": 0.0859, "accuracy": 1.0, "learning_rate": 3.124937623495182e-07, "epoch": 1.9097716894977168, "percentage": 47.77, "elapsed_time": "7:11:09", "remaining_time": "7:51:24"} +{"current_steps": 2615, "total_steps": 5472, "loss": 0.2723, "accuracy": 0.875, "learning_rate": 3.12339309437161e-07, "epoch": 1.9105022831050227, "percentage": 47.79, "elapsed_time": "7:11:19", "remaining_time": "7:51:14"} +{"current_steps": 2616, "total_steps": 5472, "loss": 0.1473, "accuracy": 1.0, "learning_rate": 3.121848311486598e-07, "epoch": 1.9112328767123288, "percentage": 47.81, "elapsed_time": "7:11:30", "remaining_time": "7:51:05"} +{"current_steps": 2617, "total_steps": 5472, "loss": 0.1806, "accuracy": 0.75, "learning_rate": 3.120303275468974e-07, "epoch": 1.9119634703196347, "percentage": 47.83, "elapsed_time": "7:11:39", "remaining_time": "7:50:55"} +{"current_steps": 2618, "total_steps": 5472, "loss": 0.1448, "accuracy": 1.0, "learning_rate": 3.118757986947667e-07, "epoch": 1.9126940639269407, "percentage": 47.84, "elapsed_time": "7:11:50", "remaining_time": "7:50:45"} +{"current_steps": 2619, "total_steps": 5472, "loss": 0.2085, "accuracy": 0.875, "learning_rate": 3.1172124465517104e-07, "epoch": 1.9134246575342466, "percentage": 47.86, "elapsed_time": "7:12:00", "remaining_time": "7:50:35"} +{"current_steps": 2620, "total_steps": 5472, "loss": 0.1174, "accuracy": 1.0, "learning_rate": 3.1156666549102394e-07, "epoch": 1.9141552511415525, "percentage": 47.88, "elapsed_time": "7:12:09", "remaining_time": "7:50:25"} +{"current_steps": 2621, "total_steps": 5472, "loss": 0.1254, "accuracy": 1.0, "learning_rate": 3.114120612652491e-07, "epoch": 1.9148858447488584, "percentage": 47.9, "elapsed_time": "7:12:20", "remaining_time": "7:50:16"} +{"current_steps": 2622, "total_steps": 5472, "loss": 0.1384, "accuracy": 1.0, "learning_rate": 3.1125743204078035e-07, "epoch": 1.9156164383561642, "percentage": 47.92, "elapsed_time": "7:12:29", "remaining_time": "7:50:05"} +{"current_steps": 2623, "total_steps": 5472, "loss": 0.2291, "accuracy": 1.0, "learning_rate": 3.1110277788056205e-07, "epoch": 1.9163470319634703, "percentage": 47.93, "elapsed_time": "7:12:38", "remaining_time": "7:49:55"} +{"current_steps": 2624, "total_steps": 5472, "loss": 0.1152, "accuracy": 1.0, "learning_rate": 3.109480988475484e-07, "epoch": 1.9170776255707762, "percentage": 47.95, "elapsed_time": "7:12:48", "remaining_time": "7:49:45"} +{"current_steps": 2625, "total_steps": 5472, "loss": 0.1528, "accuracy": 0.875, "learning_rate": 3.1079339500470376e-07, "epoch": 1.9178082191780823, "percentage": 47.97, "elapsed_time": "7:12:58", "remaining_time": "7:49:35"} +{"current_steps": 2626, "total_steps": 5472, "loss": 0.2242, "accuracy": 0.875, "learning_rate": 3.1063866641500264e-07, "epoch": 1.9185388127853882, "percentage": 47.99, "elapsed_time": "7:13:08", "remaining_time": "7:49:25"} +{"current_steps": 2627, "total_steps": 5472, "loss": 0.2428, "accuracy": 1.0, "learning_rate": 3.1048391314142964e-07, "epoch": 1.919269406392694, "percentage": 48.01, "elapsed_time": "7:13:18", "remaining_time": "7:49:15"} +{"current_steps": 2628, "total_steps": 5472, "loss": 0.1753, "accuracy": 1.0, "learning_rate": 3.103291352469794e-07, "epoch": 1.92, "percentage": 48.03, "elapsed_time": "7:13:28", "remaining_time": "7:49:06"} +{"current_steps": 2629, "total_steps": 5472, "loss": 0.2321, "accuracy": 1.0, "learning_rate": 3.101743327946565e-07, "epoch": 1.9207305936073058, "percentage": 48.04, "elapsed_time": "7:13:37", "remaining_time": "7:48:55"} +{"current_steps": 2630, "total_steps": 5472, "loss": 0.1199, "accuracy": 1.0, "learning_rate": 3.100195058474756e-07, "epoch": 1.921461187214612, "percentage": 48.06, "elapsed_time": "7:13:47", "remaining_time": "7:48:45"} +{"current_steps": 2631, "total_steps": 5472, "loss": 0.168, "accuracy": 1.0, "learning_rate": 3.0986465446846146e-07, "epoch": 1.9221917808219178, "percentage": 48.08, "elapsed_time": "7:13:56", "remaining_time": "7:48:34"} +{"current_steps": 2632, "total_steps": 5472, "loss": 0.2345, "accuracy": 1.0, "learning_rate": 3.097097787206484e-07, "epoch": 1.9229223744292239, "percentage": 48.1, "elapsed_time": "7:14:05", "remaining_time": "7:48:23"} +{"current_steps": 2633, "total_steps": 5472, "loss": 0.2053, "accuracy": 0.875, "learning_rate": 3.095548786670811e-07, "epoch": 1.9236529680365297, "percentage": 48.12, "elapsed_time": "7:14:15", "remaining_time": "7:48:13"} +{"current_steps": 2634, "total_steps": 5472, "loss": 0.123, "accuracy": 1.0, "learning_rate": 3.093999543708137e-07, "epoch": 1.9243835616438356, "percentage": 48.14, "elapsed_time": "7:14:25", "remaining_time": "7:48:04"} +{"current_steps": 2635, "total_steps": 5472, "loss": 0.1578, "accuracy": 1.0, "learning_rate": 3.092450058949108e-07, "epoch": 1.9251141552511415, "percentage": 48.15, "elapsed_time": "7:14:35", "remaining_time": "7:47:54"} +{"current_steps": 2636, "total_steps": 5472, "loss": 0.1775, "accuracy": 0.75, "learning_rate": 3.090900333024461e-07, "epoch": 1.9258447488584474, "percentage": 48.17, "elapsed_time": "7:14:44", "remaining_time": "7:47:43"} +{"current_steps": 2637, "total_steps": 5472, "loss": 0.1785, "accuracy": 0.875, "learning_rate": 3.0893503665650374e-07, "epoch": 1.9265753424657535, "percentage": 48.19, "elapsed_time": "7:14:53", "remaining_time": "7:47:32"} +{"current_steps": 2638, "total_steps": 5472, "loss": 0.1867, "accuracy": 0.75, "learning_rate": 3.087800160201774e-07, "epoch": 1.9273059360730593, "percentage": 48.21, "elapsed_time": "7:15:04", "remaining_time": "7:47:23"} +{"current_steps": 2639, "total_steps": 5472, "loss": 0.3371, "accuracy": 0.875, "learning_rate": 3.086249714565704e-07, "epoch": 1.9280365296803654, "percentage": 48.23, "elapsed_time": "7:15:13", "remaining_time": "7:47:13"} +{"current_steps": 2640, "total_steps": 5472, "loss": 0.1041, "accuracy": 1.0, "learning_rate": 3.084699030287961e-07, "epoch": 1.9287671232876713, "percentage": 48.25, "elapsed_time": "7:15:22", "remaining_time": "7:47:02"} +{"current_steps": 2641, "total_steps": 5472, "loss": 0.1839, "accuracy": 1.0, "learning_rate": 3.083148107999772e-07, "epoch": 1.9294977168949772, "percentage": 48.26, "elapsed_time": "7:15:32", "remaining_time": "7:46:52"} +{"current_steps": 2642, "total_steps": 5472, "loss": 0.1664, "accuracy": 1.0, "learning_rate": 3.0815969483324656e-07, "epoch": 1.930228310502283, "percentage": 48.28, "elapsed_time": "7:15:42", "remaining_time": "7:46:43"} +{"current_steps": 2643, "total_steps": 5472, "loss": 0.1647, "accuracy": 1.0, "learning_rate": 3.080045551917463e-07, "epoch": 1.930958904109589, "percentage": 48.3, "elapsed_time": "7:15:53", "remaining_time": "7:46:33"} +{"current_steps": 2644, "total_steps": 5472, "loss": 0.1365, "accuracy": 0.875, "learning_rate": 3.0784939193862835e-07, "epoch": 1.931689497716895, "percentage": 48.32, "elapsed_time": "7:16:02", "remaining_time": "7:46:23"} +{"current_steps": 2645, "total_steps": 5472, "loss": 0.1228, "accuracy": 1.0, "learning_rate": 3.0769420513705414e-07, "epoch": 1.932420091324201, "percentage": 48.34, "elapsed_time": "7:16:14", "remaining_time": "7:46:15"} +{"current_steps": 2646, "total_steps": 5472, "loss": 0.1573, "accuracy": 1.0, "learning_rate": 3.0753899485019483e-07, "epoch": 1.933150684931507, "percentage": 48.36, "elapsed_time": "7:16:22", "remaining_time": "7:46:03"} +{"current_steps": 2647, "total_steps": 5472, "loss": 0.1402, "accuracy": 1.0, "learning_rate": 3.073837611412312e-07, "epoch": 1.9338812785388129, "percentage": 48.37, "elapsed_time": "7:16:33", "remaining_time": "7:45:54"} +{"current_steps": 2648, "total_steps": 5472, "loss": 0.157, "accuracy": 1.0, "learning_rate": 3.0722850407335327e-07, "epoch": 1.9346118721461187, "percentage": 48.39, "elapsed_time": "7:16:42", "remaining_time": "7:45:43"} +{"current_steps": 2649, "total_steps": 5472, "loss": 0.1205, "accuracy": 1.0, "learning_rate": 3.070732237097607e-07, "epoch": 1.9353424657534246, "percentage": 48.41, "elapsed_time": "7:16:51", "remaining_time": "7:45:33"} +{"current_steps": 2650, "total_steps": 5472, "loss": 0.1348, "accuracy": 1.0, "learning_rate": 3.069179201136629e-07, "epoch": 1.9360730593607305, "percentage": 48.43, "elapsed_time": "7:17:01", "remaining_time": "7:45:23"} +{"current_steps": 2651, "total_steps": 5472, "loss": 0.1879, "accuracy": 1.0, "learning_rate": 3.067625933482784e-07, "epoch": 1.9368036529680366, "percentage": 48.45, "elapsed_time": "7:17:11", "remaining_time": "7:45:13"} +{"current_steps": 2652, "total_steps": 5472, "loss": 0.2355, "accuracy": 1.0, "learning_rate": 3.0660724347683515e-07, "epoch": 1.9375342465753425, "percentage": 48.46, "elapsed_time": "7:17:21", "remaining_time": "7:45:04"} +{"current_steps": 2653, "total_steps": 5472, "loss": 0.1266, "accuracy": 1.0, "learning_rate": 3.064518705625708e-07, "epoch": 1.9382648401826486, "percentage": 48.48, "elapsed_time": "7:17:31", "remaining_time": "7:44:53"} +{"current_steps": 2654, "total_steps": 5472, "loss": 0.1314, "accuracy": 0.875, "learning_rate": 3.0629647466873215e-07, "epoch": 1.9389954337899544, "percentage": 48.5, "elapsed_time": "7:17:40", "remaining_time": "7:44:42"} +{"current_steps": 2655, "total_steps": 5472, "loss": 0.2095, "accuracy": 0.875, "learning_rate": 3.061410558585754e-07, "epoch": 1.9397260273972603, "percentage": 48.52, "elapsed_time": "7:17:50", "remaining_time": "7:44:33"} +{"current_steps": 2656, "total_steps": 5472, "loss": 0.135, "accuracy": 1.0, "learning_rate": 3.0598561419536606e-07, "epoch": 1.9404566210045662, "percentage": 48.54, "elapsed_time": "7:17:59", "remaining_time": "7:44:22"} +{"current_steps": 2657, "total_steps": 5472, "loss": 0.1704, "accuracy": 1.0, "learning_rate": 3.0583014974237905e-07, "epoch": 1.941187214611872, "percentage": 48.56, "elapsed_time": "7:18:09", "remaining_time": "7:44:12"} +{"current_steps": 2658, "total_steps": 5472, "loss": 0.3094, "accuracy": 0.75, "learning_rate": 3.0567466256289837e-07, "epoch": 1.941917808219178, "percentage": 48.57, "elapsed_time": "7:18:18", "remaining_time": "7:44:02"} +{"current_steps": 2659, "total_steps": 5472, "loss": 0.2584, "accuracy": 0.875, "learning_rate": 3.0551915272021755e-07, "epoch": 1.942648401826484, "percentage": 48.59, "elapsed_time": "7:18:29", "remaining_time": "7:43:53"} +{"current_steps": 2660, "total_steps": 5472, "loss": 0.1254, "accuracy": 1.0, "learning_rate": 3.0536362027763906e-07, "epoch": 1.9433789954337901, "percentage": 48.61, "elapsed_time": "7:18:38", "remaining_time": "7:43:42"} +{"current_steps": 2661, "total_steps": 5472, "loss": 0.2014, "accuracy": 1.0, "learning_rate": 3.052080652984748e-07, "epoch": 1.944109589041096, "percentage": 48.63, "elapsed_time": "7:18:49", "remaining_time": "7:43:33"} +{"current_steps": 2662, "total_steps": 5472, "loss": 0.1492, "accuracy": 1.0, "learning_rate": 3.0505248784604564e-07, "epoch": 1.9448401826484019, "percentage": 48.65, "elapsed_time": "7:19:00", "remaining_time": "7:43:24"} +{"current_steps": 2663, "total_steps": 5472, "loss": 0.1525, "accuracy": 1.0, "learning_rate": 3.048968879836817e-07, "epoch": 1.9455707762557077, "percentage": 48.67, "elapsed_time": "7:19:11", "remaining_time": "7:43:15"} +{"current_steps": 2664, "total_steps": 5472, "loss": 0.1599, "accuracy": 1.0, "learning_rate": 3.047412657747223e-07, "epoch": 1.9463013698630136, "percentage": 48.68, "elapsed_time": "7:19:20", "remaining_time": "7:43:04"} +{"current_steps": 2665, "total_steps": 5472, "loss": 0.1958, "accuracy": 1.0, "learning_rate": 3.0458562128251577e-07, "epoch": 1.9470319634703195, "percentage": 48.7, "elapsed_time": "7:19:29", "remaining_time": "7:42:54"} +{"current_steps": 2666, "total_steps": 5472, "loss": 0.1623, "accuracy": 1.0, "learning_rate": 3.0442995457041943e-07, "epoch": 1.9477625570776256, "percentage": 48.72, "elapsed_time": "7:19:38", "remaining_time": "7:42:43"} +{"current_steps": 2667, "total_steps": 5472, "loss": 0.1336, "accuracy": 1.0, "learning_rate": 3.042742657017998e-07, "epoch": 1.9484931506849315, "percentage": 48.74, "elapsed_time": "7:19:48", "remaining_time": "7:42:34"} +{"current_steps": 2668, "total_steps": 5472, "loss": 0.1561, "accuracy": 0.875, "learning_rate": 3.041185547400324e-07, "epoch": 1.9492237442922375, "percentage": 48.76, "elapsed_time": "7:19:58", "remaining_time": "7:42:24"} +{"current_steps": 2669, "total_steps": 5472, "loss": 0.0839, "accuracy": 1.0, "learning_rate": 3.0396282174850146e-07, "epoch": 1.9499543378995434, "percentage": 48.78, "elapsed_time": "7:20:08", "remaining_time": "7:42:14"} +{"current_steps": 2670, "total_steps": 5472, "loss": 0.1334, "accuracy": 0.75, "learning_rate": 3.0380706679060077e-07, "epoch": 1.9506849315068493, "percentage": 48.79, "elapsed_time": "7:20:18", "remaining_time": "7:42:04"} +{"current_steps": 2671, "total_steps": 5472, "loss": 0.161, "accuracy": 1.0, "learning_rate": 3.0365128992973244e-07, "epoch": 1.9514155251141552, "percentage": 48.81, "elapsed_time": "7:20:26", "remaining_time": "7:41:53"} +{"current_steps": 2672, "total_steps": 5472, "loss": 0.1313, "accuracy": 0.875, "learning_rate": 3.034954912293079e-07, "epoch": 1.952146118721461, "percentage": 48.83, "elapsed_time": "7:20:35", "remaining_time": "7:41:42"} +{"current_steps": 2673, "total_steps": 5472, "loss": 0.1823, "accuracy": 0.875, "learning_rate": 3.033396707527472e-07, "epoch": 1.9528767123287671, "percentage": 48.85, "elapsed_time": "7:20:44", "remaining_time": "7:41:30"} +{"current_steps": 2674, "total_steps": 5472, "loss": 0.2039, "accuracy": 1.0, "learning_rate": 3.0318382856347946e-07, "epoch": 1.953607305936073, "percentage": 48.87, "elapsed_time": "7:20:53", "remaining_time": "7:41:20"} +{"current_steps": 2675, "total_steps": 5472, "loss": 0.1423, "accuracy": 0.875, "learning_rate": 3.030279647249425e-07, "epoch": 1.954337899543379, "percentage": 48.89, "elapsed_time": "7:21:03", "remaining_time": "7:41:09"} +{"current_steps": 2676, "total_steps": 5472, "loss": 0.2306, "accuracy": 0.875, "learning_rate": 3.028720793005832e-07, "epoch": 1.955068493150685, "percentage": 48.9, "elapsed_time": "7:21:11", "remaining_time": "7:40:58"} +{"current_steps": 2677, "total_steps": 5472, "loss": 0.2353, "accuracy": 1.0, "learning_rate": 3.027161723538569e-07, "epoch": 1.9557990867579909, "percentage": 48.92, "elapsed_time": "7:21:20", "remaining_time": "7:40:47"} +{"current_steps": 2678, "total_steps": 5472, "loss": 0.1468, "accuracy": 0.875, "learning_rate": 3.0256024394822783e-07, "epoch": 1.9565296803652967, "percentage": 48.94, "elapsed_time": "7:21:30", "remaining_time": "7:40:37"} +{"current_steps": 2679, "total_steps": 5472, "loss": 0.2211, "accuracy": 1.0, "learning_rate": 3.02404294147169e-07, "epoch": 1.9572602739726026, "percentage": 48.96, "elapsed_time": "7:21:41", "remaining_time": "7:40:29"} +{"current_steps": 2680, "total_steps": 5472, "loss": 0.1198, "accuracy": 0.875, "learning_rate": 3.022483230141621e-07, "epoch": 1.9579908675799087, "percentage": 48.98, "elapsed_time": "7:21:51", "remaining_time": "7:40:19"} +{"current_steps": 2681, "total_steps": 5472, "loss": 0.1226, "accuracy": 0.875, "learning_rate": 3.020923306126975e-07, "epoch": 1.9587214611872146, "percentage": 48.99, "elapsed_time": "7:22:00", "remaining_time": "7:40:08"} +{"current_steps": 2682, "total_steps": 5472, "loss": 0.206, "accuracy": 0.875, "learning_rate": 3.019363170062742e-07, "epoch": 1.9594520547945207, "percentage": 49.01, "elapsed_time": "7:22:09", "remaining_time": "7:39:57"} +{"current_steps": 2683, "total_steps": 5472, "loss": 0.1542, "accuracy": 1.0, "learning_rate": 3.017802822583999e-07, "epoch": 1.9601826484018265, "percentage": 49.03, "elapsed_time": "7:22:18", "remaining_time": "7:39:47"} +{"current_steps": 2684, "total_steps": 5472, "loss": 0.1085, "accuracy": 1.0, "learning_rate": 3.016242264325909e-07, "epoch": 1.9609132420091324, "percentage": 49.05, "elapsed_time": "7:22:27", "remaining_time": "7:39:36"} +{"current_steps": 2685, "total_steps": 5472, "loss": 0.1931, "accuracy": 0.875, "learning_rate": 3.01468149592372e-07, "epoch": 1.9616438356164383, "percentage": 49.07, "elapsed_time": "7:22:37", "remaining_time": "7:39:26"} +{"current_steps": 2686, "total_steps": 5472, "loss": 0.1831, "accuracy": 0.875, "learning_rate": 3.0131205180127656e-07, "epoch": 1.9623744292237442, "percentage": 49.09, "elapsed_time": "7:22:46", "remaining_time": "7:39:16"} +{"current_steps": 2687, "total_steps": 5472, "loss": 0.1396, "accuracy": 0.875, "learning_rate": 3.011559331228465e-07, "epoch": 1.9631050228310503, "percentage": 49.1, "elapsed_time": "7:22:55", "remaining_time": "7:39:05"} +{"current_steps": 2688, "total_steps": 5472, "loss": 0.1874, "accuracy": 1.0, "learning_rate": 3.009997936206324e-07, "epoch": 1.9638356164383561, "percentage": 49.12, "elapsed_time": "7:23:04", "remaining_time": "7:38:53"} +{"current_steps": 2689, "total_steps": 5472, "loss": 0.186, "accuracy": 0.875, "learning_rate": 3.0084363335819306e-07, "epoch": 1.9645662100456622, "percentage": 49.14, "elapsed_time": "7:23:15", "remaining_time": "7:38:45"} +{"current_steps": 2690, "total_steps": 5472, "loss": 0.1282, "accuracy": 0.875, "learning_rate": 3.006874523990959e-07, "epoch": 1.965296803652968, "percentage": 49.16, "elapsed_time": "7:23:26", "remaining_time": "7:38:36"} +{"current_steps": 2691, "total_steps": 5472, "loss": 0.1673, "accuracy": 0.875, "learning_rate": 3.0053125080691655e-07, "epoch": 1.966027397260274, "percentage": 49.18, "elapsed_time": "7:23:36", "remaining_time": "7:38:26"} +{"current_steps": 2692, "total_steps": 5472, "loss": 0.1065, "accuracy": 0.875, "learning_rate": 3.003750286452394e-07, "epoch": 1.9667579908675799, "percentage": 49.2, "elapsed_time": "7:23:44", "remaining_time": "7:38:15"} +{"current_steps": 2693, "total_steps": 5472, "loss": 0.2451, "accuracy": 0.625, "learning_rate": 3.002187859776568e-07, "epoch": 1.9674885844748857, "percentage": 49.21, "elapsed_time": "7:23:53", "remaining_time": "7:38:03"} +{"current_steps": 2694, "total_steps": 5472, "loss": 0.2029, "accuracy": 0.875, "learning_rate": 3.000625228677699e-07, "epoch": 1.9682191780821918, "percentage": 49.23, "elapsed_time": "7:24:02", "remaining_time": "7:37:53"} +{"current_steps": 2695, "total_steps": 5472, "loss": 0.1665, "accuracy": 1.0, "learning_rate": 2.999062393791877e-07, "epoch": 1.9689497716894977, "percentage": 49.25, "elapsed_time": "7:24:11", "remaining_time": "7:37:42"} +{"current_steps": 2696, "total_steps": 5472, "loss": 0.1357, "accuracy": 1.0, "learning_rate": 2.9974993557552786e-07, "epoch": 1.9696803652968038, "percentage": 49.27, "elapsed_time": "7:24:23", "remaining_time": "7:37:34"} +{"current_steps": 2697, "total_steps": 5472, "loss": 0.1213, "accuracy": 1.0, "learning_rate": 2.995936115204161e-07, "epoch": 1.9704109589041097, "percentage": 49.29, "elapsed_time": "7:24:34", "remaining_time": "7:37:26"} +{"current_steps": 2698, "total_steps": 5472, "loss": 0.0547, "accuracy": 1.0, "learning_rate": 2.994372672774865e-07, "epoch": 1.9711415525114155, "percentage": 49.31, "elapsed_time": "7:24:44", "remaining_time": "7:37:16"} +{"current_steps": 2699, "total_steps": 5472, "loss": 0.0963, "accuracy": 1.0, "learning_rate": 2.992809029103812e-07, "epoch": 1.9718721461187214, "percentage": 49.32, "elapsed_time": "7:24:54", "remaining_time": "7:37:05"} +{"current_steps": 2700, "total_steps": 5472, "loss": 0.1932, "accuracy": 1.0, "learning_rate": 2.991245184827508e-07, "epoch": 1.9726027397260273, "percentage": 49.34, "elapsed_time": "7:25:04", "remaining_time": "7:36:56"} +{"current_steps": 2701, "total_steps": 5472, "loss": 0.1204, "accuracy": 1.0, "learning_rate": 2.989681140582538e-07, "epoch": 1.9733333333333334, "percentage": 49.36, "elapsed_time": "7:25:15", "remaining_time": "7:36:47"} +{"current_steps": 2702, "total_steps": 5472, "loss": 0.111, "accuracy": 1.0, "learning_rate": 2.98811689700557e-07, "epoch": 1.9740639269406393, "percentage": 49.38, "elapsed_time": "7:25:23", "remaining_time": "7:36:36"} +{"current_steps": 2703, "total_steps": 5472, "loss": 0.1639, "accuracy": 0.875, "learning_rate": 2.986552454733353e-07, "epoch": 1.9747945205479454, "percentage": 49.4, "elapsed_time": "7:25:36", "remaining_time": "7:36:29"} +{"current_steps": 2704, "total_steps": 5472, "loss": 0.2144, "accuracy": 1.0, "learning_rate": 2.9849878144027153e-07, "epoch": 1.9755251141552512, "percentage": 49.42, "elapsed_time": "7:25:46", "remaining_time": "7:36:19"} +{"current_steps": 2705, "total_steps": 5472, "loss": 0.1044, "accuracy": 1.0, "learning_rate": 2.983422976650568e-07, "epoch": 1.976255707762557, "percentage": 49.43, "elapsed_time": "7:25:57", "remaining_time": "7:36:10"} +{"current_steps": 2706, "total_steps": 5472, "loss": 0.123, "accuracy": 1.0, "learning_rate": 2.9818579421139014e-07, "epoch": 1.976986301369863, "percentage": 49.45, "elapsed_time": "7:26:06", "remaining_time": "7:36:00"} +{"current_steps": 2707, "total_steps": 5472, "loss": 0.1118, "accuracy": 1.0, "learning_rate": 2.9802927114297866e-07, "epoch": 1.9777168949771688, "percentage": 49.47, "elapsed_time": "7:26:17", "remaining_time": "7:35:51"} +{"current_steps": 2708, "total_steps": 5472, "loss": 0.1558, "accuracy": 1.0, "learning_rate": 2.978727285235373e-07, "epoch": 1.9784474885844747, "percentage": 49.49, "elapsed_time": "7:26:27", "remaining_time": "7:35:40"} +{"current_steps": 2709, "total_steps": 5472, "loss": 0.1235, "accuracy": 1.0, "learning_rate": 2.977161664167891e-07, "epoch": 1.9791780821917808, "percentage": 49.51, "elapsed_time": "7:26:37", "remaining_time": "7:35:31"} +{"current_steps": 2710, "total_steps": 5472, "loss": 0.1559, "accuracy": 0.875, "learning_rate": 2.97559584886465e-07, "epoch": 1.979908675799087, "percentage": 49.52, "elapsed_time": "7:26:46", "remaining_time": "7:35:20"} +{"current_steps": 2711, "total_steps": 5472, "loss": 0.2621, "accuracy": 1.0, "learning_rate": 2.974029839963039e-07, "epoch": 1.9806392694063928, "percentage": 49.54, "elapsed_time": "7:26:54", "remaining_time": "7:35:09"} +{"current_steps": 2712, "total_steps": 5472, "loss": 0.3014, "accuracy": 1.0, "learning_rate": 2.972463638100524e-07, "epoch": 1.9813698630136987, "percentage": 49.56, "elapsed_time": "7:27:03", "remaining_time": "7:34:58"} +{"current_steps": 2713, "total_steps": 5472, "loss": 0.0698, "accuracy": 1.0, "learning_rate": 2.9708972439146525e-07, "epoch": 1.9821004566210045, "percentage": 49.58, "elapsed_time": "7:27:15", "remaining_time": "7:34:50"} +{"current_steps": 2714, "total_steps": 5472, "loss": 0.1609, "accuracy": 1.0, "learning_rate": 2.969330658043048e-07, "epoch": 1.9828310502283104, "percentage": 49.6, "elapsed_time": "7:27:26", "remaining_time": "7:34:41"} +{"current_steps": 2715, "total_steps": 5472, "loss": 0.0937, "accuracy": 1.0, "learning_rate": 2.9677638811234115e-07, "epoch": 1.9835616438356163, "percentage": 49.62, "elapsed_time": "7:27:35", "remaining_time": "7:34:31"} +{"current_steps": 2716, "total_steps": 5472, "loss": 0.0644, "accuracy": 1.0, "learning_rate": 2.9661969137935234e-07, "epoch": 1.9842922374429224, "percentage": 49.63, "elapsed_time": "7:27:45", "remaining_time": "7:34:21"} +{"current_steps": 2717, "total_steps": 5472, "loss": 0.1743, "accuracy": 0.875, "learning_rate": 2.964629756691241e-07, "epoch": 1.9850228310502285, "percentage": 49.65, "elapsed_time": "7:27:54", "remaining_time": "7:34:10"} +{"current_steps": 2718, "total_steps": 5472, "loss": 0.1242, "accuracy": 0.875, "learning_rate": 2.9630624104545005e-07, "epoch": 1.9857534246575343, "percentage": 49.67, "elapsed_time": "7:28:03", "remaining_time": "7:33:59"} +{"current_steps": 2719, "total_steps": 5472, "loss": 0.1138, "accuracy": 0.875, "learning_rate": 2.961494875721311e-07, "epoch": 1.9864840182648402, "percentage": 49.69, "elapsed_time": "7:28:13", "remaining_time": "7:33:49"} +{"current_steps": 2720, "total_steps": 5472, "loss": 0.1843, "accuracy": 0.875, "learning_rate": 2.9599271531297634e-07, "epoch": 1.987214611872146, "percentage": 49.71, "elapsed_time": "7:28:23", "remaining_time": "7:33:40"} +{"current_steps": 2721, "total_steps": 5472, "loss": 0.2108, "accuracy": 0.75, "learning_rate": 2.9583592433180204e-07, "epoch": 1.987945205479452, "percentage": 49.73, "elapsed_time": "7:28:33", "remaining_time": "7:33:29"} +{"current_steps": 2722, "total_steps": 5472, "loss": 0.1473, "accuracy": 1.0, "learning_rate": 2.9567911469243236e-07, "epoch": 1.9886757990867578, "percentage": 49.74, "elapsed_time": "7:28:42", "remaining_time": "7:33:19"} +{"current_steps": 2723, "total_steps": 5472, "loss": 0.1382, "accuracy": 1.0, "learning_rate": 2.95522286458699e-07, "epoch": 1.989406392694064, "percentage": 49.76, "elapsed_time": "7:28:51", "remaining_time": "7:33:08"} +{"current_steps": 2724, "total_steps": 5472, "loss": 0.2091, "accuracy": 1.0, "learning_rate": 2.953654396944414e-07, "epoch": 1.9901369863013698, "percentage": 49.78, "elapsed_time": "7:29:00", "remaining_time": "7:32:58"} +{"current_steps": 2725, "total_steps": 5472, "loss": 0.1994, "accuracy": 1.0, "learning_rate": 2.9520857446350603e-07, "epoch": 1.990867579908676, "percentage": 49.8, "elapsed_time": "7:29:09", "remaining_time": "7:32:47"} +{"current_steps": 2726, "total_steps": 5472, "loss": 0.151, "accuracy": 1.0, "learning_rate": 2.950516908297475e-07, "epoch": 1.9915981735159818, "percentage": 49.82, "elapsed_time": "7:29:20", "remaining_time": "7:32:37"} +{"current_steps": 2727, "total_steps": 5472, "loss": 0.225, "accuracy": 0.875, "learning_rate": 2.948947888570276e-07, "epoch": 1.9923287671232877, "percentage": 49.84, "elapsed_time": "7:29:31", "remaining_time": "7:32:29"} +{"current_steps": 2728, "total_steps": 5472, "loss": 0.1293, "accuracy": 0.875, "learning_rate": 2.947378686092154e-07, "epoch": 1.9930593607305935, "percentage": 49.85, "elapsed_time": "7:29:42", "remaining_time": "7:32:20"} +{"current_steps": 2729, "total_steps": 5472, "loss": 0.1301, "accuracy": 1.0, "learning_rate": 2.945809301501879e-07, "epoch": 1.9937899543378994, "percentage": 49.87, "elapsed_time": "7:29:52", "remaining_time": "7:32:11"} +{"current_steps": 2730, "total_steps": 5472, "loss": 0.0576, "accuracy": 1.0, "learning_rate": 2.94423973543829e-07, "epoch": 1.9945205479452055, "percentage": 49.89, "elapsed_time": "7:30:02", "remaining_time": "7:32:00"} +{"current_steps": 2731, "total_steps": 5472, "loss": 0.0833, "accuracy": 1.0, "learning_rate": 2.942669988540305e-07, "epoch": 1.9952511415525114, "percentage": 49.91, "elapsed_time": "7:30:11", "remaining_time": "7:31:50"} +{"current_steps": 2732, "total_steps": 5472, "loss": 0.1422, "accuracy": 1.0, "learning_rate": 2.9411000614469096e-07, "epoch": 1.9959817351598175, "percentage": 49.93, "elapsed_time": "7:30:21", "remaining_time": "7:31:40"} +{"current_steps": 2733, "total_steps": 5472, "loss": 0.0878, "accuracy": 1.0, "learning_rate": 2.939529954797168e-07, "epoch": 1.9967123287671233, "percentage": 49.95, "elapsed_time": "7:30:30", "remaining_time": "7:31:29"} +{"current_steps": 2734, "total_steps": 5472, "loss": 0.2025, "accuracy": 0.625, "learning_rate": 2.937959669230215e-07, "epoch": 1.9974429223744292, "percentage": 49.96, "elapsed_time": "7:30:41", "remaining_time": "7:31:21"} +{"current_steps": 2735, "total_steps": 5472, "loss": 0.2332, "accuracy": 1.0, "learning_rate": 2.936389205385259e-07, "epoch": 1.998173515981735, "percentage": 49.98, "elapsed_time": "7:30:51", "remaining_time": "7:31:11"} +{"current_steps": 2736, "total_steps": 5472, "loss": 0.1711, "accuracy": 0.875, "learning_rate": 2.9348185639015805e-07, "epoch": 1.998904109589041, "percentage": 50.0, "elapsed_time": "7:31:01", "remaining_time": "7:31:01"} +{"current_steps": 2737, "total_steps": 5472, "loss": 0.1542, "accuracy": 1.0, "learning_rate": 2.933247745418532e-07, "epoch": 1.999634703196347, "percentage": 50.02, "elapsed_time": "7:31:10", "remaining_time": "7:30:50"} +{"current_steps": 2737, "total_steps": 5472, "eval_loss": 0.34945425391197205, "epoch": 1.999634703196347, "percentage": 50.02, "elapsed_time": "7:31:28", "remaining_time": "7:31:08"} +{"current_steps": 2738, "total_steps": 5472, "loss": 0.1137, "accuracy": 1.0, "learning_rate": 2.93167675057554e-07, "epoch": 2.000365296803653, "percentage": 50.04, "elapsed_time": "7:31:56", "remaining_time": "7:31:16"} +{"current_steps": 2739, "total_steps": 5472, "loss": 0.0895, "accuracy": 0.875, "learning_rate": 2.930105580012099e-07, "epoch": 2.001095890410959, "percentage": 50.05, "elapsed_time": "7:32:04", "remaining_time": "7:31:05"} +{"current_steps": 2740, "total_steps": 5472, "loss": 0.1077, "accuracy": 0.875, "learning_rate": 2.9285342343677795e-07, "epoch": 2.001826484018265, "percentage": 50.07, "elapsed_time": "7:32:13", "remaining_time": "7:30:54"} +{"current_steps": 2741, "total_steps": 5472, "loss": 0.0729, "accuracy": 1.0, "learning_rate": 2.9269627142822195e-07, "epoch": 2.002557077625571, "percentage": 50.09, "elapsed_time": "7:32:23", "remaining_time": "7:30:44"} +{"current_steps": 2742, "total_steps": 5472, "loss": 0.0989, "accuracy": 1.0, "learning_rate": 2.9253910203951316e-07, "epoch": 2.0032876712328767, "percentage": 50.11, "elapsed_time": "7:32:31", "remaining_time": "7:30:32"} +{"current_steps": 2743, "total_steps": 5472, "loss": 0.074, "accuracy": 1.0, "learning_rate": 2.923819153346295e-07, "epoch": 2.0040182648401825, "percentage": 50.13, "elapsed_time": "7:32:43", "remaining_time": "7:30:24"} +{"current_steps": 2744, "total_steps": 5472, "loss": 0.0585, "accuracy": 1.0, "learning_rate": 2.9222471137755646e-07, "epoch": 2.0047488584474884, "percentage": 50.15, "elapsed_time": "7:32:53", "remaining_time": "7:30:14"} +{"current_steps": 2745, "total_steps": 5472, "loss": 0.0641, "accuracy": 1.0, "learning_rate": 2.920674902322858e-07, "epoch": 2.0054794520547947, "percentage": 50.16, "elapsed_time": "7:33:02", "remaining_time": "7:30:03"} +{"current_steps": 2746, "total_steps": 5472, "loss": 0.0679, "accuracy": 1.0, "learning_rate": 2.9191025196281715e-07, "epoch": 2.0062100456621006, "percentage": 50.18, "elapsed_time": "7:33:10", "remaining_time": "7:29:52"} +{"current_steps": 2747, "total_steps": 5472, "loss": 0.06, "accuracy": 1.0, "learning_rate": 2.9175299663315646e-07, "epoch": 2.0069406392694065, "percentage": 50.2, "elapsed_time": "7:33:21", "remaining_time": "7:29:43"} +{"current_steps": 2748, "total_steps": 5472, "loss": 0.078, "accuracy": 1.0, "learning_rate": 2.91595724307317e-07, "epoch": 2.0076712328767123, "percentage": 50.22, "elapsed_time": "7:33:30", "remaining_time": "7:29:32"} +{"current_steps": 2749, "total_steps": 5472, "loss": 0.0703, "accuracy": 1.0, "learning_rate": 2.9143843504931866e-07, "epoch": 2.008401826484018, "percentage": 50.24, "elapsed_time": "7:33:39", "remaining_time": "7:29:22"} +{"current_steps": 2750, "total_steps": 5472, "loss": 0.06, "accuracy": 1.0, "learning_rate": 2.912811289231884e-07, "epoch": 2.009132420091324, "percentage": 50.26, "elapsed_time": "7:33:48", "remaining_time": "7:29:11"} +{"current_steps": 2751, "total_steps": 5472, "loss": 0.0357, "accuracy": 1.0, "learning_rate": 2.911238059929601e-07, "epoch": 2.00986301369863, "percentage": 50.27, "elapsed_time": "7:33:57", "remaining_time": "7:29:00"} +{"current_steps": 2752, "total_steps": 5472, "loss": 0.0382, "accuracy": 1.0, "learning_rate": 2.9096646632267435e-07, "epoch": 2.0105936073059363, "percentage": 50.29, "elapsed_time": "7:34:08", "remaining_time": "7:28:51"} +{"current_steps": 2753, "total_steps": 5472, "loss": 0.0712, "accuracy": 0.875, "learning_rate": 2.9080910997637863e-07, "epoch": 2.011324200913242, "percentage": 50.31, "elapsed_time": "7:34:17", "remaining_time": "7:28:40"} +{"current_steps": 2754, "total_steps": 5472, "loss": 0.0492, "accuracy": 1.0, "learning_rate": 2.9065173701812717e-07, "epoch": 2.012054794520548, "percentage": 50.33, "elapsed_time": "7:34:28", "remaining_time": "7:28:31"} +{"current_steps": 2755, "total_steps": 5472, "loss": 0.1392, "accuracy": 1.0, "learning_rate": 2.9049434751198107e-07, "epoch": 2.012785388127854, "percentage": 50.35, "elapsed_time": "7:34:39", "remaining_time": "7:28:23"} +{"current_steps": 2756, "total_steps": 5472, "loss": 0.0828, "accuracy": 1.0, "learning_rate": 2.9033694152200784e-07, "epoch": 2.0135159817351598, "percentage": 50.37, "elapsed_time": "7:34:48", "remaining_time": "7:28:12"} +{"current_steps": 2757, "total_steps": 5472, "loss": 0.0492, "accuracy": 1.0, "learning_rate": 2.9017951911228213e-07, "epoch": 2.0142465753424657, "percentage": 50.38, "elapsed_time": "7:34:58", "remaining_time": "7:28:02"} +{"current_steps": 2758, "total_steps": 5472, "loss": 0.0843, "accuracy": 1.0, "learning_rate": 2.9002208034688495e-07, "epoch": 2.0149771689497715, "percentage": 50.4, "elapsed_time": "7:35:09", "remaining_time": "7:27:53"} +{"current_steps": 2759, "total_steps": 5472, "loss": 0.0536, "accuracy": 1.0, "learning_rate": 2.898646252899043e-07, "epoch": 2.015707762557078, "percentage": 50.42, "elapsed_time": "7:35:20", "remaining_time": "7:27:44"} +{"current_steps": 2760, "total_steps": 5472, "loss": 0.0721, "accuracy": 0.875, "learning_rate": 2.897071540054343e-07, "epoch": 2.0164383561643837, "percentage": 50.44, "elapsed_time": "7:35:29", "remaining_time": "7:27:34"} +{"current_steps": 2761, "total_steps": 5472, "loss": 0.06, "accuracy": 1.0, "learning_rate": 2.895496665575763e-07, "epoch": 2.0171689497716896, "percentage": 50.46, "elapsed_time": "7:35:39", "remaining_time": "7:27:24"} +{"current_steps": 2762, "total_steps": 5472, "loss": 0.0617, "accuracy": 1.0, "learning_rate": 2.8939216301043765e-07, "epoch": 2.0178995433789955, "percentage": 50.48, "elapsed_time": "7:35:48", "remaining_time": "7:27:13"} +{"current_steps": 2763, "total_steps": 5472, "loss": 0.0653, "accuracy": 1.0, "learning_rate": 2.892346434281326e-07, "epoch": 2.0186301369863013, "percentage": 50.49, "elapsed_time": "7:35:58", "remaining_time": "7:27:04"} +{"current_steps": 2764, "total_steps": 5472, "loss": 0.082, "accuracy": 1.0, "learning_rate": 2.8907710787478194e-07, "epoch": 2.019360730593607, "percentage": 50.51, "elapsed_time": "7:36:08", "remaining_time": "7:26:54"} +{"current_steps": 2765, "total_steps": 5472, "loss": 0.102, "accuracy": 1.0, "learning_rate": 2.889195564145127e-07, "epoch": 2.020091324200913, "percentage": 50.53, "elapsed_time": "7:36:18", "remaining_time": "7:26:43"} +{"current_steps": 2766, "total_steps": 5472, "loss": 0.0666, "accuracy": 1.0, "learning_rate": 2.887619891114587e-07, "epoch": 2.020821917808219, "percentage": 50.55, "elapsed_time": "7:36:27", "remaining_time": "7:26:32"} +{"current_steps": 2767, "total_steps": 5472, "loss": 0.062, "accuracy": 1.0, "learning_rate": 2.8860440602976e-07, "epoch": 2.0215525114155253, "percentage": 50.57, "elapsed_time": "7:36:36", "remaining_time": "7:26:22"} +{"current_steps": 2768, "total_steps": 5472, "loss": 0.0757, "accuracy": 1.0, "learning_rate": 2.88446807233563e-07, "epoch": 2.022283105022831, "percentage": 50.58, "elapsed_time": "7:36:46", "remaining_time": "7:26:12"} +{"current_steps": 2769, "total_steps": 5472, "loss": 0.1055, "accuracy": 1.0, "learning_rate": 2.8828919278702085e-07, "epoch": 2.023013698630137, "percentage": 50.6, "elapsed_time": "7:36:57", "remaining_time": "7:26:03"} +{"current_steps": 2770, "total_steps": 5472, "loss": 0.0766, "accuracy": 1.0, "learning_rate": 2.8813156275429277e-07, "epoch": 2.023744292237443, "percentage": 50.62, "elapsed_time": "7:37:07", "remaining_time": "7:25:54"} +{"current_steps": 2771, "total_steps": 5472, "loss": 0.0518, "accuracy": 1.0, "learning_rate": 2.8797391719954447e-07, "epoch": 2.0244748858447488, "percentage": 50.64, "elapsed_time": "7:37:17", "remaining_time": "7:25:44"} +{"current_steps": 2772, "total_steps": 5472, "loss": 0.0506, "accuracy": 1.0, "learning_rate": 2.8781625618694776e-07, "epoch": 2.0252054794520546, "percentage": 50.66, "elapsed_time": "7:37:27", "remaining_time": "7:25:34"} +{"current_steps": 2773, "total_steps": 5472, "loss": 0.0658, "accuracy": 1.0, "learning_rate": 2.8765857978068105e-07, "epoch": 2.0259360730593605, "percentage": 50.68, "elapsed_time": "7:37:36", "remaining_time": "7:25:23"} +{"current_steps": 2774, "total_steps": 5472, "loss": 0.0622, "accuracy": 1.0, "learning_rate": 2.875008880449288e-07, "epoch": 2.026666666666667, "percentage": 50.69, "elapsed_time": "7:37:46", "remaining_time": "7:25:14"} +{"current_steps": 2775, "total_steps": 5472, "loss": 0.0516, "accuracy": 1.0, "learning_rate": 2.8734318104388174e-07, "epoch": 2.0273972602739727, "percentage": 50.71, "elapsed_time": "7:37:57", "remaining_time": "7:25:04"} +{"current_steps": 2776, "total_steps": 5472, "loss": 0.0491, "accuracy": 1.0, "learning_rate": 2.8718545884173693e-07, "epoch": 2.0281278538812786, "percentage": 50.73, "elapsed_time": "7:38:06", "remaining_time": "7:24:54"} +{"current_steps": 2777, "total_steps": 5472, "loss": 0.0754, "accuracy": 1.0, "learning_rate": 2.8702772150269763e-07, "epoch": 2.0288584474885845, "percentage": 50.75, "elapsed_time": "7:38:16", "remaining_time": "7:24:44"} +{"current_steps": 2778, "total_steps": 5472, "loss": 0.0793, "accuracy": 1.0, "learning_rate": 2.8686996909097295e-07, "epoch": 2.0295890410958903, "percentage": 50.77, "elapsed_time": "7:38:24", "remaining_time": "7:24:33"} +{"current_steps": 2779, "total_steps": 5472, "loss": 0.048, "accuracy": 1.0, "learning_rate": 2.867122016707785e-07, "epoch": 2.030319634703196, "percentage": 50.79, "elapsed_time": "7:38:34", "remaining_time": "7:24:22"} +{"current_steps": 2780, "total_steps": 5472, "loss": 0.0689, "accuracy": 1.0, "learning_rate": 2.865544193063358e-07, "epoch": 2.031050228310502, "percentage": 50.8, "elapsed_time": "7:38:45", "remaining_time": "7:24:13"} +{"current_steps": 2781, "total_steps": 5472, "loss": 0.0393, "accuracy": 1.0, "learning_rate": 2.863966220618726e-07, "epoch": 2.0317808219178084, "percentage": 50.82, "elapsed_time": "7:38:53", "remaining_time": "7:24:02"} +{"current_steps": 2782, "total_steps": 5472, "loss": 0.0813, "accuracy": 1.0, "learning_rate": 2.862388100016225e-07, "epoch": 2.0325114155251143, "percentage": 50.84, "elapsed_time": "7:39:04", "remaining_time": "7:23:53"} +{"current_steps": 2783, "total_steps": 5472, "loss": 0.0714, "accuracy": 1.0, "learning_rate": 2.860809831898254e-07, "epoch": 2.03324200913242, "percentage": 50.86, "elapsed_time": "7:39:13", "remaining_time": "7:23:43"} +{"current_steps": 2784, "total_steps": 5472, "loss": 0.0583, "accuracy": 1.0, "learning_rate": 2.8592314169072685e-07, "epoch": 2.033972602739726, "percentage": 50.88, "elapsed_time": "7:39:24", "remaining_time": "7:23:34"} +{"current_steps": 2785, "total_steps": 5472, "loss": 0.055, "accuracy": 1.0, "learning_rate": 2.857652855685787e-07, "epoch": 2.034703196347032, "percentage": 50.9, "elapsed_time": "7:39:35", "remaining_time": "7:23:24"} +{"current_steps": 2786, "total_steps": 5472, "loss": 0.055, "accuracy": 1.0, "learning_rate": 2.8560741488763867e-07, "epoch": 2.0354337899543378, "percentage": 50.91, "elapsed_time": "7:39:43", "remaining_time": "7:23:13"} +{"current_steps": 2787, "total_steps": 5472, "loss": 0.0807, "accuracy": 1.0, "learning_rate": 2.854495297121703e-07, "epoch": 2.0361643835616436, "percentage": 50.93, "elapsed_time": "7:39:54", "remaining_time": "7:23:04"} +{"current_steps": 2788, "total_steps": 5472, "loss": 0.0813, "accuracy": 1.0, "learning_rate": 2.8529163010644316e-07, "epoch": 2.03689497716895, "percentage": 50.95, "elapsed_time": "7:40:04", "remaining_time": "7:22:54"} +{"current_steps": 2789, "total_steps": 5472, "loss": 0.0592, "accuracy": 1.0, "learning_rate": 2.8513371613473255e-07, "epoch": 2.037625570776256, "percentage": 50.97, "elapsed_time": "7:40:15", "remaining_time": "7:22:45"} +{"current_steps": 2790, "total_steps": 5472, "loss": 0.0469, "accuracy": 1.0, "learning_rate": 2.849757878613198e-07, "epoch": 2.0383561643835617, "percentage": 50.99, "elapsed_time": "7:40:24", "remaining_time": "7:22:34"} +{"current_steps": 2791, "total_steps": 5472, "loss": 0.0685, "accuracy": 1.0, "learning_rate": 2.8481784535049185e-07, "epoch": 2.0390867579908676, "percentage": 51.01, "elapsed_time": "7:40:34", "remaining_time": "7:22:24"} +{"current_steps": 2792, "total_steps": 5472, "loss": 0.0606, "accuracy": 1.0, "learning_rate": 2.846598886665417e-07, "epoch": 2.0398173515981735, "percentage": 51.02, "elapsed_time": "7:40:45", "remaining_time": "7:22:16"} +{"current_steps": 2793, "total_steps": 5472, "loss": 0.04, "accuracy": 1.0, "learning_rate": 2.845019178737678e-07, "epoch": 2.0405479452054793, "percentage": 51.04, "elapsed_time": "7:40:57", "remaining_time": "7:22:08"} +{"current_steps": 2794, "total_steps": 5472, "loss": 0.0638, "accuracy": 1.0, "learning_rate": 2.843439330364747e-07, "epoch": 2.041278538812785, "percentage": 51.06, "elapsed_time": "7:41:08", "remaining_time": "7:21:59"} +{"current_steps": 2795, "total_steps": 5472, "loss": 0.1207, "accuracy": 1.0, "learning_rate": 2.841859342189723e-07, "epoch": 2.0420091324200915, "percentage": 51.08, "elapsed_time": "7:41:16", "remaining_time": "7:21:48"} +{"current_steps": 2796, "total_steps": 5472, "loss": 0.063, "accuracy": 1.0, "learning_rate": 2.840279214855765e-07, "epoch": 2.0427397260273974, "percentage": 51.1, "elapsed_time": "7:41:26", "remaining_time": "7:21:38"} +{"current_steps": 2797, "total_steps": 5472, "loss": 0.0838, "accuracy": 0.875, "learning_rate": 2.838698949006087e-07, "epoch": 2.0434703196347033, "percentage": 51.11, "elapsed_time": "7:41:36", "remaining_time": "7:21:28"} +{"current_steps": 2798, "total_steps": 5472, "loss": 0.0579, "accuracy": 1.0, "learning_rate": 2.8371185452839593e-07, "epoch": 2.044200913242009, "percentage": 51.13, "elapsed_time": "7:41:46", "remaining_time": "7:21:18"} +{"current_steps": 2799, "total_steps": 5472, "loss": 0.0634, "accuracy": 1.0, "learning_rate": 2.835538004332709e-07, "epoch": 2.044931506849315, "percentage": 51.15, "elapsed_time": "7:41:56", "remaining_time": "7:21:09"} +{"current_steps": 2800, "total_steps": 5472, "loss": 0.09, "accuracy": 1.0, "learning_rate": 2.833957326795718e-07, "epoch": 2.045662100456621, "percentage": 51.17, "elapsed_time": "7:42:05", "remaining_time": "7:20:58"} +{"current_steps": 2801, "total_steps": 5472, "loss": 0.0809, "accuracy": 1.0, "learning_rate": 2.8323765133164277e-07, "epoch": 2.0463926940639268, "percentage": 51.19, "elapsed_time": "7:42:15", "remaining_time": "7:20:48"} +{"current_steps": 2802, "total_steps": 5472, "loss": 0.0407, "accuracy": 1.0, "learning_rate": 2.830795564538328e-07, "epoch": 2.047123287671233, "percentage": 51.21, "elapsed_time": "7:42:25", "remaining_time": "7:20:38"} +{"current_steps": 2803, "total_steps": 5472, "loss": 0.0722, "accuracy": 1.0, "learning_rate": 2.8292144811049694e-07, "epoch": 2.047853881278539, "percentage": 51.22, "elapsed_time": "7:42:34", "remaining_time": "7:20:27"} +{"current_steps": 2804, "total_steps": 5472, "loss": 0.0895, "accuracy": 1.0, "learning_rate": 2.8276332636599555e-07, "epoch": 2.048584474885845, "percentage": 51.24, "elapsed_time": "7:42:45", "remaining_time": "7:20:19"} +{"current_steps": 2805, "total_steps": 5472, "loss": 0.0407, "accuracy": 1.0, "learning_rate": 2.8260519128469443e-07, "epoch": 2.0493150684931507, "percentage": 51.26, "elapsed_time": "7:42:56", "remaining_time": "7:20:10"} +{"current_steps": 2806, "total_steps": 5472, "loss": 0.0624, "accuracy": 1.0, "learning_rate": 2.824470429309648e-07, "epoch": 2.0500456621004566, "percentage": 51.28, "elapsed_time": "7:43:06", "remaining_time": "7:19:59"} +{"current_steps": 2807, "total_steps": 5472, "loss": 0.0767, "accuracy": 1.0, "learning_rate": 2.8228888136918337e-07, "epoch": 2.0507762557077625, "percentage": 51.3, "elapsed_time": "7:43:17", "remaining_time": "7:19:51"} +{"current_steps": 2808, "total_steps": 5472, "loss": 0.0626, "accuracy": 1.0, "learning_rate": 2.82130706663732e-07, "epoch": 2.0515068493150683, "percentage": 51.32, "elapsed_time": "7:43:27", "remaining_time": "7:19:41"} +{"current_steps": 2809, "total_steps": 5472, "loss": 0.0314, "accuracy": 1.0, "learning_rate": 2.819725188789982e-07, "epoch": 2.0522374429223746, "percentage": 51.33, "elapsed_time": "7:43:36", "remaining_time": "7:19:30"} +{"current_steps": 2810, "total_steps": 5472, "loss": 0.1132, "accuracy": 0.875, "learning_rate": 2.8181431807937456e-07, "epoch": 2.0529680365296805, "percentage": 51.35, "elapsed_time": "7:43:45", "remaining_time": "7:19:20"} +{"current_steps": 2811, "total_steps": 5472, "loss": 0.0501, "accuracy": 1.0, "learning_rate": 2.816561043292592e-07, "epoch": 2.0536986301369864, "percentage": 51.37, "elapsed_time": "7:43:57", "remaining_time": "7:19:11"} +{"current_steps": 2812, "total_steps": 5472, "loss": 0.0888, "accuracy": 1.0, "learning_rate": 2.814978776930553e-07, "epoch": 2.0544292237442923, "percentage": 51.39, "elapsed_time": "7:44:07", "remaining_time": "7:19:01"} +{"current_steps": 2813, "total_steps": 5472, "loss": 0.0598, "accuracy": 1.0, "learning_rate": 2.813396382351713e-07, "epoch": 2.055159817351598, "percentage": 51.41, "elapsed_time": "7:44:17", "remaining_time": "7:18:52"} +{"current_steps": 2814, "total_steps": 5472, "loss": 0.0667, "accuracy": 1.0, "learning_rate": 2.8118138602002114e-07, "epoch": 2.055890410958904, "percentage": 51.43, "elapsed_time": "7:44:26", "remaining_time": "7:18:41"} +{"current_steps": 2815, "total_steps": 5472, "loss": 0.0539, "accuracy": 1.0, "learning_rate": 2.8102312111202345e-07, "epoch": 2.05662100456621, "percentage": 51.44, "elapsed_time": "7:44:38", "remaining_time": "7:18:33"} +{"current_steps": 2816, "total_steps": 5472, "loss": 0.1323, "accuracy": 0.875, "learning_rate": 2.808648435756026e-07, "epoch": 2.0573515981735158, "percentage": 51.46, "elapsed_time": "7:44:46", "remaining_time": "7:18:22"} +{"current_steps": 2817, "total_steps": 5472, "loss": 0.052, "accuracy": 1.0, "learning_rate": 2.8070655347518757e-07, "epoch": 2.058082191780822, "percentage": 51.48, "elapsed_time": "7:44:57", "remaining_time": "7:18:12"} +{"current_steps": 2818, "total_steps": 5472, "loss": 0.0362, "accuracy": 1.0, "learning_rate": 2.8054825087521295e-07, "epoch": 2.058812785388128, "percentage": 51.5, "elapsed_time": "7:45:07", "remaining_time": "7:18:03"} +{"current_steps": 2819, "total_steps": 5472, "loss": 0.0553, "accuracy": 1.0, "learning_rate": 2.8038993584011794e-07, "epoch": 2.059543378995434, "percentage": 51.52, "elapsed_time": "7:45:17", "remaining_time": "7:17:53"} +{"current_steps": 2820, "total_steps": 5472, "loss": 0.0587, "accuracy": 1.0, "learning_rate": 2.802316084343472e-07, "epoch": 2.0602739726027397, "percentage": 51.54, "elapsed_time": "7:45:28", "remaining_time": "7:17:44"} +{"current_steps": 2821, "total_steps": 5472, "loss": 0.0457, "accuracy": 1.0, "learning_rate": 2.800732687223501e-07, "epoch": 2.0610045662100456, "percentage": 51.55, "elapsed_time": "7:45:38", "remaining_time": "7:17:34"} +{"current_steps": 2822, "total_steps": 5472, "loss": 0.0201, "accuracy": 1.0, "learning_rate": 2.7991491676858135e-07, "epoch": 2.0617351598173514, "percentage": 51.57, "elapsed_time": "7:45:48", "remaining_time": "7:17:24"} +{"current_steps": 2823, "total_steps": 5472, "loss": 0.0331, "accuracy": 1.0, "learning_rate": 2.7975655263750034e-07, "epoch": 2.0624657534246573, "percentage": 51.59, "elapsed_time": "7:45:58", "remaining_time": "7:17:15"} +{"current_steps": 2824, "total_steps": 5472, "loss": 0.0727, "accuracy": 1.0, "learning_rate": 2.795981763935716e-07, "epoch": 2.0631963470319636, "percentage": 51.61, "elapsed_time": "7:46:08", "remaining_time": "7:17:05"} +{"current_steps": 2825, "total_steps": 5472, "loss": 0.0472, "accuracy": 1.0, "learning_rate": 2.794397881012647e-07, "epoch": 2.0639269406392695, "percentage": 51.63, "elapsed_time": "7:46:18", "remaining_time": "7:16:55"} +{"current_steps": 2826, "total_steps": 5472, "loss": 0.0418, "accuracy": 1.0, "learning_rate": 2.7928138782505355e-07, "epoch": 2.0646575342465754, "percentage": 51.64, "elapsed_time": "7:46:26", "remaining_time": "7:16:44"} +{"current_steps": 2827, "total_steps": 5472, "loss": 0.0409, "accuracy": 1.0, "learning_rate": 2.7912297562941766e-07, "epoch": 2.0653881278538813, "percentage": 51.66, "elapsed_time": "7:46:35", "remaining_time": "7:16:32"} +{"current_steps": 2828, "total_steps": 5472, "loss": 0.0516, "accuracy": 1.0, "learning_rate": 2.78964551578841e-07, "epoch": 2.066118721461187, "percentage": 51.68, "elapsed_time": "7:46:44", "remaining_time": "7:16:22"} +{"current_steps": 2829, "total_steps": 5472, "loss": 0.0597, "accuracy": 1.0, "learning_rate": 2.788061157378124e-07, "epoch": 2.066849315068493, "percentage": 51.7, "elapsed_time": "7:46:53", "remaining_time": "7:16:11"} +{"current_steps": 2830, "total_steps": 5472, "loss": 0.068, "accuracy": 1.0, "learning_rate": 2.786476681708256e-07, "epoch": 2.067579908675799, "percentage": 51.72, "elapsed_time": "7:47:03", "remaining_time": "7:16:01"} +{"current_steps": 2831, "total_steps": 5472, "loss": 0.0613, "accuracy": 1.0, "learning_rate": 2.7848920894237904e-07, "epoch": 2.068310502283105, "percentage": 51.74, "elapsed_time": "7:47:13", "remaining_time": "7:15:52"} +{"current_steps": 2832, "total_steps": 5472, "loss": 0.0392, "accuracy": 1.0, "learning_rate": 2.783307381169758e-07, "epoch": 2.069041095890411, "percentage": 51.75, "elapsed_time": "7:47:25", "remaining_time": "7:15:44"} +{"current_steps": 2833, "total_steps": 5472, "loss": 0.1095, "accuracy": 1.0, "learning_rate": 2.781722557591238e-07, "epoch": 2.069771689497717, "percentage": 51.77, "elapsed_time": "7:47:36", "remaining_time": "7:15:35"} +{"current_steps": 2834, "total_steps": 5472, "loss": 0.096, "accuracy": 1.0, "learning_rate": 2.780137619333357e-07, "epoch": 2.070502283105023, "percentage": 51.79, "elapsed_time": "7:47:46", "remaining_time": "7:15:25"} +{"current_steps": 2835, "total_steps": 5472, "loss": 0.096, "accuracy": 1.0, "learning_rate": 2.778552567041288e-07, "epoch": 2.0712328767123287, "percentage": 51.81, "elapsed_time": "7:47:56", "remaining_time": "7:15:15"} +{"current_steps": 2836, "total_steps": 5472, "loss": 0.0881, "accuracy": 1.0, "learning_rate": 2.77696740136025e-07, "epoch": 2.0719634703196346, "percentage": 51.83, "elapsed_time": "7:48:06", "remaining_time": "7:15:05"} +{"current_steps": 2837, "total_steps": 5472, "loss": 0.0786, "accuracy": 1.0, "learning_rate": 2.7753821229355076e-07, "epoch": 2.0726940639269404, "percentage": 51.85, "elapsed_time": "7:48:16", "remaining_time": "7:14:56"} +{"current_steps": 2838, "total_steps": 5472, "loss": 0.0419, "accuracy": 1.0, "learning_rate": 2.773796732412373e-07, "epoch": 2.0734246575342468, "percentage": 51.86, "elapsed_time": "7:48:26", "remaining_time": "7:14:46"} +{"current_steps": 2839, "total_steps": 5472, "loss": 0.0449, "accuracy": 1.0, "learning_rate": 2.772211230436202e-07, "epoch": 2.0741552511415526, "percentage": 51.88, "elapsed_time": "7:48:37", "remaining_time": "7:14:36"} +{"current_steps": 2840, "total_steps": 5472, "loss": 0.0568, "accuracy": 0.875, "learning_rate": 2.770625617652398e-07, "epoch": 2.0748858447488585, "percentage": 51.9, "elapsed_time": "7:48:46", "remaining_time": "7:14:26"} +{"current_steps": 2841, "total_steps": 5472, "loss": 0.0442, "accuracy": 1.0, "learning_rate": 2.7690398947064064e-07, "epoch": 2.0756164383561644, "percentage": 51.92, "elapsed_time": "7:48:56", "remaining_time": "7:14:16"} +{"current_steps": 2842, "total_steps": 5472, "loss": 0.0436, "accuracy": 1.0, "learning_rate": 2.767454062243722e-07, "epoch": 2.0763470319634703, "percentage": 51.94, "elapsed_time": "7:49:06", "remaining_time": "7:14:06"} +{"current_steps": 2843, "total_steps": 5472, "loss": 0.0567, "accuracy": 1.0, "learning_rate": 2.765868120909879e-07, "epoch": 2.077077625570776, "percentage": 51.96, "elapsed_time": "7:49:16", "remaining_time": "7:13:56"} +{"current_steps": 2844, "total_steps": 5472, "loss": 0.0525, "accuracy": 1.0, "learning_rate": 2.764282071350459e-07, "epoch": 2.077808219178082, "percentage": 51.97, "elapsed_time": "7:49:24", "remaining_time": "7:13:45"} +{"current_steps": 2845, "total_steps": 5472, "loss": 0.0505, "accuracy": 1.0, "learning_rate": 2.762695914211088e-07, "epoch": 2.0785388127853883, "percentage": 51.99, "elapsed_time": "7:49:34", "remaining_time": "7:13:35"} +{"current_steps": 2846, "total_steps": 5472, "loss": 0.0813, "accuracy": 1.0, "learning_rate": 2.761109650137435e-07, "epoch": 2.079269406392694, "percentage": 52.01, "elapsed_time": "7:49:45", "remaining_time": "7:13:26"} +{"current_steps": 2847, "total_steps": 5472, "loss": 0.0573, "accuracy": 1.0, "learning_rate": 2.7595232797752113e-07, "epoch": 2.08, "percentage": 52.03, "elapsed_time": "7:49:54", "remaining_time": "7:13:15"} +{"current_steps": 2848, "total_steps": 5472, "loss": 0.0734, "accuracy": 1.0, "learning_rate": 2.757936803770173e-07, "epoch": 2.080730593607306, "percentage": 52.05, "elapsed_time": "7:50:03", "remaining_time": "7:13:05"} +{"current_steps": 2849, "total_steps": 5472, "loss": 0.0931, "accuracy": 1.0, "learning_rate": 2.7563502227681184e-07, "epoch": 2.081461187214612, "percentage": 52.07, "elapsed_time": "7:50:12", "remaining_time": "7:12:54"} +{"current_steps": 2850, "total_steps": 5472, "loss": 0.0914, "accuracy": 1.0, "learning_rate": 2.7547635374148897e-07, "epoch": 2.0821917808219177, "percentage": 52.08, "elapsed_time": "7:50:21", "remaining_time": "7:12:44"} +{"current_steps": 2851, "total_steps": 5472, "loss": 0.0613, "accuracy": 1.0, "learning_rate": 2.7531767483563706e-07, "epoch": 2.0829223744292236, "percentage": 52.1, "elapsed_time": "7:50:30", "remaining_time": "7:12:33"} +{"current_steps": 2852, "total_steps": 5472, "loss": 0.0582, "accuracy": 1.0, "learning_rate": 2.7515898562384867e-07, "epoch": 2.08365296803653, "percentage": 52.12, "elapsed_time": "7:50:40", "remaining_time": "7:12:23"} +{"current_steps": 2853, "total_steps": 5472, "loss": 0.0722, "accuracy": 1.0, "learning_rate": 2.750002861707207e-07, "epoch": 2.0843835616438358, "percentage": 52.14, "elapsed_time": "7:50:50", "remaining_time": "7:12:13"} +{"current_steps": 2854, "total_steps": 5472, "loss": 0.0715, "accuracy": 1.0, "learning_rate": 2.74841576540854e-07, "epoch": 2.0851141552511416, "percentage": 52.16, "elapsed_time": "7:50:59", "remaining_time": "7:12:02"} +{"current_steps": 2855, "total_steps": 5472, "loss": 0.1144, "accuracy": 1.0, "learning_rate": 2.746828567988538e-07, "epoch": 2.0858447488584475, "percentage": 52.17, "elapsed_time": "7:51:09", "remaining_time": "7:11:52"} +{"current_steps": 2856, "total_steps": 5472, "loss": 0.0434, "accuracy": 1.0, "learning_rate": 2.7452412700932926e-07, "epoch": 2.0865753424657534, "percentage": 52.19, "elapsed_time": "7:51:17", "remaining_time": "7:11:41"} +{"current_steps": 2857, "total_steps": 5472, "loss": 0.0624, "accuracy": 1.0, "learning_rate": 2.7436538723689376e-07, "epoch": 2.0873059360730593, "percentage": 52.21, "elapsed_time": "7:51:26", "remaining_time": "7:11:30"} +{"current_steps": 2858, "total_steps": 5472, "loss": 0.0389, "accuracy": 1.0, "learning_rate": 2.742066375461646e-07, "epoch": 2.088036529680365, "percentage": 52.23, "elapsed_time": "7:51:35", "remaining_time": "7:11:19"} +{"current_steps": 2859, "total_steps": 5472, "loss": 0.0717, "accuracy": 1.0, "learning_rate": 2.740478780017634e-07, "epoch": 2.0887671232876714, "percentage": 52.25, "elapsed_time": "7:51:44", "remaining_time": "7:11:09"} +{"current_steps": 2860, "total_steps": 5472, "loss": 0.045, "accuracy": 1.0, "learning_rate": 2.738891086683153e-07, "epoch": 2.0894977168949773, "percentage": 52.27, "elapsed_time": "7:51:55", "remaining_time": "7:10:59"} +{"current_steps": 2861, "total_steps": 5472, "loss": 0.0511, "accuracy": 1.0, "learning_rate": 2.7373032961044995e-07, "epoch": 2.090228310502283, "percentage": 52.28, "elapsed_time": "7:52:03", "remaining_time": "7:10:48"} +{"current_steps": 2862, "total_steps": 5472, "loss": 0.053, "accuracy": 1.0, "learning_rate": 2.7357154089280063e-07, "epoch": 2.090958904109589, "percentage": 52.3, "elapsed_time": "7:52:12", "remaining_time": "7:10:37"} +{"current_steps": 2863, "total_steps": 5472, "loss": 0.0621, "accuracy": 1.0, "learning_rate": 2.7341274258000476e-07, "epoch": 2.091689497716895, "percentage": 52.32, "elapsed_time": "7:52:22", "remaining_time": "7:10:28"} +{"current_steps": 2864, "total_steps": 5472, "loss": 0.0823, "accuracy": 1.0, "learning_rate": 2.7325393473670343e-07, "epoch": 2.092420091324201, "percentage": 52.34, "elapsed_time": "7:52:35", "remaining_time": "7:10:20"} +{"current_steps": 2865, "total_steps": 5472, "loss": 0.0752, "accuracy": 1.0, "learning_rate": 2.730951174275418e-07, "epoch": 2.0931506849315067, "percentage": 52.36, "elapsed_time": "7:52:44", "remaining_time": "7:10:10"} +{"current_steps": 2866, "total_steps": 5472, "loss": 0.0697, "accuracy": 1.0, "learning_rate": 2.7293629071716876e-07, "epoch": 2.093881278538813, "percentage": 52.38, "elapsed_time": "7:52:55", "remaining_time": "7:10:01"} +{"current_steps": 2867, "total_steps": 5472, "loss": 0.0256, "accuracy": 1.0, "learning_rate": 2.727774546702372e-07, "epoch": 2.094611872146119, "percentage": 52.39, "elapsed_time": "7:53:04", "remaining_time": "7:09:50"} +{"current_steps": 2868, "total_steps": 5472, "loss": 0.0422, "accuracy": 1.0, "learning_rate": 2.726186093514036e-07, "epoch": 2.0953424657534248, "percentage": 52.41, "elapsed_time": "7:53:14", "remaining_time": "7:09:40"} +{"current_steps": 2869, "total_steps": 5472, "loss": 0.0371, "accuracy": 1.0, "learning_rate": 2.724597548253283e-07, "epoch": 2.0960730593607306, "percentage": 52.43, "elapsed_time": "7:53:23", "remaining_time": "7:09:29"} +{"current_steps": 2870, "total_steps": 5472, "loss": 0.0673, "accuracy": 1.0, "learning_rate": 2.723008911566755e-07, "epoch": 2.0968036529680365, "percentage": 52.45, "elapsed_time": "7:53:32", "remaining_time": "7:09:19"} +{"current_steps": 2871, "total_steps": 5472, "loss": 0.042, "accuracy": 1.0, "learning_rate": 2.7214201841011293e-07, "epoch": 2.0975342465753424, "percentage": 52.47, "elapsed_time": "7:53:41", "remaining_time": "7:09:08"} +{"current_steps": 2872, "total_steps": 5472, "loss": 0.058, "accuracy": 1.0, "learning_rate": 2.719831366503122e-07, "epoch": 2.0982648401826482, "percentage": 52.49, "elapsed_time": "7:53:52", "remaining_time": "7:08:59"} +{"current_steps": 2873, "total_steps": 5472, "loss": 0.0876, "accuracy": 1.0, "learning_rate": 2.718242459419483e-07, "epoch": 2.098995433789954, "percentage": 52.5, "elapsed_time": "7:54:01", "remaining_time": "7:08:48"} +{"current_steps": 2874, "total_steps": 5472, "loss": 0.0459, "accuracy": 1.0, "learning_rate": 2.7166534634970025e-07, "epoch": 2.0997260273972604, "percentage": 52.52, "elapsed_time": "7:54:11", "remaining_time": "7:08:39"} +{"current_steps": 2875, "total_steps": 5472, "loss": 0.0625, "accuracy": 1.0, "learning_rate": 2.7150643793825053e-07, "epoch": 2.1004566210045663, "percentage": 52.54, "elapsed_time": "7:54:20", "remaining_time": "7:08:28"} +{"current_steps": 2876, "total_steps": 5472, "loss": 0.0481, "accuracy": 1.0, "learning_rate": 2.7134752077228494e-07, "epoch": 2.101187214611872, "percentage": 52.56, "elapsed_time": "7:54:29", "remaining_time": "7:08:18"} +{"current_steps": 2877, "total_steps": 5472, "loss": 0.1713, "accuracy": 1.0, "learning_rate": 2.7118859491649337e-07, "epoch": 2.101917808219178, "percentage": 52.58, "elapsed_time": "7:54:40", "remaining_time": "7:08:08"} +{"current_steps": 2878, "total_steps": 5472, "loss": 0.0738, "accuracy": 1.0, "learning_rate": 2.710296604355687e-07, "epoch": 2.102648401826484, "percentage": 52.6, "elapsed_time": "7:54:50", "remaining_time": "7:07:58"} +{"current_steps": 2879, "total_steps": 5472, "loss": 0.0641, "accuracy": 1.0, "learning_rate": 2.708707173942077e-07, "epoch": 2.10337899543379, "percentage": 52.61, "elapsed_time": "7:55:01", "remaining_time": "7:07:50"} +{"current_steps": 2880, "total_steps": 5472, "loss": 0.0525, "accuracy": 1.0, "learning_rate": 2.707117658571105e-07, "epoch": 2.1041095890410957, "percentage": 52.63, "elapsed_time": "7:55:11", "remaining_time": "7:07:40"} +{"current_steps": 2881, "total_steps": 5472, "loss": 0.0619, "accuracy": 1.0, "learning_rate": 2.705528058889807e-07, "epoch": 2.104840182648402, "percentage": 52.65, "elapsed_time": "7:55:21", "remaining_time": "7:07:30"} +{"current_steps": 2882, "total_steps": 5472, "loss": 0.1128, "accuracy": 1.0, "learning_rate": 2.7039383755452523e-07, "epoch": 2.105570776255708, "percentage": 52.67, "elapsed_time": "7:55:31", "remaining_time": "7:07:20"} +{"current_steps": 2883, "total_steps": 5472, "loss": 0.0383, "accuracy": 1.0, "learning_rate": 2.7023486091845467e-07, "epoch": 2.1063013698630138, "percentage": 52.69, "elapsed_time": "7:55:41", "remaining_time": "7:07:10"} +{"current_steps": 2884, "total_steps": 5472, "loss": 0.0651, "accuracy": 1.0, "learning_rate": 2.7007587604548267e-07, "epoch": 2.1070319634703196, "percentage": 52.7, "elapsed_time": "7:55:50", "remaining_time": "7:07:00"} +{"current_steps": 2885, "total_steps": 5472, "loss": 0.0436, "accuracy": 1.0, "learning_rate": 2.6991688300032647e-07, "epoch": 2.1077625570776255, "percentage": 52.72, "elapsed_time": "7:55:59", "remaining_time": "7:06:49"} +{"current_steps": 2886, "total_steps": 5472, "loss": 0.0347, "accuracy": 1.0, "learning_rate": 2.697578818477065e-07, "epoch": 2.1084931506849314, "percentage": 52.74, "elapsed_time": "7:56:11", "remaining_time": "7:06:41"} +{"current_steps": 2887, "total_steps": 5472, "loss": 0.0888, "accuracy": 1.0, "learning_rate": 2.695988726523466e-07, "epoch": 2.1092237442922372, "percentage": 52.76, "elapsed_time": "7:56:20", "remaining_time": "7:06:30"} +{"current_steps": 2888, "total_steps": 5472, "loss": 0.0476, "accuracy": 1.0, "learning_rate": 2.694398554789739e-07, "epoch": 2.1099543378995436, "percentage": 52.78, "elapsed_time": "7:56:31", "remaining_time": "7:06:21"} +{"current_steps": 2889, "total_steps": 5472, "loss": 0.0494, "accuracy": 1.0, "learning_rate": 2.692808303923186e-07, "epoch": 2.1106849315068494, "percentage": 52.8, "elapsed_time": "7:56:40", "remaining_time": "7:06:11"} +{"current_steps": 2890, "total_steps": 5472, "loss": 0.0232, "accuracy": 1.0, "learning_rate": 2.6912179745711427e-07, "epoch": 2.1114155251141553, "percentage": 52.81, "elapsed_time": "7:56:49", "remaining_time": "7:06:00"} +{"current_steps": 2891, "total_steps": 5472, "loss": 0.0895, "accuracy": 0.875, "learning_rate": 2.689627567380975e-07, "epoch": 2.112146118721461, "percentage": 52.83, "elapsed_time": "7:56:59", "remaining_time": "7:05:50"} +{"current_steps": 2892, "total_steps": 5472, "loss": 0.0655, "accuracy": 1.0, "learning_rate": 2.688037083000084e-07, "epoch": 2.112876712328767, "percentage": 52.85, "elapsed_time": "7:57:08", "remaining_time": "7:05:40"} +{"current_steps": 2893, "total_steps": 5472, "loss": 0.0738, "accuracy": 1.0, "learning_rate": 2.686446522075899e-07, "epoch": 2.113607305936073, "percentage": 52.87, "elapsed_time": "7:57:18", "remaining_time": "7:05:30"} +{"current_steps": 2894, "total_steps": 5472, "loss": 0.065, "accuracy": 1.0, "learning_rate": 2.684855885255882e-07, "epoch": 2.114337899543379, "percentage": 52.89, "elapsed_time": "7:57:27", "remaining_time": "7:05:19"} +{"current_steps": 2895, "total_steps": 5472, "loss": 0.0435, "accuracy": 1.0, "learning_rate": 2.6832651731875246e-07, "epoch": 2.115068493150685, "percentage": 52.91, "elapsed_time": "7:57:36", "remaining_time": "7:05:09"} +{"current_steps": 2896, "total_steps": 5472, "loss": 0.097, "accuracy": 1.0, "learning_rate": 2.6816743865183497e-07, "epoch": 2.115799086757991, "percentage": 52.92, "elapsed_time": "7:57:46", "remaining_time": "7:04:58"} +{"current_steps": 2897, "total_steps": 5472, "loss": 0.0869, "accuracy": 1.0, "learning_rate": 2.6800835258959113e-07, "epoch": 2.116529680365297, "percentage": 52.94, "elapsed_time": "7:57:55", "remaining_time": "7:04:48"} +{"current_steps": 2898, "total_steps": 5472, "loss": 0.0647, "accuracy": 1.0, "learning_rate": 2.678492591967794e-07, "epoch": 2.1172602739726027, "percentage": 52.96, "elapsed_time": "7:58:06", "remaining_time": "7:04:38"} +{"current_steps": 2899, "total_steps": 5472, "loss": 0.0842, "accuracy": 1.0, "learning_rate": 2.676901585381608e-07, "epoch": 2.1179908675799086, "percentage": 52.98, "elapsed_time": "7:58:15", "remaining_time": "7:04:28"} +{"current_steps": 2900, "total_steps": 5472, "loss": 0.084, "accuracy": 1.0, "learning_rate": 2.675310506785e-07, "epoch": 2.1187214611872145, "percentage": 53.0, "elapsed_time": "7:58:24", "remaining_time": "7:04:18"} +{"current_steps": 2901, "total_steps": 5472, "loss": 0.0621, "accuracy": 1.0, "learning_rate": 2.6737193568256395e-07, "epoch": 2.1194520547945204, "percentage": 53.02, "elapsed_time": "7:58:33", "remaining_time": "7:04:07"} +{"current_steps": 2902, "total_steps": 5472, "loss": 0.0414, "accuracy": 1.0, "learning_rate": 2.672128136151228e-07, "epoch": 2.1201826484018267, "percentage": 53.03, "elapsed_time": "7:58:43", "remaining_time": "7:03:57"} +{"current_steps": 2903, "total_steps": 5472, "loss": 0.0587, "accuracy": 1.0, "learning_rate": 2.6705368454094967e-07, "epoch": 2.1209132420091326, "percentage": 53.05, "elapsed_time": "7:58:52", "remaining_time": "7:03:47"} +{"current_steps": 2904, "total_steps": 5472, "loss": 0.0527, "accuracy": 1.0, "learning_rate": 2.668945485248204e-07, "epoch": 2.1216438356164384, "percentage": 53.07, "elapsed_time": "7:59:01", "remaining_time": "7:03:36"} +{"current_steps": 2905, "total_steps": 5472, "loss": 0.0559, "accuracy": 1.0, "learning_rate": 2.667354056315137e-07, "epoch": 2.1223744292237443, "percentage": 53.09, "elapsed_time": "7:59:10", "remaining_time": "7:03:25"} +{"current_steps": 2906, "total_steps": 5472, "loss": 0.0686, "accuracy": 1.0, "learning_rate": 2.665762559258109e-07, "epoch": 2.12310502283105, "percentage": 53.11, "elapsed_time": "7:59:19", "remaining_time": "7:03:14"} +{"current_steps": 2907, "total_steps": 5472, "loss": 0.0956, "accuracy": 1.0, "learning_rate": 2.664170994724964e-07, "epoch": 2.123835616438356, "percentage": 53.12, "elapsed_time": "7:59:28", "remaining_time": "7:03:04"} +{"current_steps": 2908, "total_steps": 5472, "loss": 0.0727, "accuracy": 1.0, "learning_rate": 2.662579363363572e-07, "epoch": 2.124566210045662, "percentage": 53.14, "elapsed_time": "7:59:38", "remaining_time": "7:02:54"} +{"current_steps": 2909, "total_steps": 5472, "loss": 0.0513, "accuracy": 1.0, "learning_rate": 2.660987665821829e-07, "epoch": 2.125296803652968, "percentage": 53.16, "elapsed_time": "7:59:47", "remaining_time": "7:02:43"} +{"current_steps": 2910, "total_steps": 5472, "loss": 0.044, "accuracy": 1.0, "learning_rate": 2.6593959027476595e-07, "epoch": 2.126027397260274, "percentage": 53.18, "elapsed_time": "7:59:56", "remaining_time": "7:02:32"} +{"current_steps": 2911, "total_steps": 5472, "loss": 0.073, "accuracy": 1.0, "learning_rate": 2.6578040747890156e-07, "epoch": 2.12675799086758, "percentage": 53.2, "elapsed_time": "8:00:05", "remaining_time": "7:02:21"} +{"current_steps": 2912, "total_steps": 5472, "loss": 0.0287, "accuracy": 1.0, "learning_rate": 2.656212182593874e-07, "epoch": 2.127488584474886, "percentage": 53.22, "elapsed_time": "8:00:15", "remaining_time": "7:02:12"} +{"current_steps": 2913, "total_steps": 5472, "loss": 0.0492, "accuracy": 1.0, "learning_rate": 2.6546202268102383e-07, "epoch": 2.1282191780821917, "percentage": 53.23, "elapsed_time": "8:00:25", "remaining_time": "7:02:02"} +{"current_steps": 2914, "total_steps": 5472, "loss": 0.0879, "accuracy": 1.0, "learning_rate": 2.653028208086137e-07, "epoch": 2.1289497716894976, "percentage": 53.25, "elapsed_time": "8:00:34", "remaining_time": "7:01:51"} +{"current_steps": 2915, "total_steps": 5472, "loss": 0.0608, "accuracy": 1.0, "learning_rate": 2.6514361270696253e-07, "epoch": 2.1296803652968035, "percentage": 53.27, "elapsed_time": "8:00:43", "remaining_time": "7:01:41"} +{"current_steps": 2916, "total_steps": 5472, "loss": 0.0415, "accuracy": 1.0, "learning_rate": 2.649843984408784e-07, "epoch": 2.1304109589041094, "percentage": 53.29, "elapsed_time": "8:00:53", "remaining_time": "7:01:31"} +{"current_steps": 2917, "total_steps": 5472, "loss": 0.0374, "accuracy": 1.0, "learning_rate": 2.648251780751718e-07, "epoch": 2.1311415525114157, "percentage": 53.31, "elapsed_time": "8:01:04", "remaining_time": "7:01:22"} +{"current_steps": 2918, "total_steps": 5472, "loss": 0.0699, "accuracy": 1.0, "learning_rate": 2.6466595167465584e-07, "epoch": 2.1318721461187216, "percentage": 53.33, "elapsed_time": "8:01:14", "remaining_time": "7:01:12"} +{"current_steps": 2919, "total_steps": 5472, "loss": 0.0849, "accuracy": 0.875, "learning_rate": 2.645067193041458e-07, "epoch": 2.1326027397260274, "percentage": 53.34, "elapsed_time": "8:01:25", "remaining_time": "7:01:03"} +{"current_steps": 2920, "total_steps": 5472, "loss": 0.0661, "accuracy": 1.0, "learning_rate": 2.643474810284597e-07, "epoch": 2.1333333333333333, "percentage": 53.36, "elapsed_time": "8:01:37", "remaining_time": "7:00:56"} +{"current_steps": 2921, "total_steps": 5472, "loss": 0.0515, "accuracy": 1.0, "learning_rate": 2.6418823691241795e-07, "epoch": 2.134063926940639, "percentage": 53.38, "elapsed_time": "8:01:48", "remaining_time": "7:00:46"} +{"current_steps": 2922, "total_steps": 5472, "loss": 0.0442, "accuracy": 1.0, "learning_rate": 2.640289870208431e-07, "epoch": 2.134794520547945, "percentage": 53.4, "elapsed_time": "8:01:58", "remaining_time": "7:00:37"} +{"current_steps": 2923, "total_steps": 5472, "loss": 0.0603, "accuracy": 1.0, "learning_rate": 2.6386973141856024e-07, "epoch": 2.135525114155251, "percentage": 53.42, "elapsed_time": "8:02:07", "remaining_time": "7:00:26"} +{"current_steps": 2924, "total_steps": 5472, "loss": 0.0577, "accuracy": 1.0, "learning_rate": 2.637104701703967e-07, "epoch": 2.1362557077625572, "percentage": 53.44, "elapsed_time": "8:02:16", "remaining_time": "7:00:15"} +{"current_steps": 2925, "total_steps": 5472, "loss": 0.0486, "accuracy": 1.0, "learning_rate": 2.6355120334118225e-07, "epoch": 2.136986301369863, "percentage": 53.45, "elapsed_time": "8:02:26", "remaining_time": "7:00:06"} +{"current_steps": 2926, "total_steps": 5472, "loss": 0.0719, "accuracy": 1.0, "learning_rate": 2.633919309957486e-07, "epoch": 2.137716894977169, "percentage": 53.47, "elapsed_time": "8:02:35", "remaining_time": "6:59:55"} +{"current_steps": 2927, "total_steps": 5472, "loss": 0.1363, "accuracy": 0.875, "learning_rate": 2.632326531989302e-07, "epoch": 2.138447488584475, "percentage": 53.49, "elapsed_time": "8:02:46", "remaining_time": "6:59:46"} +{"current_steps": 2928, "total_steps": 5472, "loss": 0.0767, "accuracy": 1.0, "learning_rate": 2.630733700155633e-07, "epoch": 2.1391780821917807, "percentage": 53.51, "elapsed_time": "8:02:55", "remaining_time": "6:59:35"} +{"current_steps": 2929, "total_steps": 5472, "loss": 0.03, "accuracy": 1.0, "learning_rate": 2.629140815104865e-07, "epoch": 2.1399086757990866, "percentage": 53.53, "elapsed_time": "8:03:04", "remaining_time": "6:59:24"} +{"current_steps": 2930, "total_steps": 5472, "loss": 0.1058, "accuracy": 1.0, "learning_rate": 2.6275478774854053e-07, "epoch": 2.1406392694063925, "percentage": 53.55, "elapsed_time": "8:03:14", "remaining_time": "6:59:14"} +{"current_steps": 2931, "total_steps": 5472, "loss": 0.0546, "accuracy": 1.0, "learning_rate": 2.625954887945684e-07, "epoch": 2.141369863013699, "percentage": 53.56, "elapsed_time": "8:03:22", "remaining_time": "6:59:03"} +{"current_steps": 2932, "total_steps": 5472, "loss": 0.0619, "accuracy": 1.0, "learning_rate": 2.6243618471341497e-07, "epoch": 2.1421004566210047, "percentage": 53.58, "elapsed_time": "8:03:32", "remaining_time": "6:58:53"} +{"current_steps": 2933, "total_steps": 5472, "loss": 0.0593, "accuracy": 1.0, "learning_rate": 2.622768755699275e-07, "epoch": 2.1428310502283106, "percentage": 53.6, "elapsed_time": "8:03:41", "remaining_time": "6:58:42"} +{"current_steps": 2934, "total_steps": 5472, "loss": 0.0485, "accuracy": 1.0, "learning_rate": 2.6211756142895497e-07, "epoch": 2.1435616438356164, "percentage": 53.62, "elapsed_time": "8:03:50", "remaining_time": "6:58:32"} +{"current_steps": 2935, "total_steps": 5472, "loss": 0.0327, "accuracy": 1.0, "learning_rate": 2.619582423553488e-07, "epoch": 2.1442922374429223, "percentage": 53.64, "elapsed_time": "8:04:01", "remaining_time": "6:58:23"} +{"current_steps": 2936, "total_steps": 5472, "loss": 0.0367, "accuracy": 1.0, "learning_rate": 2.6179891841396196e-07, "epoch": 2.145022831050228, "percentage": 53.65, "elapsed_time": "8:04:11", "remaining_time": "6:58:13"} +{"current_steps": 2937, "total_steps": 5472, "loss": 0.0686, "accuracy": 1.0, "learning_rate": 2.6163958966964974e-07, "epoch": 2.145753424657534, "percentage": 53.67, "elapsed_time": "8:04:22", "remaining_time": "6:58:04"} +{"current_steps": 2938, "total_steps": 5472, "loss": 0.0967, "accuracy": 1.0, "learning_rate": 2.614802561872692e-07, "epoch": 2.1464840182648404, "percentage": 53.69, "elapsed_time": "8:04:32", "remaining_time": "6:57:54"} +{"current_steps": 2939, "total_steps": 5472, "loss": 0.0544, "accuracy": 1.0, "learning_rate": 2.6132091803167957e-07, "epoch": 2.1472146118721462, "percentage": 53.71, "elapsed_time": "8:04:42", "remaining_time": "6:57:44"} +{"current_steps": 2940, "total_steps": 5472, "loss": 0.0455, "accuracy": 1.0, "learning_rate": 2.6116157526774175e-07, "epoch": 2.147945205479452, "percentage": 53.73, "elapsed_time": "8:04:51", "remaining_time": "6:57:34"} +{"current_steps": 2941, "total_steps": 5472, "loss": 0.0377, "accuracy": 1.0, "learning_rate": 2.6100222796031847e-07, "epoch": 2.148675799086758, "percentage": 53.75, "elapsed_time": "8:05:01", "remaining_time": "6:57:24"} +{"current_steps": 2942, "total_steps": 5472, "loss": 0.083, "accuracy": 1.0, "learning_rate": 2.608428761742746e-07, "epoch": 2.149406392694064, "percentage": 53.76, "elapsed_time": "8:05:10", "remaining_time": "6:57:13"} +{"current_steps": 2943, "total_steps": 5472, "loss": 0.0672, "accuracy": 1.0, "learning_rate": 2.6068351997447645e-07, "epoch": 2.1501369863013697, "percentage": 53.78, "elapsed_time": "8:05:22", "remaining_time": "6:57:05"} +{"current_steps": 2944, "total_steps": 5472, "loss": 0.0482, "accuracy": 1.0, "learning_rate": 2.6052415942579246e-07, "epoch": 2.1508675799086756, "percentage": 53.8, "elapsed_time": "8:05:32", "remaining_time": "6:56:55"} +{"current_steps": 2945, "total_steps": 5472, "loss": 0.0517, "accuracy": 1.0, "learning_rate": 2.603647945930928e-07, "epoch": 2.151598173515982, "percentage": 53.82, "elapsed_time": "8:05:41", "remaining_time": "6:56:44"} +{"current_steps": 2946, "total_steps": 5472, "loss": 0.0695, "accuracy": 1.0, "learning_rate": 2.6020542554124913e-07, "epoch": 2.152328767123288, "percentage": 53.84, "elapsed_time": "8:05:52", "remaining_time": "6:56:36"} +{"current_steps": 2947, "total_steps": 5472, "loss": 0.024, "accuracy": 1.0, "learning_rate": 2.600460523351351e-07, "epoch": 2.1530593607305937, "percentage": 53.86, "elapsed_time": "8:06:03", "remaining_time": "6:56:26"} +{"current_steps": 2948, "total_steps": 5472, "loss": 0.0519, "accuracy": 1.0, "learning_rate": 2.598866750396259e-07, "epoch": 2.1537899543378995, "percentage": 53.87, "elapsed_time": "8:06:12", "remaining_time": "6:56:16"} +{"current_steps": 2949, "total_steps": 5472, "loss": 0.0911, "accuracy": 1.0, "learning_rate": 2.597272937195984e-07, "epoch": 2.1545205479452054, "percentage": 53.89, "elapsed_time": "8:06:21", "remaining_time": "6:56:06"} +{"current_steps": 2950, "total_steps": 5472, "loss": 0.0354, "accuracy": 1.0, "learning_rate": 2.595679084399312e-07, "epoch": 2.1552511415525113, "percentage": 53.91, "elapsed_time": "8:06:32", "remaining_time": "6:55:56"} +{"current_steps": 2951, "total_steps": 5472, "loss": 0.0419, "accuracy": 1.0, "learning_rate": 2.594085192655045e-07, "epoch": 2.155981735159817, "percentage": 53.93, "elapsed_time": "8:06:42", "remaining_time": "6:55:46"} +{"current_steps": 2952, "total_steps": 5472, "loss": 0.0384, "accuracy": 1.0, "learning_rate": 2.592491262611999e-07, "epoch": 2.1567123287671235, "percentage": 53.95, "elapsed_time": "8:06:51", "remaining_time": "6:55:36"} +{"current_steps": 2953, "total_steps": 5472, "loss": 0.0705, "accuracy": 1.0, "learning_rate": 2.5908972949190083e-07, "epoch": 2.1574429223744294, "percentage": 53.97, "elapsed_time": "8:07:01", "remaining_time": "6:55:26"} +{"current_steps": 2954, "total_steps": 5472, "loss": 0.0459, "accuracy": 1.0, "learning_rate": 2.58930329022492e-07, "epoch": 2.1581735159817352, "percentage": 53.98, "elapsed_time": "8:07:11", "remaining_time": "6:55:16"} +{"current_steps": 2955, "total_steps": 5472, "loss": 0.0641, "accuracy": 1.0, "learning_rate": 2.587709249178598e-07, "epoch": 2.158904109589041, "percentage": 54.0, "elapsed_time": "8:07:23", "remaining_time": "6:55:08"} +{"current_steps": 2956, "total_steps": 5472, "loss": 0.0532, "accuracy": 1.0, "learning_rate": 2.5861151724289205e-07, "epoch": 2.159634703196347, "percentage": 54.02, "elapsed_time": "8:07:32", "remaining_time": "6:54:58"} +{"current_steps": 2957, "total_steps": 5472, "loss": 0.0412, "accuracy": 1.0, "learning_rate": 2.58452106062478e-07, "epoch": 2.160365296803653, "percentage": 54.04, "elapsed_time": "8:07:41", "remaining_time": "6:54:47"} +{"current_steps": 2958, "total_steps": 5472, "loss": 0.0966, "accuracy": 0.875, "learning_rate": 2.5829269144150834e-07, "epoch": 2.1610958904109587, "percentage": 54.06, "elapsed_time": "8:07:52", "remaining_time": "6:54:38"} +{"current_steps": 2959, "total_steps": 5472, "loss": 0.0426, "accuracy": 1.0, "learning_rate": 2.581332734448752e-07, "epoch": 2.161826484018265, "percentage": 54.08, "elapsed_time": "8:08:02", "remaining_time": "6:54:28"} +{"current_steps": 2960, "total_steps": 5472, "loss": 0.0622, "accuracy": 1.0, "learning_rate": 2.5797385213747204e-07, "epoch": 2.162557077625571, "percentage": 54.09, "elapsed_time": "8:08:11", "remaining_time": "6:54:18"} +{"current_steps": 2961, "total_steps": 5472, "loss": 0.0417, "accuracy": 1.0, "learning_rate": 2.5781442758419356e-07, "epoch": 2.163287671232877, "percentage": 54.11, "elapsed_time": "8:08:21", "remaining_time": "6:54:08"} +{"current_steps": 2962, "total_steps": 5472, "loss": 0.0574, "accuracy": 1.0, "learning_rate": 2.576549998499361e-07, "epoch": 2.1640182648401827, "percentage": 54.13, "elapsed_time": "8:08:31", "remaining_time": "6:53:58"} +{"current_steps": 2963, "total_steps": 5472, "loss": 0.0335, "accuracy": 1.0, "learning_rate": 2.5749556899959696e-07, "epoch": 2.1647488584474885, "percentage": 54.15, "elapsed_time": "8:08:41", "remaining_time": "6:53:48"} +{"current_steps": 2964, "total_steps": 5472, "loss": 0.1176, "accuracy": 1.0, "learning_rate": 2.5733613509807494e-07, "epoch": 2.1654794520547944, "percentage": 54.17, "elapsed_time": "8:08:51", "remaining_time": "6:53:38"} +{"current_steps": 2965, "total_steps": 5472, "loss": 0.0206, "accuracy": 1.0, "learning_rate": 2.571766982102698e-07, "epoch": 2.1662100456621003, "percentage": 54.18, "elapsed_time": "8:09:01", "remaining_time": "6:53:29"} +{"current_steps": 2966, "total_steps": 5472, "loss": 0.0343, "accuracy": 1.0, "learning_rate": 2.570172584010829e-07, "epoch": 2.1669406392694066, "percentage": 54.2, "elapsed_time": "8:09:11", "remaining_time": "6:53:18"} +{"current_steps": 2967, "total_steps": 5472, "loss": 0.0681, "accuracy": 1.0, "learning_rate": 2.5685781573541645e-07, "epoch": 2.1676712328767125, "percentage": 54.22, "elapsed_time": "8:09:19", "remaining_time": "6:53:08"} +{"current_steps": 2968, "total_steps": 5472, "loss": 0.0643, "accuracy": 1.0, "learning_rate": 2.5669837027817407e-07, "epoch": 2.1684018264840184, "percentage": 54.24, "elapsed_time": "8:09:29", "remaining_time": "6:52:58"} +{"current_steps": 2969, "total_steps": 5472, "loss": 0.0686, "accuracy": 1.0, "learning_rate": 2.565389220942603e-07, "epoch": 2.1691324200913242, "percentage": 54.26, "elapsed_time": "8:09:38", "remaining_time": "6:52:47"} +{"current_steps": 2970, "total_steps": 5472, "loss": 0.0667, "accuracy": 1.0, "learning_rate": 2.56379471248581e-07, "epoch": 2.16986301369863, "percentage": 54.28, "elapsed_time": "8:09:47", "remaining_time": "6:52:36"} +{"current_steps": 2971, "total_steps": 5472, "loss": 0.0784, "accuracy": 1.0, "learning_rate": 2.562200178060429e-07, "epoch": 2.170593607305936, "percentage": 54.29, "elapsed_time": "8:09:58", "remaining_time": "6:52:27"} +{"current_steps": 2972, "total_steps": 5472, "loss": 0.0498, "accuracy": 1.0, "learning_rate": 2.5606056183155395e-07, "epoch": 2.171324200913242, "percentage": 54.31, "elapsed_time": "8:10:09", "remaining_time": "6:52:18"} +{"current_steps": 2973, "total_steps": 5472, "loss": 0.0956, "accuracy": 1.0, "learning_rate": 2.559011033900231e-07, "epoch": 2.172054794520548, "percentage": 54.33, "elapsed_time": "8:10:18", "remaining_time": "6:52:08"} +{"current_steps": 2974, "total_steps": 5472, "loss": 0.0662, "accuracy": 1.0, "learning_rate": 2.5574164254636025e-07, "epoch": 2.172785388127854, "percentage": 54.35, "elapsed_time": "8:10:29", "remaining_time": "6:51:58"} +{"current_steps": 2975, "total_steps": 5472, "loss": 0.0384, "accuracy": 1.0, "learning_rate": 2.555821793654764e-07, "epoch": 2.17351598173516, "percentage": 54.37, "elapsed_time": "8:10:38", "remaining_time": "6:51:48"} +{"current_steps": 2976, "total_steps": 5472, "loss": 0.048, "accuracy": 1.0, "learning_rate": 2.5542271391228327e-07, "epoch": 2.174246575342466, "percentage": 54.39, "elapsed_time": "8:10:51", "remaining_time": "6:51:40"} +{"current_steps": 2977, "total_steps": 5472, "loss": 0.0611, "accuracy": 1.0, "learning_rate": 2.5526324625169377e-07, "epoch": 2.1749771689497717, "percentage": 54.4, "elapsed_time": "8:11:01", "remaining_time": "6:51:31"} +{"current_steps": 2978, "total_steps": 5472, "loss": 0.0509, "accuracy": 1.0, "learning_rate": 2.5510377644862146e-07, "epoch": 2.1757077625570775, "percentage": 54.42, "elapsed_time": "8:11:11", "remaining_time": "6:51:21"} +{"current_steps": 2979, "total_steps": 5472, "loss": 0.1423, "accuracy": 1.0, "learning_rate": 2.54944304567981e-07, "epoch": 2.1764383561643834, "percentage": 54.44, "elapsed_time": "8:11:20", "remaining_time": "6:51:10"} +{"current_steps": 2980, "total_steps": 5472, "loss": 0.0556, "accuracy": 1.0, "learning_rate": 2.5478483067468774e-07, "epoch": 2.1771689497716897, "percentage": 54.46, "elapsed_time": "8:11:29", "remaining_time": "6:51:00"} +{"current_steps": 2981, "total_steps": 5472, "loss": 0.0785, "accuracy": 1.0, "learning_rate": 2.54625354833658e-07, "epoch": 2.1778995433789956, "percentage": 54.48, "elapsed_time": "8:11:39", "remaining_time": "6:50:50"} +{"current_steps": 2982, "total_steps": 5472, "loss": 0.0673, "accuracy": 1.0, "learning_rate": 2.544658771098086e-07, "epoch": 2.1786301369863015, "percentage": 54.5, "elapsed_time": "8:11:48", "remaining_time": "6:50:40"} +{"current_steps": 2983, "total_steps": 5472, "loss": 0.0577, "accuracy": 1.0, "learning_rate": 2.543063975680576e-07, "epoch": 2.1793607305936074, "percentage": 54.51, "elapsed_time": "8:12:01", "remaining_time": "6:50:32"} +{"current_steps": 2984, "total_steps": 5472, "loss": 0.085, "accuracy": 1.0, "learning_rate": 2.5414691627332315e-07, "epoch": 2.1800913242009132, "percentage": 54.53, "elapsed_time": "8:12:10", "remaining_time": "6:50:22"} +{"current_steps": 2985, "total_steps": 5472, "loss": 0.048, "accuracy": 1.0, "learning_rate": 2.5398743329052486e-07, "epoch": 2.180821917808219, "percentage": 54.55, "elapsed_time": "8:12:20", "remaining_time": "6:50:12"} +{"current_steps": 2986, "total_steps": 5472, "loss": 0.0411, "accuracy": 1.0, "learning_rate": 2.538279486845824e-07, "epoch": 2.181552511415525, "percentage": 54.57, "elapsed_time": "8:12:29", "remaining_time": "6:50:01"} +{"current_steps": 2987, "total_steps": 5472, "loss": 0.0341, "accuracy": 1.0, "learning_rate": 2.5366846252041646e-07, "epoch": 2.182283105022831, "percentage": 54.59, "elapsed_time": "8:12:39", "remaining_time": "6:49:51"} +{"current_steps": 2988, "total_steps": 5472, "loss": 0.0527, "accuracy": 1.0, "learning_rate": 2.5350897486294826e-07, "epoch": 2.183013698630137, "percentage": 54.61, "elapsed_time": "8:12:48", "remaining_time": "6:49:41"} +{"current_steps": 2989, "total_steps": 5472, "loss": 0.0845, "accuracy": 1.0, "learning_rate": 2.533494857770996e-07, "epoch": 2.183744292237443, "percentage": 54.62, "elapsed_time": "8:12:57", "remaining_time": "6:49:30"} +{"current_steps": 2990, "total_steps": 5472, "loss": 0.1066, "accuracy": 1.0, "learning_rate": 2.531899953277929e-07, "epoch": 2.184474885844749, "percentage": 54.64, "elapsed_time": "8:13:07", "remaining_time": "6:49:20"} +{"current_steps": 2991, "total_steps": 5472, "loss": 0.0658, "accuracy": 1.0, "learning_rate": 2.53030503579951e-07, "epoch": 2.185205479452055, "percentage": 54.66, "elapsed_time": "8:13:15", "remaining_time": "6:49:09"} +{"current_steps": 2992, "total_steps": 5472, "loss": 0.0852, "accuracy": 1.0, "learning_rate": 2.528710105984977e-07, "epoch": 2.1859360730593607, "percentage": 54.68, "elapsed_time": "8:13:24", "remaining_time": "6:48:58"} +{"current_steps": 2993, "total_steps": 5472, "loss": 0.072, "accuracy": 0.875, "learning_rate": 2.527115164483567e-07, "epoch": 2.1866666666666665, "percentage": 54.7, "elapsed_time": "8:13:34", "remaining_time": "6:48:48"} +{"current_steps": 2994, "total_steps": 5472, "loss": 0.0279, "accuracy": 1.0, "learning_rate": 2.5255202119445255e-07, "epoch": 2.1873972602739724, "percentage": 54.71, "elapsed_time": "8:13:42", "remaining_time": "6:48:37"} +{"current_steps": 2995, "total_steps": 5472, "loss": 0.0735, "accuracy": 1.0, "learning_rate": 2.523925249017102e-07, "epoch": 2.1881278538812787, "percentage": 54.73, "elapsed_time": "8:13:52", "remaining_time": "6:48:27"} +{"current_steps": 2996, "total_steps": 5472, "loss": 0.0546, "accuracy": 1.0, "learning_rate": 2.5223302763505496e-07, "epoch": 2.1888584474885846, "percentage": 54.75, "elapsed_time": "8:14:02", "remaining_time": "6:48:17"} +{"current_steps": 2997, "total_steps": 5472, "loss": 0.0348, "accuracy": 1.0, "learning_rate": 2.5207352945941256e-07, "epoch": 2.1895890410958905, "percentage": 54.77, "elapsed_time": "8:14:11", "remaining_time": "6:48:07"} +{"current_steps": 2998, "total_steps": 5472, "loss": 0.0711, "accuracy": 1.0, "learning_rate": 2.5191403043970914e-07, "epoch": 2.1903196347031963, "percentage": 54.79, "elapsed_time": "8:14:21", "remaining_time": "6:47:56"} +{"current_steps": 2999, "total_steps": 5472, "loss": 0.0498, "accuracy": 1.0, "learning_rate": 2.5175453064087115e-07, "epoch": 2.1910502283105022, "percentage": 54.81, "elapsed_time": "8:14:30", "remaining_time": "6:47:46"} +{"current_steps": 3000, "total_steps": 5472, "loss": 0.1346, "accuracy": 1.0, "learning_rate": 2.5159503012782535e-07, "epoch": 2.191780821917808, "percentage": 54.82, "elapsed_time": "8:14:40", "remaining_time": "6:47:36"} +{"current_steps": 3001, "total_steps": 5472, "loss": 0.0877, "accuracy": 1.0, "learning_rate": 2.514355289654988e-07, "epoch": 2.192511415525114, "percentage": 54.84, "elapsed_time": "8:14:49", "remaining_time": "6:47:26"} +{"current_steps": 3002, "total_steps": 5472, "loss": 0.0457, "accuracy": 1.0, "learning_rate": 2.5127602721881873e-07, "epoch": 2.1932420091324203, "percentage": 54.86, "elapsed_time": "8:14:59", "remaining_time": "6:47:16"} +{"current_steps": 3003, "total_steps": 5472, "loss": 0.0912, "accuracy": 1.0, "learning_rate": 2.511165249527129e-07, "epoch": 2.193972602739726, "percentage": 54.88, "elapsed_time": "8:15:08", "remaining_time": "6:47:05"} +{"current_steps": 3004, "total_steps": 5472, "loss": 0.0773, "accuracy": 1.0, "learning_rate": 2.509570222321089e-07, "epoch": 2.194703196347032, "percentage": 54.9, "elapsed_time": "8:15:19", "remaining_time": "6:46:57"} +{"current_steps": 3005, "total_steps": 5472, "loss": 0.0477, "accuracy": 1.0, "learning_rate": 2.507975191219348e-07, "epoch": 2.195433789954338, "percentage": 54.92, "elapsed_time": "8:15:29", "remaining_time": "6:46:46"} +{"current_steps": 3006, "total_steps": 5472, "loss": 0.1097, "accuracy": 0.875, "learning_rate": 2.506380156871186e-07, "epoch": 2.196164383561644, "percentage": 54.93, "elapsed_time": "8:15:38", "remaining_time": "6:46:35"} +{"current_steps": 3007, "total_steps": 5472, "loss": 0.0805, "accuracy": 1.0, "learning_rate": 2.504785119925886e-07, "epoch": 2.1968949771689497, "percentage": 54.95, "elapsed_time": "8:15:48", "remaining_time": "6:46:26"} +{"current_steps": 3008, "total_steps": 5472, "loss": 0.0429, "accuracy": 1.0, "learning_rate": 2.503190081032732e-07, "epoch": 2.1976255707762555, "percentage": 54.97, "elapsed_time": "8:15:59", "remaining_time": "6:46:17"} +{"current_steps": 3009, "total_steps": 5472, "loss": 0.0745, "accuracy": 1.0, "learning_rate": 2.501595040841009e-07, "epoch": 2.198356164383562, "percentage": 54.99, "elapsed_time": "8:16:07", "remaining_time": "6:46:06"} +{"current_steps": 3010, "total_steps": 5472, "loss": 0.0502, "accuracy": 1.0, "learning_rate": 2.5e-07, "epoch": 2.1990867579908677, "percentage": 55.01, "elapsed_time": "8:16:18", "remaining_time": "6:45:56"} +{"current_steps": 3011, "total_steps": 5472, "loss": 0.0399, "accuracy": 1.0, "learning_rate": 2.4984049591589907e-07, "epoch": 2.1998173515981736, "percentage": 55.03, "elapsed_time": "8:16:27", "remaining_time": "6:45:46"} +{"current_steps": 3012, "total_steps": 5472, "loss": 0.0678, "accuracy": 1.0, "learning_rate": 2.496809918967267e-07, "epoch": 2.2005479452054795, "percentage": 55.04, "elapsed_time": "8:16:36", "remaining_time": "6:45:35"} +{"current_steps": 3013, "total_steps": 5472, "loss": 0.0588, "accuracy": 1.0, "learning_rate": 2.4952148800741135e-07, "epoch": 2.2012785388127853, "percentage": 55.06, "elapsed_time": "8:16:47", "remaining_time": "6:45:27"} +{"current_steps": 3014, "total_steps": 5472, "loss": 0.0348, "accuracy": 1.0, "learning_rate": 2.493619843128814e-07, "epoch": 2.202009132420091, "percentage": 55.08, "elapsed_time": "8:16:56", "remaining_time": "6:45:16"} +{"current_steps": 3015, "total_steps": 5472, "loss": 0.0783, "accuracy": 1.0, "learning_rate": 2.4920248087806525e-07, "epoch": 2.202739726027397, "percentage": 55.1, "elapsed_time": "8:17:06", "remaining_time": "6:45:06"} +{"current_steps": 3016, "total_steps": 5472, "loss": 0.0885, "accuracy": 1.0, "learning_rate": 2.4904297776789107e-07, "epoch": 2.203470319634703, "percentage": 55.12, "elapsed_time": "8:17:15", "remaining_time": "6:44:55"} +{"current_steps": 3017, "total_steps": 5472, "loss": 0.0318, "accuracy": 1.0, "learning_rate": 2.488834750472872e-07, "epoch": 2.2042009132420093, "percentage": 55.14, "elapsed_time": "8:17:24", "remaining_time": "6:44:44"} +{"current_steps": 3018, "total_steps": 5472, "loss": 0.0725, "accuracy": 0.875, "learning_rate": 2.4872397278118125e-07, "epoch": 2.204931506849315, "percentage": 55.15, "elapsed_time": "8:17:32", "remaining_time": "6:44:33"} +{"current_steps": 3019, "total_steps": 5472, "loss": 0.0748, "accuracy": 1.0, "learning_rate": 2.485644710345012e-07, "epoch": 2.205662100456621, "percentage": 55.17, "elapsed_time": "8:17:43", "remaining_time": "6:44:24"} +{"current_steps": 3020, "total_steps": 5472, "loss": 0.0207, "accuracy": 1.0, "learning_rate": 2.484049698721746e-07, "epoch": 2.206392694063927, "percentage": 55.19, "elapsed_time": "8:17:52", "remaining_time": "6:44:14"} +{"current_steps": 3021, "total_steps": 5472, "loss": 0.0529, "accuracy": 1.0, "learning_rate": 2.482454693591289e-07, "epoch": 2.207123287671233, "percentage": 55.21, "elapsed_time": "8:18:04", "remaining_time": "6:44:05"} +{"current_steps": 3022, "total_steps": 5472, "loss": 0.0792, "accuracy": 1.0, "learning_rate": 2.480859695602909e-07, "epoch": 2.2078538812785387, "percentage": 55.23, "elapsed_time": "8:18:13", "remaining_time": "6:43:55"} +{"current_steps": 3023, "total_steps": 5472, "loss": 0.028, "accuracy": 1.0, "learning_rate": 2.479264705405874e-07, "epoch": 2.2085844748858445, "percentage": 55.24, "elapsed_time": "8:18:23", "remaining_time": "6:43:45"} +{"current_steps": 3024, "total_steps": 5472, "loss": 0.0559, "accuracy": 1.0, "learning_rate": 2.47766972364945e-07, "epoch": 2.209315068493151, "percentage": 55.26, "elapsed_time": "8:18:32", "remaining_time": "6:43:34"} +{"current_steps": 3025, "total_steps": 5472, "loss": 0.0385, "accuracy": 1.0, "learning_rate": 2.476074750982898e-07, "epoch": 2.2100456621004567, "percentage": 55.28, "elapsed_time": "8:18:42", "remaining_time": "6:43:24"} +{"current_steps": 3026, "total_steps": 5472, "loss": 0.0531, "accuracy": 1.0, "learning_rate": 2.474479788055475e-07, "epoch": 2.2107762557077626, "percentage": 55.3, "elapsed_time": "8:18:52", "remaining_time": "6:43:15"} +{"current_steps": 3027, "total_steps": 5472, "loss": 0.0564, "accuracy": 1.0, "learning_rate": 2.472884835516433e-07, "epoch": 2.2115068493150685, "percentage": 55.32, "elapsed_time": "8:19:01", "remaining_time": "6:43:04"} +{"current_steps": 3028, "total_steps": 5472, "loss": 0.0572, "accuracy": 1.0, "learning_rate": 2.471289894015023e-07, "epoch": 2.2122374429223743, "percentage": 55.34, "elapsed_time": "8:19:11", "remaining_time": "6:42:54"} +{"current_steps": 3029, "total_steps": 5472, "loss": 0.0629, "accuracy": 1.0, "learning_rate": 2.469694964200489e-07, "epoch": 2.21296803652968, "percentage": 55.35, "elapsed_time": "8:19:20", "remaining_time": "6:42:44"} +{"current_steps": 3030, "total_steps": 5472, "loss": 0.0584, "accuracy": 1.0, "learning_rate": 2.4681000467220713e-07, "epoch": 2.213698630136986, "percentage": 55.37, "elapsed_time": "8:19:31", "remaining_time": "6:42:35"} +{"current_steps": 3031, "total_steps": 5472, "loss": 0.1087, "accuracy": 1.0, "learning_rate": 2.466505142229004e-07, "epoch": 2.2144292237442924, "percentage": 55.39, "elapsed_time": "8:19:39", "remaining_time": "6:42:24"} +{"current_steps": 3032, "total_steps": 5472, "loss": 0.0476, "accuracy": 1.0, "learning_rate": 2.464910251370517e-07, "epoch": 2.2151598173515983, "percentage": 55.41, "elapsed_time": "8:19:49", "remaining_time": "6:42:14"} +{"current_steps": 3033, "total_steps": 5472, "loss": 0.044, "accuracy": 1.0, "learning_rate": 2.4633153747958346e-07, "epoch": 2.215890410958904, "percentage": 55.43, "elapsed_time": "8:19:59", "remaining_time": "6:42:03"} +{"current_steps": 3034, "total_steps": 5472, "loss": 0.0386, "accuracy": 1.0, "learning_rate": 2.4617205131541767e-07, "epoch": 2.21662100456621, "percentage": 55.45, "elapsed_time": "8:20:08", "remaining_time": "6:41:53"} +{"current_steps": 3035, "total_steps": 5472, "loss": 0.071, "accuracy": 1.0, "learning_rate": 2.4601256670947523e-07, "epoch": 2.217351598173516, "percentage": 55.46, "elapsed_time": "8:20:18", "remaining_time": "6:41:43"} +{"current_steps": 3036, "total_steps": 5472, "loss": 0.0363, "accuracy": 1.0, "learning_rate": 2.458530837266769e-07, "epoch": 2.2180821917808218, "percentage": 55.48, "elapsed_time": "8:20:27", "remaining_time": "6:41:33"} +{"current_steps": 3037, "total_steps": 5472, "loss": 0.0399, "accuracy": 1.0, "learning_rate": 2.4569360243194245e-07, "epoch": 2.2188127853881277, "percentage": 55.5, "elapsed_time": "8:20:38", "remaining_time": "6:41:24"} +{"current_steps": 3038, "total_steps": 5472, "loss": 0.0237, "accuracy": 1.0, "learning_rate": 2.455341228901913e-07, "epoch": 2.219543378995434, "percentage": 55.52, "elapsed_time": "8:20:49", "remaining_time": "6:41:15"} +{"current_steps": 3039, "total_steps": 5472, "loss": 0.0478, "accuracy": 1.0, "learning_rate": 2.4537464516634207e-07, "epoch": 2.22027397260274, "percentage": 55.54, "elapsed_time": "8:20:58", "remaining_time": "6:41:04"} +{"current_steps": 3040, "total_steps": 5472, "loss": 0.0746, "accuracy": 1.0, "learning_rate": 2.452151693253123e-07, "epoch": 2.2210045662100457, "percentage": 55.56, "elapsed_time": "8:21:06", "remaining_time": "6:40:53"} +{"current_steps": 3041, "total_steps": 5472, "loss": 0.0741, "accuracy": 1.0, "learning_rate": 2.45055695432019e-07, "epoch": 2.2217351598173516, "percentage": 55.57, "elapsed_time": "8:21:16", "remaining_time": "6:40:43"} +{"current_steps": 3042, "total_steps": 5472, "loss": 0.0603, "accuracy": 1.0, "learning_rate": 2.448962235513785e-07, "epoch": 2.2224657534246575, "percentage": 55.59, "elapsed_time": "8:21:25", "remaining_time": "6:40:33"} +{"current_steps": 3043, "total_steps": 5472, "loss": 0.0517, "accuracy": 1.0, "learning_rate": 2.447367537483063e-07, "epoch": 2.2231963470319633, "percentage": 55.61, "elapsed_time": "8:21:35", "remaining_time": "6:40:23"} +{"current_steps": 3044, "total_steps": 5472, "loss": 0.0961, "accuracy": 1.0, "learning_rate": 2.4457728608771676e-07, "epoch": 2.223926940639269, "percentage": 55.63, "elapsed_time": "8:21:46", "remaining_time": "6:40:14"} +{"current_steps": 3045, "total_steps": 5472, "loss": 0.0428, "accuracy": 1.0, "learning_rate": 2.444178206345236e-07, "epoch": 2.2246575342465755, "percentage": 55.65, "elapsed_time": "8:21:56", "remaining_time": "6:40:03"} +{"current_steps": 3046, "total_steps": 5472, "loss": 0.0421, "accuracy": 1.0, "learning_rate": 2.442583574536397e-07, "epoch": 2.2253881278538814, "percentage": 55.67, "elapsed_time": "8:22:05", "remaining_time": "6:39:53"} +{"current_steps": 3047, "total_steps": 5472, "loss": 0.0758, "accuracy": 1.0, "learning_rate": 2.440988966099769e-07, "epoch": 2.2261187214611873, "percentage": 55.68, "elapsed_time": "8:22:14", "remaining_time": "6:39:43"} +{"current_steps": 3048, "total_steps": 5472, "loss": 0.0275, "accuracy": 1.0, "learning_rate": 2.43939438168446e-07, "epoch": 2.226849315068493, "percentage": 55.7, "elapsed_time": "8:22:24", "remaining_time": "6:39:33"} +{"current_steps": 3049, "total_steps": 5472, "loss": 0.0475, "accuracy": 1.0, "learning_rate": 2.437799821939571e-07, "epoch": 2.227579908675799, "percentage": 55.72, "elapsed_time": "8:22:33", "remaining_time": "6:39:22"} +{"current_steps": 3050, "total_steps": 5472, "loss": 0.0292, "accuracy": 1.0, "learning_rate": 2.43620528751419e-07, "epoch": 2.228310502283105, "percentage": 55.74, "elapsed_time": "8:22:42", "remaining_time": "6:39:12"} +{"current_steps": 3051, "total_steps": 5472, "loss": 0.0352, "accuracy": 1.0, "learning_rate": 2.4346107790573966e-07, "epoch": 2.2290410958904108, "percentage": 55.76, "elapsed_time": "8:22:53", "remaining_time": "6:39:02"} +{"current_steps": 3052, "total_steps": 5472, "loss": 0.0769, "accuracy": 1.0, "learning_rate": 2.43301629721826e-07, "epoch": 2.229771689497717, "percentage": 55.77, "elapsed_time": "8:23:02", "remaining_time": "6:38:52"} +{"current_steps": 3053, "total_steps": 5472, "loss": 0.0562, "accuracy": 1.0, "learning_rate": 2.431421842645835e-07, "epoch": 2.230502283105023, "percentage": 55.79, "elapsed_time": "8:23:11", "remaining_time": "6:38:42"} +{"current_steps": 3054, "total_steps": 5472, "loss": 0.0703, "accuracy": 1.0, "learning_rate": 2.429827415989171e-07, "epoch": 2.231232876712329, "percentage": 55.81, "elapsed_time": "8:23:21", "remaining_time": "6:38:31"} +{"current_steps": 3055, "total_steps": 5472, "loss": 0.0971, "accuracy": 1.0, "learning_rate": 2.428233017897301e-07, "epoch": 2.2319634703196347, "percentage": 55.83, "elapsed_time": "8:23:31", "remaining_time": "6:38:21"} +{"current_steps": 3056, "total_steps": 5472, "loss": 0.075, "accuracy": 1.0, "learning_rate": 2.426638649019251e-07, "epoch": 2.2326940639269406, "percentage": 55.85, "elapsed_time": "8:23:40", "remaining_time": "6:38:11"} +{"current_steps": 3057, "total_steps": 5472, "loss": 0.0527, "accuracy": 1.0, "learning_rate": 2.42504431000403e-07, "epoch": 2.2334246575342465, "percentage": 55.87, "elapsed_time": "8:23:49", "remaining_time": "6:38:00"} +{"current_steps": 3058, "total_steps": 5472, "loss": 0.0542, "accuracy": 1.0, "learning_rate": 2.4234500015006387e-07, "epoch": 2.2341552511415523, "percentage": 55.88, "elapsed_time": "8:23:59", "remaining_time": "6:37:51"} +{"current_steps": 3059, "total_steps": 5472, "loss": 0.0417, "accuracy": 1.0, "learning_rate": 2.421855724158064e-07, "epoch": 2.2348858447488587, "percentage": 55.9, "elapsed_time": "8:24:09", "remaining_time": "6:37:41"} +{"current_steps": 3060, "total_steps": 5472, "loss": 0.061, "accuracy": 1.0, "learning_rate": 2.4202614786252794e-07, "epoch": 2.2356164383561645, "percentage": 55.92, "elapsed_time": "8:24:18", "remaining_time": "6:37:30"} +{"current_steps": 3061, "total_steps": 5472, "loss": 0.0894, "accuracy": 1.0, "learning_rate": 2.418667265551248e-07, "epoch": 2.2363470319634704, "percentage": 55.94, "elapsed_time": "8:24:29", "remaining_time": "6:37:21"} +{"current_steps": 3062, "total_steps": 5472, "loss": 0.0353, "accuracy": 1.0, "learning_rate": 2.4170730855849164e-07, "epoch": 2.2370776255707763, "percentage": 55.96, "elapsed_time": "8:24:38", "remaining_time": "6:37:11"} +{"current_steps": 3063, "total_steps": 5472, "loss": 0.0422, "accuracy": 1.0, "learning_rate": 2.41547893937522e-07, "epoch": 2.237808219178082, "percentage": 55.98, "elapsed_time": "8:24:47", "remaining_time": "6:37:00"} +{"current_steps": 3064, "total_steps": 5472, "loss": 0.0692, "accuracy": 1.0, "learning_rate": 2.413884827571079e-07, "epoch": 2.238538812785388, "percentage": 55.99, "elapsed_time": "8:24:57", "remaining_time": "6:36:50"} +{"current_steps": 3065, "total_steps": 5472, "loss": 0.0517, "accuracy": 1.0, "learning_rate": 2.412290750821402e-07, "epoch": 2.239269406392694, "percentage": 56.01, "elapsed_time": "8:25:06", "remaining_time": "6:36:40"} +{"current_steps": 3066, "total_steps": 5472, "loss": 0.0446, "accuracy": 1.0, "learning_rate": 2.41069670977508e-07, "epoch": 2.24, "percentage": 56.03, "elapsed_time": "8:25:17", "remaining_time": "6:36:30"} +{"current_steps": 3067, "total_steps": 5472, "loss": 0.0606, "accuracy": 1.0, "learning_rate": 2.4091027050809915e-07, "epoch": 2.240730593607306, "percentage": 56.05, "elapsed_time": "8:25:26", "remaining_time": "6:36:21"} +{"current_steps": 3068, "total_steps": 5472, "loss": 0.0544, "accuracy": 1.0, "learning_rate": 2.4075087373880006e-07, "epoch": 2.241461187214612, "percentage": 56.07, "elapsed_time": "8:25:36", "remaining_time": "6:36:10"} +{"current_steps": 3069, "total_steps": 5472, "loss": 0.0636, "accuracy": 1.0, "learning_rate": 2.4059148073449555e-07, "epoch": 2.242191780821918, "percentage": 56.09, "elapsed_time": "8:25:44", "remaining_time": "6:35:59"} +{"current_steps": 3070, "total_steps": 5472, "loss": 0.0367, "accuracy": 1.0, "learning_rate": 2.404320915600688e-07, "epoch": 2.2429223744292237, "percentage": 56.1, "elapsed_time": "8:25:53", "remaining_time": "6:35:49"} +{"current_steps": 3071, "total_steps": 5472, "loss": 0.067, "accuracy": 0.875, "learning_rate": 2.402727062804016e-07, "epoch": 2.2436529680365296, "percentage": 56.12, "elapsed_time": "8:26:04", "remaining_time": "6:35:40"} +{"current_steps": 3072, "total_steps": 5472, "loss": 0.0265, "accuracy": 1.0, "learning_rate": 2.4011332496037404e-07, "epoch": 2.2443835616438355, "percentage": 56.14, "elapsed_time": "8:26:14", "remaining_time": "6:35:29"} +{"current_steps": 3073, "total_steps": 5472, "loss": 0.0364, "accuracy": 1.0, "learning_rate": 2.3995394766486485e-07, "epoch": 2.2451141552511418, "percentage": 56.16, "elapsed_time": "8:26:23", "remaining_time": "6:35:19"} +{"current_steps": 3074, "total_steps": 5472, "loss": 0.0461, "accuracy": 1.0, "learning_rate": 2.397945744587509e-07, "epoch": 2.2458447488584476, "percentage": 56.18, "elapsed_time": "8:26:34", "remaining_time": "6:35:10"} +{"current_steps": 3075, "total_steps": 5472, "loss": 0.0273, "accuracy": 1.0, "learning_rate": 2.3963520540690723e-07, "epoch": 2.2465753424657535, "percentage": 56.2, "elapsed_time": "8:26:46", "remaining_time": "6:35:01"} +{"current_steps": 3076, "total_steps": 5472, "loss": 0.0305, "accuracy": 1.0, "learning_rate": 2.394758405742075e-07, "epoch": 2.2473059360730594, "percentage": 56.21, "elapsed_time": "8:26:54", "remaining_time": "6:34:51"} +{"current_steps": 3077, "total_steps": 5472, "loss": 0.0458, "accuracy": 1.0, "learning_rate": 2.3931648002552353e-07, "epoch": 2.2480365296803653, "percentage": 56.23, "elapsed_time": "8:27:06", "remaining_time": "6:34:42"} +{"current_steps": 3078, "total_steps": 5472, "loss": 0.0659, "accuracy": 0.875, "learning_rate": 2.391571238257255e-07, "epoch": 2.248767123287671, "percentage": 56.25, "elapsed_time": "8:27:16", "remaining_time": "6:34:32"} +{"current_steps": 3079, "total_steps": 5472, "loss": 0.1602, "accuracy": 1.0, "learning_rate": 2.3899777203968156e-07, "epoch": 2.249497716894977, "percentage": 56.27, "elapsed_time": "8:27:24", "remaining_time": "6:34:21"} +{"current_steps": 3080, "total_steps": 5472, "loss": 0.0751, "accuracy": 1.0, "learning_rate": 2.388384247322583e-07, "epoch": 2.2502283105022833, "percentage": 56.29, "elapsed_time": "8:27:34", "remaining_time": "6:34:11"} +{"current_steps": 3081, "total_steps": 5472, "loss": 0.0416, "accuracy": 1.0, "learning_rate": 2.386790819683204e-07, "epoch": 2.250958904109589, "percentage": 56.3, "elapsed_time": "8:27:43", "remaining_time": "6:34:01"} +{"current_steps": 3082, "total_steps": 5472, "loss": 0.0518, "accuracy": 1.0, "learning_rate": 2.385197438127308e-07, "epoch": 2.251689497716895, "percentage": 56.32, "elapsed_time": "8:27:53", "remaining_time": "6:33:51"} +{"current_steps": 3083, "total_steps": 5472, "loss": 0.0556, "accuracy": 1.0, "learning_rate": 2.383604103303503e-07, "epoch": 2.252420091324201, "percentage": 56.34, "elapsed_time": "8:28:03", "remaining_time": "6:33:41"} +{"current_steps": 3084, "total_steps": 5472, "loss": 0.1153, "accuracy": 0.875, "learning_rate": 2.3820108158603807e-07, "epoch": 2.253150684931507, "percentage": 56.36, "elapsed_time": "8:28:15", "remaining_time": "6:33:32"} +{"current_steps": 3085, "total_steps": 5472, "loss": 0.0676, "accuracy": 1.0, "learning_rate": 2.3804175764465123e-07, "epoch": 2.2538812785388127, "percentage": 56.38, "elapsed_time": "8:28:25", "remaining_time": "6:33:23"} +{"current_steps": 3086, "total_steps": 5472, "loss": 0.1272, "accuracy": 1.0, "learning_rate": 2.3788243857104496e-07, "epoch": 2.2546118721461186, "percentage": 56.4, "elapsed_time": "8:28:33", "remaining_time": "6:33:12"} +{"current_steps": 3087, "total_steps": 5472, "loss": 0.0595, "accuracy": 1.0, "learning_rate": 2.3772312443007258e-07, "epoch": 2.255342465753425, "percentage": 56.41, "elapsed_time": "8:28:43", "remaining_time": "6:33:02"} +{"current_steps": 3088, "total_steps": 5472, "loss": 0.097, "accuracy": 1.0, "learning_rate": 2.3756381528658503e-07, "epoch": 2.2560730593607308, "percentage": 56.43, "elapsed_time": "8:28:51", "remaining_time": "6:32:51"} +{"current_steps": 3089, "total_steps": 5472, "loss": 0.0326, "accuracy": 1.0, "learning_rate": 2.3740451120543164e-07, "epoch": 2.2568036529680366, "percentage": 56.45, "elapsed_time": "8:29:02", "remaining_time": "6:32:42"} +{"current_steps": 3090, "total_steps": 5472, "loss": 0.0479, "accuracy": 1.0, "learning_rate": 2.3724521225145942e-07, "epoch": 2.2575342465753425, "percentage": 56.47, "elapsed_time": "8:29:11", "remaining_time": "6:32:31"} +{"current_steps": 3091, "total_steps": 5472, "loss": 0.0414, "accuracy": 1.0, "learning_rate": 2.3708591848951355e-07, "epoch": 2.2582648401826484, "percentage": 56.49, "elapsed_time": "8:29:20", "remaining_time": "6:32:20"} +{"current_steps": 3092, "total_steps": 5472, "loss": 0.0958, "accuracy": 0.875, "learning_rate": 2.3692662998443674e-07, "epoch": 2.2589954337899543, "percentage": 56.51, "elapsed_time": "8:29:31", "remaining_time": "6:32:11"} +{"current_steps": 3093, "total_steps": 5472, "loss": 0.0483, "accuracy": 1.0, "learning_rate": 2.367673468010698e-07, "epoch": 2.25972602739726, "percentage": 56.52, "elapsed_time": "8:29:40", "remaining_time": "6:32:00"} +{"current_steps": 3094, "total_steps": 5472, "loss": 0.0651, "accuracy": 1.0, "learning_rate": 2.3660806900425135e-07, "epoch": 2.2604566210045665, "percentage": 56.54, "elapsed_time": "8:29:48", "remaining_time": "6:31:50"} +{"current_steps": 3095, "total_steps": 5472, "loss": 0.0668, "accuracy": 1.0, "learning_rate": 2.3644879665881784e-07, "epoch": 2.2611872146118723, "percentage": 56.56, "elapsed_time": "8:29:57", "remaining_time": "6:31:39"} +{"current_steps": 3096, "total_steps": 5472, "loss": 0.0457, "accuracy": 1.0, "learning_rate": 2.3628952982960333e-07, "epoch": 2.261917808219178, "percentage": 56.58, "elapsed_time": "8:30:05", "remaining_time": "6:31:28"} +{"current_steps": 3097, "total_steps": 5472, "loss": 0.0263, "accuracy": 1.0, "learning_rate": 2.361302685814398e-07, "epoch": 2.262648401826484, "percentage": 56.6, "elapsed_time": "8:30:14", "remaining_time": "6:31:17"} +{"current_steps": 3098, "total_steps": 5472, "loss": 0.0462, "accuracy": 1.0, "learning_rate": 2.3597101297915688e-07, "epoch": 2.26337899543379, "percentage": 56.62, "elapsed_time": "8:30:23", "remaining_time": "6:31:06"} +{"current_steps": 3099, "total_steps": 5472, "loss": 0.0506, "accuracy": 1.0, "learning_rate": 2.3581176308758202e-07, "epoch": 2.264109589041096, "percentage": 56.63, "elapsed_time": "8:30:31", "remaining_time": "6:30:55"} +{"current_steps": 3100, "total_steps": 5472, "loss": 0.1032, "accuracy": 1.0, "learning_rate": 2.3565251897154028e-07, "epoch": 2.2648401826484017, "percentage": 56.65, "elapsed_time": "8:30:40", "remaining_time": "6:30:45"} +{"current_steps": 3101, "total_steps": 5472, "loss": 0.0495, "accuracy": 1.0, "learning_rate": 2.3549328069585423e-07, "epoch": 2.2655707762557076, "percentage": 56.67, "elapsed_time": "8:30:49", "remaining_time": "6:30:34"} +{"current_steps": 3102, "total_steps": 5472, "loss": 0.0461, "accuracy": 1.0, "learning_rate": 2.3533404832534421e-07, "epoch": 2.266301369863014, "percentage": 56.69, "elapsed_time": "8:31:00", "remaining_time": "6:30:25"} +{"current_steps": 3103, "total_steps": 5472, "loss": 0.0761, "accuracy": 1.0, "learning_rate": 2.3517482192482816e-07, "epoch": 2.2670319634703198, "percentage": 56.71, "elapsed_time": "8:31:09", "remaining_time": "6:30:14"} +{"current_steps": 3104, "total_steps": 5472, "loss": 0.1205, "accuracy": 1.0, "learning_rate": 2.3501560155912166e-07, "epoch": 2.2677625570776256, "percentage": 56.73, "elapsed_time": "8:31:18", "remaining_time": "6:30:04"} +{"current_steps": 3105, "total_steps": 5472, "loss": 0.0748, "accuracy": 0.875, "learning_rate": 2.3485638729303748e-07, "epoch": 2.2684931506849315, "percentage": 56.74, "elapsed_time": "8:31:30", "remaining_time": "6:29:55"} +{"current_steps": 3106, "total_steps": 5472, "loss": 0.1055, "accuracy": 0.875, "learning_rate": 2.3469717919138631e-07, "epoch": 2.2692237442922374, "percentage": 56.76, "elapsed_time": "8:31:39", "remaining_time": "6:29:45"} +{"current_steps": 3107, "total_steps": 5472, "loss": 0.0358, "accuracy": 1.0, "learning_rate": 2.3453797731897617e-07, "epoch": 2.2699543378995433, "percentage": 56.78, "elapsed_time": "8:31:51", "remaining_time": "6:29:37"} +{"current_steps": 3108, "total_steps": 5472, "loss": 0.0441, "accuracy": 1.0, "learning_rate": 2.3437878174061258e-07, "epoch": 2.270684931506849, "percentage": 56.8, "elapsed_time": "8:32:01", "remaining_time": "6:29:27"} +{"current_steps": 3109, "total_steps": 5472, "loss": 0.0697, "accuracy": 1.0, "learning_rate": 2.3421959252109842e-07, "epoch": 2.271415525114155, "percentage": 56.82, "elapsed_time": "8:32:10", "remaining_time": "6:29:17"} +{"current_steps": 3110, "total_steps": 5472, "loss": 0.0197, "accuracy": 1.0, "learning_rate": 2.3406040972523402e-07, "epoch": 2.2721461187214613, "percentage": 56.83, "elapsed_time": "8:32:20", "remaining_time": "6:29:06"} +{"current_steps": 3111, "total_steps": 5472, "loss": 0.0678, "accuracy": 1.0, "learning_rate": 2.3390123341781716e-07, "epoch": 2.272876712328767, "percentage": 56.85, "elapsed_time": "8:32:30", "remaining_time": "6:28:57"} +{"current_steps": 3112, "total_steps": 5472, "loss": 0.0481, "accuracy": 1.0, "learning_rate": 2.3374206366364284e-07, "epoch": 2.273607305936073, "percentage": 56.87, "elapsed_time": "8:32:40", "remaining_time": "6:28:47"} +{"current_steps": 3113, "total_steps": 5472, "loss": 0.0925, "accuracy": 1.0, "learning_rate": 2.3358290052750365e-07, "epoch": 2.274337899543379, "percentage": 56.89, "elapsed_time": "8:32:49", "remaining_time": "6:28:37"} +{"current_steps": 3114, "total_steps": 5472, "loss": 0.0969, "accuracy": 1.0, "learning_rate": 2.334237440741891e-07, "epoch": 2.275068493150685, "percentage": 56.91, "elapsed_time": "8:33:00", "remaining_time": "6:28:27"} +{"current_steps": 3115, "total_steps": 5472, "loss": 0.0531, "accuracy": 1.0, "learning_rate": 2.3326459436848633e-07, "epoch": 2.2757990867579907, "percentage": 56.93, "elapsed_time": "8:33:09", "remaining_time": "6:28:17"} +{"current_steps": 3116, "total_steps": 5472, "loss": 0.0561, "accuracy": 1.0, "learning_rate": 2.3310545147517954e-07, "epoch": 2.2765296803652966, "percentage": 56.94, "elapsed_time": "8:33:19", "remaining_time": "6:28:07"} +{"current_steps": 3117, "total_steps": 5472, "loss": 0.0917, "accuracy": 1.0, "learning_rate": 2.329463154590503e-07, "epoch": 2.277260273972603, "percentage": 56.96, "elapsed_time": "8:33:28", "remaining_time": "6:27:56"} +{"current_steps": 3118, "total_steps": 5472, "loss": 0.0511, "accuracy": 1.0, "learning_rate": 2.3278718638487718e-07, "epoch": 2.2779908675799088, "percentage": 56.98, "elapsed_time": "8:33:37", "remaining_time": "6:27:46"} +{"current_steps": 3119, "total_steps": 5472, "loss": 0.0269, "accuracy": 1.0, "learning_rate": 2.3262806431743608e-07, "epoch": 2.2787214611872146, "percentage": 57.0, "elapsed_time": "8:33:47", "remaining_time": "6:27:36"} +{"current_steps": 3120, "total_steps": 5472, "loss": 0.0538, "accuracy": 1.0, "learning_rate": 2.3246894932150003e-07, "epoch": 2.2794520547945205, "percentage": 57.02, "elapsed_time": "8:33:57", "remaining_time": "6:27:26"} +{"current_steps": 3121, "total_steps": 5472, "loss": 0.0611, "accuracy": 0.875, "learning_rate": 2.3230984146183923e-07, "epoch": 2.2801826484018264, "percentage": 57.04, "elapsed_time": "8:34:07", "remaining_time": "6:27:16"} +{"current_steps": 3122, "total_steps": 5472, "loss": 0.0651, "accuracy": 1.0, "learning_rate": 2.3215074080322073e-07, "epoch": 2.2809132420091323, "percentage": 57.05, "elapsed_time": "8:34:16", "remaining_time": "6:27:06"} +{"current_steps": 3123, "total_steps": 5472, "loss": 0.037, "accuracy": 1.0, "learning_rate": 2.319916474104089e-07, "epoch": 2.281643835616438, "percentage": 57.07, "elapsed_time": "8:34:25", "remaining_time": "6:26:55"} +{"current_steps": 3124, "total_steps": 5472, "loss": 0.0578, "accuracy": 0.875, "learning_rate": 2.3183256134816504e-07, "epoch": 2.2823744292237444, "percentage": 57.09, "elapsed_time": "8:34:35", "remaining_time": "6:26:46"} +{"current_steps": 3125, "total_steps": 5472, "loss": 0.0524, "accuracy": 1.0, "learning_rate": 2.3167348268124754e-07, "epoch": 2.2831050228310503, "percentage": 57.11, "elapsed_time": "8:34:45", "remaining_time": "6:26:36"} +{"current_steps": 3126, "total_steps": 5472, "loss": 0.0784, "accuracy": 1.0, "learning_rate": 2.3151441147441185e-07, "epoch": 2.283835616438356, "percentage": 57.13, "elapsed_time": "8:34:54", "remaining_time": "6:26:25"} +{"current_steps": 3127, "total_steps": 5472, "loss": 0.0644, "accuracy": 1.0, "learning_rate": 2.313553477924101e-07, "epoch": 2.284566210045662, "percentage": 57.15, "elapsed_time": "8:35:03", "remaining_time": "6:26:15"} +{"current_steps": 3128, "total_steps": 5472, "loss": 0.1023, "accuracy": 1.0, "learning_rate": 2.3119629169999157e-07, "epoch": 2.285296803652968, "percentage": 57.16, "elapsed_time": "8:35:13", "remaining_time": "6:26:05"} +{"current_steps": 3129, "total_steps": 5472, "loss": 0.0583, "accuracy": 1.0, "learning_rate": 2.3103724326190247e-07, "epoch": 2.286027397260274, "percentage": 57.18, "elapsed_time": "8:35:22", "remaining_time": "6:25:55"} +{"current_steps": 3130, "total_steps": 5472, "loss": 0.0782, "accuracy": 1.0, "learning_rate": 2.308782025428858e-07, "epoch": 2.2867579908675797, "percentage": 57.2, "elapsed_time": "8:35:33", "remaining_time": "6:25:45"} +{"current_steps": 3131, "total_steps": 5472, "loss": 0.0763, "accuracy": 1.0, "learning_rate": 2.3071916960768141e-07, "epoch": 2.287488584474886, "percentage": 57.22, "elapsed_time": "8:35:44", "remaining_time": "6:25:36"} +{"current_steps": 3132, "total_steps": 5472, "loss": 0.0565, "accuracy": 1.0, "learning_rate": 2.305601445210261e-07, "epoch": 2.288219178082192, "percentage": 57.24, "elapsed_time": "8:35:53", "remaining_time": "6:25:26"} +{"current_steps": 3133, "total_steps": 5472, "loss": 0.0652, "accuracy": 1.0, "learning_rate": 2.3040112734765333e-07, "epoch": 2.2889497716894978, "percentage": 57.26, "elapsed_time": "8:36:03", "remaining_time": "6:25:16"} +{"current_steps": 3134, "total_steps": 5472, "loss": 0.0298, "accuracy": 1.0, "learning_rate": 2.3024211815229354e-07, "epoch": 2.2896803652968036, "percentage": 57.27, "elapsed_time": "8:36:13", "remaining_time": "6:25:06"} +{"current_steps": 3135, "total_steps": 5472, "loss": 0.0722, "accuracy": 1.0, "learning_rate": 2.3008311699967356e-07, "epoch": 2.2904109589041095, "percentage": 57.29, "elapsed_time": "8:36:22", "remaining_time": "6:24:55"} +{"current_steps": 3136, "total_steps": 5472, "loss": 0.0801, "accuracy": 0.875, "learning_rate": 2.2992412395451736e-07, "epoch": 2.2911415525114154, "percentage": 57.31, "elapsed_time": "8:36:32", "remaining_time": "6:24:45"} +{"current_steps": 3137, "total_steps": 5472, "loss": 0.0473, "accuracy": 1.0, "learning_rate": 2.2976513908154534e-07, "epoch": 2.2918721461187213, "percentage": 57.33, "elapsed_time": "8:36:42", "remaining_time": "6:24:36"} +{"current_steps": 3138, "total_steps": 5472, "loss": 0.0385, "accuracy": 1.0, "learning_rate": 2.296061624454747e-07, "epoch": 2.2926027397260276, "percentage": 57.35, "elapsed_time": "8:36:52", "remaining_time": "6:24:26"} +{"current_steps": 3139, "total_steps": 5472, "loss": 0.0374, "accuracy": 1.0, "learning_rate": 2.2944719411101938e-07, "epoch": 2.2933333333333334, "percentage": 57.36, "elapsed_time": "8:37:03", "remaining_time": "6:24:17"} +{"current_steps": 3140, "total_steps": 5472, "loss": 0.0559, "accuracy": 1.0, "learning_rate": 2.2928823414288952e-07, "epoch": 2.2940639269406393, "percentage": 57.38, "elapsed_time": "8:37:11", "remaining_time": "6:24:06"} +{"current_steps": 3141, "total_steps": 5472, "loss": 0.1032, "accuracy": 1.0, "learning_rate": 2.291292826057923e-07, "epoch": 2.294794520547945, "percentage": 57.4, "elapsed_time": "8:37:21", "remaining_time": "6:23:56"} +{"current_steps": 3142, "total_steps": 5472, "loss": 0.0276, "accuracy": 1.0, "learning_rate": 2.289703395644313e-07, "epoch": 2.295525114155251, "percentage": 57.42, "elapsed_time": "8:37:30", "remaining_time": "6:23:45"} +{"current_steps": 3143, "total_steps": 5472, "loss": 0.0137, "accuracy": 1.0, "learning_rate": 2.288114050835067e-07, "epoch": 2.296255707762557, "percentage": 57.44, "elapsed_time": "8:37:39", "remaining_time": "6:23:35"} +{"current_steps": 3144, "total_steps": 5472, "loss": 0.0667, "accuracy": 1.0, "learning_rate": 2.2865247922771506e-07, "epoch": 2.296986301369863, "percentage": 57.46, "elapsed_time": "8:37:49", "remaining_time": "6:23:25"} +{"current_steps": 3145, "total_steps": 5472, "loss": 0.0687, "accuracy": 0.875, "learning_rate": 2.2849356206174953e-07, "epoch": 2.297716894977169, "percentage": 57.47, "elapsed_time": "8:38:00", "remaining_time": "6:23:16"} +{"current_steps": 3146, "total_steps": 5472, "loss": 0.0598, "accuracy": 1.0, "learning_rate": 2.2833465365029972e-07, "epoch": 2.298447488584475, "percentage": 57.49, "elapsed_time": "8:38:11", "remaining_time": "6:23:07"} +{"current_steps": 3147, "total_steps": 5472, "loss": 0.1004, "accuracy": 1.0, "learning_rate": 2.2817575405805167e-07, "epoch": 2.299178082191781, "percentage": 57.51, "elapsed_time": "8:38:20", "remaining_time": "6:22:56"} +{"current_steps": 3148, "total_steps": 5472, "loss": 0.1059, "accuracy": 1.0, "learning_rate": 2.280168633496879e-07, "epoch": 2.2999086757990868, "percentage": 57.53, "elapsed_time": "8:38:29", "remaining_time": "6:22:46"} +{"current_steps": 3149, "total_steps": 5472, "loss": 0.0498, "accuracy": 1.0, "learning_rate": 2.278579815898871e-07, "epoch": 2.3006392694063926, "percentage": 57.55, "elapsed_time": "8:38:39", "remaining_time": "6:22:37"} +{"current_steps": 3150, "total_steps": 5472, "loss": 0.0728, "accuracy": 1.0, "learning_rate": 2.2769910884332453e-07, "epoch": 2.3013698630136985, "percentage": 57.57, "elapsed_time": "8:38:49", "remaining_time": "6:22:27"} +{"current_steps": 3151, "total_steps": 5472, "loss": 0.0713, "accuracy": 1.0, "learning_rate": 2.275402451746717e-07, "epoch": 2.3021004566210044, "percentage": 57.58, "elapsed_time": "8:38:59", "remaining_time": "6:22:17"} +{"current_steps": 3152, "total_steps": 5472, "loss": 0.0681, "accuracy": 1.0, "learning_rate": 2.2738139064859648e-07, "epoch": 2.3028310502283107, "percentage": 57.6, "elapsed_time": "8:39:09", "remaining_time": "6:22:06"} +{"current_steps": 3153, "total_steps": 5472, "loss": 0.04, "accuracy": 1.0, "learning_rate": 2.272225453297628e-07, "epoch": 2.3035616438356166, "percentage": 57.62, "elapsed_time": "8:39:17", "remaining_time": "6:21:56"} +{"current_steps": 3154, "total_steps": 5472, "loss": 0.0458, "accuracy": 1.0, "learning_rate": 2.270637092828312e-07, "epoch": 2.3042922374429224, "percentage": 57.64, "elapsed_time": "8:39:28", "remaining_time": "6:21:46"} +{"current_steps": 3155, "total_steps": 5472, "loss": 0.0504, "accuracy": 1.0, "learning_rate": 2.269048825724582e-07, "epoch": 2.3050228310502283, "percentage": 57.66, "elapsed_time": "8:39:38", "remaining_time": "6:21:37"} +{"current_steps": 3156, "total_steps": 5472, "loss": 0.0747, "accuracy": 1.0, "learning_rate": 2.2674606526329663e-07, "epoch": 2.305753424657534, "percentage": 57.68, "elapsed_time": "8:39:47", "remaining_time": "6:21:26"} +{"current_steps": 3157, "total_steps": 5472, "loss": 0.0772, "accuracy": 1.0, "learning_rate": 2.265872574199953e-07, "epoch": 2.30648401826484, "percentage": 57.69, "elapsed_time": "8:39:56", "remaining_time": "6:21:16"} +{"current_steps": 3158, "total_steps": 5472, "loss": 0.046, "accuracy": 1.0, "learning_rate": 2.2642845910719934e-07, "epoch": 2.307214611872146, "percentage": 57.71, "elapsed_time": "8:40:07", "remaining_time": "6:21:07"} +{"current_steps": 3159, "total_steps": 5472, "loss": 0.0804, "accuracy": 0.875, "learning_rate": 2.2626967038955005e-07, "epoch": 2.3079452054794523, "percentage": 57.73, "elapsed_time": "8:40:17", "remaining_time": "6:20:57"} +{"current_steps": 3160, "total_steps": 5472, "loss": 0.048, "accuracy": 1.0, "learning_rate": 2.261108913316846e-07, "epoch": 2.308675799086758, "percentage": 57.75, "elapsed_time": "8:40:26", "remaining_time": "6:20:46"} +{"current_steps": 3161, "total_steps": 5472, "loss": 0.0883, "accuracy": 1.0, "learning_rate": 2.259521219982367e-07, "epoch": 2.309406392694064, "percentage": 57.77, "elapsed_time": "8:40:35", "remaining_time": "6:20:36"} +{"current_steps": 3162, "total_steps": 5472, "loss": 0.0525, "accuracy": 1.0, "learning_rate": 2.2579336245383536e-07, "epoch": 2.31013698630137, "percentage": 57.79, "elapsed_time": "8:40:44", "remaining_time": "6:20:26"} +{"current_steps": 3163, "total_steps": 5472, "loss": 0.0256, "accuracy": 1.0, "learning_rate": 2.2563461276310624e-07, "epoch": 2.3108675799086758, "percentage": 57.8, "elapsed_time": "8:40:54", "remaining_time": "6:20:15"} +{"current_steps": 3164, "total_steps": 5472, "loss": 0.0375, "accuracy": 1.0, "learning_rate": 2.2547587299067072e-07, "epoch": 2.3115981735159816, "percentage": 57.82, "elapsed_time": "8:41:03", "remaining_time": "6:20:05"} +{"current_steps": 3165, "total_steps": 5472, "loss": 0.0238, "accuracy": 1.0, "learning_rate": 2.2531714320114623e-07, "epoch": 2.3123287671232875, "percentage": 57.84, "elapsed_time": "8:41:13", "remaining_time": "6:19:55"} +{"current_steps": 3166, "total_steps": 5472, "loss": 0.0975, "accuracy": 1.0, "learning_rate": 2.25158423459146e-07, "epoch": 2.313059360730594, "percentage": 57.86, "elapsed_time": "8:41:21", "remaining_time": "6:19:44"} +{"current_steps": 3167, "total_steps": 5472, "loss": 0.0704, "accuracy": 0.875, "learning_rate": 2.2499971382927933e-07, "epoch": 2.3137899543378997, "percentage": 57.88, "elapsed_time": "8:41:31", "remaining_time": "6:19:34"} +{"current_steps": 3168, "total_steps": 5472, "loss": 0.0994, "accuracy": 1.0, "learning_rate": 2.248410143761513e-07, "epoch": 2.3145205479452056, "percentage": 57.89, "elapsed_time": "8:41:40", "remaining_time": "6:19:24"} +{"current_steps": 3169, "total_steps": 5472, "loss": 0.08, "accuracy": 1.0, "learning_rate": 2.2468232516436303e-07, "epoch": 2.3152511415525114, "percentage": 57.91, "elapsed_time": "8:41:51", "remaining_time": "6:19:15"} +{"current_steps": 3170, "total_steps": 5472, "loss": 0.0449, "accuracy": 1.0, "learning_rate": 2.2452364625851103e-07, "epoch": 2.3159817351598173, "percentage": 57.93, "elapsed_time": "8:42:00", "remaining_time": "6:19:04"} +{"current_steps": 3171, "total_steps": 5472, "loss": 0.0815, "accuracy": 1.0, "learning_rate": 2.2436497772318816e-07, "epoch": 2.316712328767123, "percentage": 57.95, "elapsed_time": "8:42:10", "remaining_time": "6:18:54"} +{"current_steps": 3172, "total_steps": 5472, "loss": 0.0656, "accuracy": 1.0, "learning_rate": 2.2420631962298274e-07, "epoch": 2.317442922374429, "percentage": 57.97, "elapsed_time": "8:42:19", "remaining_time": "6:18:43"} +{"current_steps": 3173, "total_steps": 5472, "loss": 0.0726, "accuracy": 1.0, "learning_rate": 2.2404767202247887e-07, "epoch": 2.3181735159817354, "percentage": 57.99, "elapsed_time": "8:42:27", "remaining_time": "6:18:33"} +{"current_steps": 3174, "total_steps": 5472, "loss": 0.0952, "accuracy": 1.0, "learning_rate": 2.2388903498625657e-07, "epoch": 2.3189041095890413, "percentage": 58.0, "elapsed_time": "8:42:36", "remaining_time": "6:18:22"} +{"current_steps": 3175, "total_steps": 5472, "loss": 0.0466, "accuracy": 1.0, "learning_rate": 2.237304085788912e-07, "epoch": 2.319634703196347, "percentage": 58.02, "elapsed_time": "8:42:46", "remaining_time": "6:18:12"} +{"current_steps": 3176, "total_steps": 5472, "loss": 0.0631, "accuracy": 1.0, "learning_rate": 2.235717928649541e-07, "epoch": 2.320365296803653, "percentage": 58.04, "elapsed_time": "8:42:57", "remaining_time": "6:18:03"} +{"current_steps": 3177, "total_steps": 5472, "loss": 0.0953, "accuracy": 1.0, "learning_rate": 2.2341318790901215e-07, "epoch": 2.321095890410959, "percentage": 58.06, "elapsed_time": "8:43:06", "remaining_time": "6:17:53"} +{"current_steps": 3178, "total_steps": 5472, "loss": 0.0802, "accuracy": 1.0, "learning_rate": 2.232545937756279e-07, "epoch": 2.3218264840182647, "percentage": 58.08, "elapsed_time": "8:43:16", "remaining_time": "6:17:43"} +{"current_steps": 3179, "total_steps": 5472, "loss": 0.0367, "accuracy": 1.0, "learning_rate": 2.2309601052935934e-07, "epoch": 2.3225570776255706, "percentage": 58.1, "elapsed_time": "8:43:25", "remaining_time": "6:17:32"} +{"current_steps": 3180, "total_steps": 5472, "loss": 0.042, "accuracy": 1.0, "learning_rate": 2.2293743823476022e-07, "epoch": 2.323287671232877, "percentage": 58.11, "elapsed_time": "8:43:35", "remaining_time": "6:17:22"} +{"current_steps": 3181, "total_steps": 5472, "loss": 0.0668, "accuracy": 1.0, "learning_rate": 2.2277887695637975e-07, "epoch": 2.324018264840183, "percentage": 58.13, "elapsed_time": "8:43:45", "remaining_time": "6:17:13"} +{"current_steps": 3182, "total_steps": 5472, "loss": 0.0515, "accuracy": 1.0, "learning_rate": 2.2262032675876273e-07, "epoch": 2.3247488584474887, "percentage": 58.15, "elapsed_time": "8:43:55", "remaining_time": "6:17:03"} +{"current_steps": 3183, "total_steps": 5472, "loss": 0.0784, "accuracy": 1.0, "learning_rate": 2.2246178770644921e-07, "epoch": 2.3254794520547946, "percentage": 58.17, "elapsed_time": "8:44:05", "remaining_time": "6:16:53"} +{"current_steps": 3184, "total_steps": 5472, "loss": 0.0364, "accuracy": 1.0, "learning_rate": 2.22303259863975e-07, "epoch": 2.3262100456621004, "percentage": 58.19, "elapsed_time": "8:44:14", "remaining_time": "6:16:43"} +{"current_steps": 3185, "total_steps": 5472, "loss": 0.0473, "accuracy": 1.0, "learning_rate": 2.2214474329587115e-07, "epoch": 2.3269406392694063, "percentage": 58.21, "elapsed_time": "8:44:23", "remaining_time": "6:16:32"} +{"current_steps": 3186, "total_steps": 5472, "loss": 0.0611, "accuracy": 0.875, "learning_rate": 2.2198623806666425e-07, "epoch": 2.327671232876712, "percentage": 58.22, "elapsed_time": "8:44:33", "remaining_time": "6:16:22"} +{"current_steps": 3187, "total_steps": 5472, "loss": 0.0553, "accuracy": 1.0, "learning_rate": 2.2182774424087628e-07, "epoch": 2.3284018264840185, "percentage": 58.24, "elapsed_time": "8:44:42", "remaining_time": "6:16:12"} +{"current_steps": 3188, "total_steps": 5472, "loss": 0.0624, "accuracy": 1.0, "learning_rate": 2.2166926188302427e-07, "epoch": 2.3291324200913244, "percentage": 58.26, "elapsed_time": "8:44:52", "remaining_time": "6:16:02"} +{"current_steps": 3189, "total_steps": 5472, "loss": 0.0819, "accuracy": 1.0, "learning_rate": 2.21510791057621e-07, "epoch": 2.3298630136986302, "percentage": 58.28, "elapsed_time": "8:45:01", "remaining_time": "6:15:51"} +{"current_steps": 3190, "total_steps": 5472, "loss": 0.0941, "accuracy": 1.0, "learning_rate": 2.2135233182917433e-07, "epoch": 2.330593607305936, "percentage": 58.3, "elapsed_time": "8:45:10", "remaining_time": "6:15:41"} +{"current_steps": 3191, "total_steps": 5472, "loss": 0.031, "accuracy": 1.0, "learning_rate": 2.211938842621876e-07, "epoch": 2.331324200913242, "percentage": 58.32, "elapsed_time": "8:45:19", "remaining_time": "6:15:30"} +{"current_steps": 3192, "total_steps": 5472, "loss": 0.0602, "accuracy": 1.0, "learning_rate": 2.21035448421159e-07, "epoch": 2.332054794520548, "percentage": 58.33, "elapsed_time": "8:45:28", "remaining_time": "6:15:20"} +{"current_steps": 3193, "total_steps": 5472, "loss": 0.0555, "accuracy": 1.0, "learning_rate": 2.2087702437058235e-07, "epoch": 2.3327853881278537, "percentage": 58.35, "elapsed_time": "8:45:37", "remaining_time": "6:15:09"} +{"current_steps": 3194, "total_steps": 5472, "loss": 0.0419, "accuracy": 1.0, "learning_rate": 2.2071861217494645e-07, "epoch": 2.33351598173516, "percentage": 58.37, "elapsed_time": "8:45:46", "remaining_time": "6:14:59"} +{"current_steps": 3195, "total_steps": 5472, "loss": 0.0653, "accuracy": 1.0, "learning_rate": 2.2056021189873542e-07, "epoch": 2.334246575342466, "percentage": 58.39, "elapsed_time": "8:45:55", "remaining_time": "6:14:48"} +{"current_steps": 3196, "total_steps": 5472, "loss": 0.0571, "accuracy": 1.0, "learning_rate": 2.2040182360642838e-07, "epoch": 2.334977168949772, "percentage": 58.41, "elapsed_time": "8:46:06", "remaining_time": "6:14:39"} +{"current_steps": 3197, "total_steps": 5472, "loss": 0.0561, "accuracy": 1.0, "learning_rate": 2.202434473624996e-07, "epoch": 2.3357077625570777, "percentage": 58.42, "elapsed_time": "8:46:16", "remaining_time": "6:14:29"} +{"current_steps": 3198, "total_steps": 5472, "loss": 0.0405, "accuracy": 1.0, "learning_rate": 2.2008508323141862e-07, "epoch": 2.3364383561643836, "percentage": 58.44, "elapsed_time": "8:46:26", "remaining_time": "6:14:19"} +{"current_steps": 3199, "total_steps": 5472, "loss": 0.0465, "accuracy": 1.0, "learning_rate": 2.1992673127764984e-07, "epoch": 2.3371689497716894, "percentage": 58.46, "elapsed_time": "8:46:36", "remaining_time": "6:14:10"} +{"current_steps": 3200, "total_steps": 5472, "loss": 0.0455, "accuracy": 1.0, "learning_rate": 2.1976839156565287e-07, "epoch": 2.3378995433789953, "percentage": 58.48, "elapsed_time": "8:46:45", "remaining_time": "6:14:00"} +{"current_steps": 3201, "total_steps": 5472, "loss": 0.0309, "accuracy": 1.0, "learning_rate": 2.1961006415988206e-07, "epoch": 2.338630136986301, "percentage": 58.5, "elapsed_time": "8:46:55", "remaining_time": "6:13:50"} +{"current_steps": 3202, "total_steps": 5472, "loss": 0.1105, "accuracy": 1.0, "learning_rate": 2.1945174912478705e-07, "epoch": 2.3393607305936075, "percentage": 58.52, "elapsed_time": "8:47:04", "remaining_time": "6:13:39"} +{"current_steps": 3203, "total_steps": 5472, "loss": 0.0546, "accuracy": 1.0, "learning_rate": 2.1929344652481238e-07, "epoch": 2.3400913242009134, "percentage": 58.53, "elapsed_time": "8:47:17", "remaining_time": "6:13:31"} +{"current_steps": 3204, "total_steps": 5472, "loss": 0.0757, "accuracy": 1.0, "learning_rate": 2.1913515642439751e-07, "epoch": 2.3408219178082192, "percentage": 58.55, "elapsed_time": "8:47:27", "remaining_time": "6:13:22"} +{"current_steps": 3205, "total_steps": 5472, "loss": 0.0841, "accuracy": 1.0, "learning_rate": 2.1897687888797658e-07, "epoch": 2.341552511415525, "percentage": 58.57, "elapsed_time": "8:47:36", "remaining_time": "6:13:11"} +{"current_steps": 3206, "total_steps": 5472, "loss": 0.0778, "accuracy": 1.0, "learning_rate": 2.1881861397997892e-07, "epoch": 2.342283105022831, "percentage": 58.59, "elapsed_time": "8:47:46", "remaining_time": "6:13:01"} +{"current_steps": 3207, "total_steps": 5472, "loss": 0.0479, "accuracy": 1.0, "learning_rate": 2.1866036176482865e-07, "epoch": 2.343013698630137, "percentage": 58.61, "elapsed_time": "8:47:56", "remaining_time": "6:12:52"} +{"current_steps": 3208, "total_steps": 5472, "loss": 0.0377, "accuracy": 1.0, "learning_rate": 2.185021223069448e-07, "epoch": 2.3437442922374427, "percentage": 58.63, "elapsed_time": "8:48:06", "remaining_time": "6:12:42"} +{"current_steps": 3209, "total_steps": 5472, "loss": 0.042, "accuracy": 1.0, "learning_rate": 2.1834389567074086e-07, "epoch": 2.3444748858447486, "percentage": 58.64, "elapsed_time": "8:48:16", "remaining_time": "6:12:32"} +{"current_steps": 3210, "total_steps": 5472, "loss": 0.0464, "accuracy": 1.0, "learning_rate": 2.1818568192062545e-07, "epoch": 2.345205479452055, "percentage": 58.66, "elapsed_time": "8:48:26", "remaining_time": "6:12:22"} +{"current_steps": 3211, "total_steps": 5472, "loss": 0.097, "accuracy": 1.0, "learning_rate": 2.1802748112100183e-07, "epoch": 2.345936073059361, "percentage": 58.68, "elapsed_time": "8:48:35", "remaining_time": "6:12:11"} +{"current_steps": 3212, "total_steps": 5472, "loss": 0.0408, "accuracy": 1.0, "learning_rate": 2.1786929333626798e-07, "epoch": 2.3466666666666667, "percentage": 58.7, "elapsed_time": "8:48:44", "remaining_time": "6:12:01"} +{"current_steps": 3213, "total_steps": 5472, "loss": 0.0257, "accuracy": 1.0, "learning_rate": 2.177111186308167e-07, "epoch": 2.3473972602739726, "percentage": 58.72, "elapsed_time": "8:48:54", "remaining_time": "6:11:51"} +{"current_steps": 3214, "total_steps": 5472, "loss": 0.1318, "accuracy": 1.0, "learning_rate": 2.1755295706903522e-07, "epoch": 2.3481278538812784, "percentage": 58.74, "elapsed_time": "8:49:04", "remaining_time": "6:11:42"} +{"current_steps": 3215, "total_steps": 5472, "loss": 0.0259, "accuracy": 1.0, "learning_rate": 2.1739480871530552e-07, "epoch": 2.3488584474885843, "percentage": 58.75, "elapsed_time": "8:49:14", "remaining_time": "6:11:32"} +{"current_steps": 3216, "total_steps": 5472, "loss": 0.0573, "accuracy": 1.0, "learning_rate": 2.1723667363400438e-07, "epoch": 2.34958904109589, "percentage": 58.77, "elapsed_time": "8:49:23", "remaining_time": "6:11:21"} +{"current_steps": 3217, "total_steps": 5472, "loss": 0.0633, "accuracy": 1.0, "learning_rate": 2.1707855188950301e-07, "epoch": 2.3503196347031965, "percentage": 58.79, "elapsed_time": "8:49:32", "remaining_time": "6:11:11"} +{"current_steps": 3218, "total_steps": 5472, "loss": 0.0948, "accuracy": 1.0, "learning_rate": 2.1692044354616717e-07, "epoch": 2.3510502283105024, "percentage": 58.81, "elapsed_time": "8:49:41", "remaining_time": "6:11:00"} +{"current_steps": 3219, "total_steps": 5472, "loss": 0.0294, "accuracy": 1.0, "learning_rate": 2.1676234866835723e-07, "epoch": 2.3517808219178082, "percentage": 58.83, "elapsed_time": "8:49:51", "remaining_time": "6:10:51"} +{"current_steps": 3220, "total_steps": 5472, "loss": 0.0325, "accuracy": 1.0, "learning_rate": 2.1660426732042808e-07, "epoch": 2.352511415525114, "percentage": 58.85, "elapsed_time": "8:49:59", "remaining_time": "6:10:40"} +{"current_steps": 3221, "total_steps": 5472, "loss": 0.0611, "accuracy": 0.875, "learning_rate": 2.164461995667292e-07, "epoch": 2.35324200913242, "percentage": 58.86, "elapsed_time": "8:50:09", "remaining_time": "6:10:29"} +{"current_steps": 3222, "total_steps": 5472, "loss": 0.0642, "accuracy": 1.0, "learning_rate": 2.1628814547160416e-07, "epoch": 2.353972602739726, "percentage": 58.88, "elapsed_time": "8:50:19", "remaining_time": "6:10:20"} +{"current_steps": 3223, "total_steps": 5472, "loss": 0.0577, "accuracy": 1.0, "learning_rate": 2.161301050993913e-07, "epoch": 2.3547031963470317, "percentage": 58.9, "elapsed_time": "8:50:28", "remaining_time": "6:10:09"} +{"current_steps": 3224, "total_steps": 5472, "loss": 0.0146, "accuracy": 1.0, "learning_rate": 2.1597207851442345e-07, "epoch": 2.355433789954338, "percentage": 58.92, "elapsed_time": "8:50:37", "remaining_time": "6:09:59"} +{"current_steps": 3225, "total_steps": 5472, "loss": 0.0711, "accuracy": 1.0, "learning_rate": 2.1581406578102761e-07, "epoch": 2.356164383561644, "percentage": 58.94, "elapsed_time": "8:50:48", "remaining_time": "6:09:50"} +{"current_steps": 3226, "total_steps": 5472, "loss": 0.0566, "accuracy": 1.0, "learning_rate": 2.1565606696352537e-07, "epoch": 2.35689497716895, "percentage": 58.95, "elapsed_time": "8:50:58", "remaining_time": "6:09:40"} +{"current_steps": 3227, "total_steps": 5472, "loss": 0.0358, "accuracy": 1.0, "learning_rate": 2.1549808212623218e-07, "epoch": 2.3576255707762557, "percentage": 58.97, "elapsed_time": "8:51:08", "remaining_time": "6:09:30"} +{"current_steps": 3228, "total_steps": 5472, "loss": 0.0231, "accuracy": 1.0, "learning_rate": 2.1534011133345834e-07, "epoch": 2.3583561643835615, "percentage": 58.99, "elapsed_time": "8:51:18", "remaining_time": "6:09:20"} +{"current_steps": 3229, "total_steps": 5472, "loss": 0.0659, "accuracy": 1.0, "learning_rate": 2.1518215464950812e-07, "epoch": 2.3590867579908674, "percentage": 59.01, "elapsed_time": "8:51:28", "remaining_time": "6:09:11"} +{"current_steps": 3230, "total_steps": 5472, "loss": 0.0287, "accuracy": 1.0, "learning_rate": 2.1502421213868027e-07, "epoch": 2.3598173515981733, "percentage": 59.03, "elapsed_time": "8:51:37", "remaining_time": "6:09:00"} +{"current_steps": 3231, "total_steps": 5472, "loss": 0.0443, "accuracy": 1.0, "learning_rate": 2.1486628386526748e-07, "epoch": 2.3605479452054796, "percentage": 59.05, "elapsed_time": "8:51:46", "remaining_time": "6:08:50"} +{"current_steps": 3232, "total_steps": 5472, "loss": 0.0826, "accuracy": 1.0, "learning_rate": 2.1470836989355687e-07, "epoch": 2.3612785388127855, "percentage": 59.06, "elapsed_time": "8:51:55", "remaining_time": "6:08:39"} +{"current_steps": 3233, "total_steps": 5472, "loss": 0.1021, "accuracy": 1.0, "learning_rate": 2.145504702878297e-07, "epoch": 2.3620091324200914, "percentage": 59.08, "elapsed_time": "8:52:05", "remaining_time": "6:08:29"} +{"current_steps": 3234, "total_steps": 5472, "loss": 0.0864, "accuracy": 1.0, "learning_rate": 2.143925851123613e-07, "epoch": 2.3627397260273972, "percentage": 59.1, "elapsed_time": "8:52:14", "remaining_time": "6:08:19"} +{"current_steps": 3235, "total_steps": 5472, "loss": 0.0332, "accuracy": 1.0, "learning_rate": 2.1423471443142128e-07, "epoch": 2.363470319634703, "percentage": 59.12, "elapsed_time": "8:52:23", "remaining_time": "6:08:08"} +{"current_steps": 3236, "total_steps": 5472, "loss": 0.0557, "accuracy": 1.0, "learning_rate": 2.1407685830927312e-07, "epoch": 2.364200913242009, "percentage": 59.14, "elapsed_time": "8:52:33", "remaining_time": "6:07:59"} +{"current_steps": 3237, "total_steps": 5472, "loss": 0.0416, "accuracy": 1.0, "learning_rate": 2.1391901681017463e-07, "epoch": 2.364931506849315, "percentage": 59.16, "elapsed_time": "8:52:45", "remaining_time": "6:07:50"} +{"current_steps": 3238, "total_steps": 5472, "loss": 0.0532, "accuracy": 1.0, "learning_rate": 2.1376118999837743e-07, "epoch": 2.365662100456621, "percentage": 59.17, "elapsed_time": "8:52:55", "remaining_time": "6:07:40"} +{"current_steps": 3239, "total_steps": 5472, "loss": 0.0658, "accuracy": 1.0, "learning_rate": 2.1360337793812745e-07, "epoch": 2.366392694063927, "percentage": 59.19, "elapsed_time": "8:53:05", "remaining_time": "6:07:30"} +{"current_steps": 3240, "total_steps": 5472, "loss": 0.0538, "accuracy": 1.0, "learning_rate": 2.134455806936642e-07, "epoch": 2.367123287671233, "percentage": 59.21, "elapsed_time": "8:53:14", "remaining_time": "6:07:20"} +{"current_steps": 3241, "total_steps": 5472, "loss": 0.0665, "accuracy": 1.0, "learning_rate": 2.1328779832922146e-07, "epoch": 2.367853881278539, "percentage": 59.23, "elapsed_time": "8:53:23", "remaining_time": "6:07:10"} +{"current_steps": 3242, "total_steps": 5472, "loss": 0.0813, "accuracy": 1.0, "learning_rate": 2.13130030909027e-07, "epoch": 2.3685844748858447, "percentage": 59.25, "elapsed_time": "8:53:32", "remaining_time": "6:07:00"} +{"current_steps": 3243, "total_steps": 5472, "loss": 0.0468, "accuracy": 1.0, "learning_rate": 2.1297227849730245e-07, "epoch": 2.3693150684931505, "percentage": 59.27, "elapsed_time": "8:53:41", "remaining_time": "6:06:49"} +{"current_steps": 3244, "total_steps": 5472, "loss": 0.0566, "accuracy": 1.0, "learning_rate": 2.128145411582631e-07, "epoch": 2.3700456621004564, "percentage": 59.28, "elapsed_time": "8:53:51", "remaining_time": "6:06:39"} +{"current_steps": 3245, "total_steps": 5472, "loss": 0.0189, "accuracy": 1.0, "learning_rate": 2.126568189561183e-07, "epoch": 2.3707762557077627, "percentage": 59.3, "elapsed_time": "8:54:00", "remaining_time": "6:06:28"} +{"current_steps": 3246, "total_steps": 5472, "loss": 0.0441, "accuracy": 1.0, "learning_rate": 2.1249911195507124e-07, "epoch": 2.3715068493150686, "percentage": 59.32, "elapsed_time": "8:54:10", "remaining_time": "6:06:19"} +{"current_steps": 3247, "total_steps": 5472, "loss": 0.0788, "accuracy": 1.0, "learning_rate": 2.12341420219319e-07, "epoch": 2.3722374429223745, "percentage": 59.34, "elapsed_time": "8:54:21", "remaining_time": "6:06:10"} +{"current_steps": 3248, "total_steps": 5472, "loss": 0.0725, "accuracy": 1.0, "learning_rate": 2.121837438130523e-07, "epoch": 2.3729680365296804, "percentage": 59.36, "elapsed_time": "8:54:30", "remaining_time": "6:05:59"} +{"current_steps": 3249, "total_steps": 5472, "loss": 0.0382, "accuracy": 1.0, "learning_rate": 2.1202608280045559e-07, "epoch": 2.3736986301369862, "percentage": 59.38, "elapsed_time": "8:54:40", "remaining_time": "6:05:49"} +{"current_steps": 3250, "total_steps": 5472, "loss": 0.0655, "accuracy": 1.0, "learning_rate": 2.1186843724570718e-07, "epoch": 2.374429223744292, "percentage": 59.39, "elapsed_time": "8:54:50", "remaining_time": "6:05:39"} +{"current_steps": 3251, "total_steps": 5472, "loss": 0.0454, "accuracy": 1.0, "learning_rate": 2.117108072129791e-07, "epoch": 2.375159817351598, "percentage": 59.41, "elapsed_time": "8:54:59", "remaining_time": "6:05:29"} +{"current_steps": 3252, "total_steps": 5472, "loss": 0.0759, "accuracy": 1.0, "learning_rate": 2.1155319276643697e-07, "epoch": 2.3758904109589043, "percentage": 59.43, "elapsed_time": "8:55:08", "remaining_time": "6:05:19"} +{"current_steps": 3253, "total_steps": 5472, "loss": 0.0446, "accuracy": 1.0, "learning_rate": 2.1139559397024003e-07, "epoch": 2.37662100456621, "percentage": 59.45, "elapsed_time": "8:55:18", "remaining_time": "6:05:09"} +{"current_steps": 3254, "total_steps": 5472, "loss": 0.1104, "accuracy": 1.0, "learning_rate": 2.1123801088854125e-07, "epoch": 2.377351598173516, "percentage": 59.47, "elapsed_time": "8:55:28", "remaining_time": "6:04:59"} +{"current_steps": 3255, "total_steps": 5472, "loss": 0.0629, "accuracy": 1.0, "learning_rate": 2.1108044358548723e-07, "epoch": 2.378082191780822, "percentage": 59.48, "elapsed_time": "8:55:38", "remaining_time": "6:04:49"} +{"current_steps": 3256, "total_steps": 5472, "loss": 0.0411, "accuracy": 1.0, "learning_rate": 2.1092289212521815e-07, "epoch": 2.378812785388128, "percentage": 59.5, "elapsed_time": "8:55:48", "remaining_time": "6:04:40"} +{"current_steps": 3257, "total_steps": 5472, "loss": 0.0298, "accuracy": 1.0, "learning_rate": 2.1076535657186743e-07, "epoch": 2.3795433789954337, "percentage": 59.52, "elapsed_time": "8:55:58", "remaining_time": "6:04:30"} +{"current_steps": 3258, "total_steps": 5472, "loss": 0.0482, "accuracy": 1.0, "learning_rate": 2.1060783698956232e-07, "epoch": 2.3802739726027395, "percentage": 59.54, "elapsed_time": "8:56:07", "remaining_time": "6:04:19"} +{"current_steps": 3259, "total_steps": 5472, "loss": 0.1011, "accuracy": 1.0, "learning_rate": 2.1045033344242368e-07, "epoch": 2.381004566210046, "percentage": 59.56, "elapsed_time": "8:56:18", "remaining_time": "6:04:10"} +{"current_steps": 3260, "total_steps": 5472, "loss": 0.0651, "accuracy": 1.0, "learning_rate": 2.1029284599456558e-07, "epoch": 2.3817351598173517, "percentage": 59.58, "elapsed_time": "8:56:27", "remaining_time": "6:04:00"} +{"current_steps": 3261, "total_steps": 5472, "loss": 0.0916, "accuracy": 1.0, "learning_rate": 2.1013537471009578e-07, "epoch": 2.3824657534246576, "percentage": 59.59, "elapsed_time": "8:56:37", "remaining_time": "6:03:50"} +{"current_steps": 3262, "total_steps": 5472, "loss": 0.0545, "accuracy": 1.0, "learning_rate": 2.0997791965311505e-07, "epoch": 2.3831963470319635, "percentage": 59.61, "elapsed_time": "8:56:46", "remaining_time": "6:03:39"} +{"current_steps": 3263, "total_steps": 5472, "loss": 0.031, "accuracy": 1.0, "learning_rate": 2.098204808877179e-07, "epoch": 2.3839269406392694, "percentage": 59.63, "elapsed_time": "8:56:56", "remaining_time": "6:03:30"} +{"current_steps": 3264, "total_steps": 5472, "loss": 0.0296, "accuracy": 1.0, "learning_rate": 2.0966305847799214e-07, "epoch": 2.3846575342465752, "percentage": 59.65, "elapsed_time": "8:57:08", "remaining_time": "6:03:21"} +{"current_steps": 3265, "total_steps": 5472, "loss": 0.035, "accuracy": 1.0, "learning_rate": 2.0950565248801902e-07, "epoch": 2.385388127853881, "percentage": 59.67, "elapsed_time": "8:57:18", "remaining_time": "6:03:11"} +{"current_steps": 3266, "total_steps": 5472, "loss": 0.0439, "accuracy": 1.0, "learning_rate": 2.093482629818728e-07, "epoch": 2.3861187214611874, "percentage": 59.69, "elapsed_time": "8:57:28", "remaining_time": "6:03:02"} +{"current_steps": 3267, "total_steps": 5472, "loss": 0.0791, "accuracy": 1.0, "learning_rate": 2.0919089002362135e-07, "epoch": 2.3868493150684933, "percentage": 59.7, "elapsed_time": "8:57:39", "remaining_time": "6:02:52"} +{"current_steps": 3268, "total_steps": 5472, "loss": 0.0592, "accuracy": 1.0, "learning_rate": 2.0903353367732563e-07, "epoch": 2.387579908675799, "percentage": 59.72, "elapsed_time": "8:57:49", "remaining_time": "6:02:42"} +{"current_steps": 3269, "total_steps": 5472, "loss": 0.0481, "accuracy": 1.0, "learning_rate": 2.0887619400703994e-07, "epoch": 2.388310502283105, "percentage": 59.74, "elapsed_time": "8:57:58", "remaining_time": "6:02:32"} +{"current_steps": 3270, "total_steps": 5472, "loss": 0.0492, "accuracy": 1.0, "learning_rate": 2.0871887107681163e-07, "epoch": 2.389041095890411, "percentage": 59.76, "elapsed_time": "8:58:08", "remaining_time": "6:02:22"} +{"current_steps": 3271, "total_steps": 5472, "loss": 0.0888, "accuracy": 1.0, "learning_rate": 2.085615649506814e-07, "epoch": 2.389771689497717, "percentage": 59.78, "elapsed_time": "8:58:18", "remaining_time": "6:02:12"} +{"current_steps": 3272, "total_steps": 5472, "loss": 0.0765, "accuracy": 1.0, "learning_rate": 2.0840427569268304e-07, "epoch": 2.3905022831050227, "percentage": 59.8, "elapsed_time": "8:58:27", "remaining_time": "6:02:02"} +{"current_steps": 3273, "total_steps": 5472, "loss": 0.0478, "accuracy": 1.0, "learning_rate": 2.0824700336684347e-07, "epoch": 2.391232876712329, "percentage": 59.81, "elapsed_time": "8:58:36", "remaining_time": "6:01:52"} +{"current_steps": 3274, "total_steps": 5472, "loss": 0.0751, "accuracy": 1.0, "learning_rate": 2.080897480371829e-07, "epoch": 2.391963470319635, "percentage": 59.83, "elapsed_time": "8:58:46", "remaining_time": "6:01:42"} +{"current_steps": 3275, "total_steps": 5472, "loss": 0.0496, "accuracy": 1.0, "learning_rate": 2.079325097677142e-07, "epoch": 2.3926940639269407, "percentage": 59.85, "elapsed_time": "8:58:57", "remaining_time": "6:01:33"} +{"current_steps": 3276, "total_steps": 5472, "loss": 0.0645, "accuracy": 1.0, "learning_rate": 2.077752886224436e-07, "epoch": 2.3934246575342466, "percentage": 59.87, "elapsed_time": "8:59:07", "remaining_time": "6:01:23"} +{"current_steps": 3277, "total_steps": 5472, "loss": 0.0205, "accuracy": 1.0, "learning_rate": 2.076180846653704e-07, "epoch": 2.3941552511415525, "percentage": 59.89, "elapsed_time": "8:59:17", "remaining_time": "6:01:14"} +{"current_steps": 3278, "total_steps": 5472, "loss": 0.1464, "accuracy": 1.0, "learning_rate": 2.0746089796048687e-07, "epoch": 2.3948858447488584, "percentage": 59.9, "elapsed_time": "8:59:27", "remaining_time": "6:01:03"} +{"current_steps": 3279, "total_steps": 5472, "loss": 0.0726, "accuracy": 1.0, "learning_rate": 2.0730372857177803e-07, "epoch": 2.3956164383561642, "percentage": 59.92, "elapsed_time": "8:59:36", "remaining_time": "6:00:53"} +{"current_steps": 3280, "total_steps": 5472, "loss": 0.0226, "accuracy": 1.0, "learning_rate": 2.071465765632221e-07, "epoch": 2.3963470319634705, "percentage": 59.94, "elapsed_time": "8:59:44", "remaining_time": "6:00:42"} +{"current_steps": 3281, "total_steps": 5472, "loss": 0.0622, "accuracy": 1.0, "learning_rate": 2.0698944199879008e-07, "epoch": 2.3970776255707764, "percentage": 59.96, "elapsed_time": "8:59:55", "remaining_time": "6:00:33"} +{"current_steps": 3282, "total_steps": 5472, "loss": 0.0877, "accuracy": 1.0, "learning_rate": 2.068323249424461e-07, "epoch": 2.3978082191780823, "percentage": 59.98, "elapsed_time": "9:00:05", "remaining_time": "6:00:23"} +{"current_steps": 3283, "total_steps": 5472, "loss": 0.044, "accuracy": 1.0, "learning_rate": 2.0667522545814682e-07, "epoch": 2.398538812785388, "percentage": 60.0, "elapsed_time": "9:00:15", "remaining_time": "6:00:13"} +{"current_steps": 3284, "total_steps": 5472, "loss": 0.0465, "accuracy": 1.0, "learning_rate": 2.0651814360984195e-07, "epoch": 2.399269406392694, "percentage": 60.01, "elapsed_time": "9:00:25", "remaining_time": "6:00:04"} +{"current_steps": 3285, "total_steps": 5472, "loss": 0.086, "accuracy": 0.875, "learning_rate": 2.0636107946147408e-07, "epoch": 2.4, "percentage": 60.03, "elapsed_time": "9:00:35", "remaining_time": "5:59:53"} +{"current_steps": 3286, "total_steps": 5472, "loss": 0.0328, "accuracy": 1.0, "learning_rate": 2.0620403307697846e-07, "epoch": 2.400730593607306, "percentage": 60.05, "elapsed_time": "9:00:45", "remaining_time": "5:59:44"} +{"current_steps": 3287, "total_steps": 5472, "loss": 0.0543, "accuracy": 1.0, "learning_rate": 2.060470045202832e-07, "epoch": 2.401461187214612, "percentage": 60.07, "elapsed_time": "9:00:55", "remaining_time": "5:59:34"} +{"current_steps": 3288, "total_steps": 5472, "loss": 0.0479, "accuracy": 1.0, "learning_rate": 2.0588999385530904e-07, "epoch": 2.402191780821918, "percentage": 60.09, "elapsed_time": "9:01:04", "remaining_time": "5:59:24"} +{"current_steps": 3289, "total_steps": 5472, "loss": 0.0372, "accuracy": 1.0, "learning_rate": 2.0573300114596954e-07, "epoch": 2.402922374429224, "percentage": 60.11, "elapsed_time": "9:01:14", "remaining_time": "5:59:14"} +{"current_steps": 3290, "total_steps": 5472, "loss": 0.0391, "accuracy": 1.0, "learning_rate": 2.055760264561709e-07, "epoch": 2.4036529680365297, "percentage": 60.12, "elapsed_time": "9:01:24", "remaining_time": "5:59:04"} +{"current_steps": 3291, "total_steps": 5472, "loss": 0.0442, "accuracy": 1.0, "learning_rate": 2.0541906984981217e-07, "epoch": 2.4043835616438356, "percentage": 60.14, "elapsed_time": "9:01:33", "remaining_time": "5:58:54"} +{"current_steps": 3292, "total_steps": 5472, "loss": 0.0893, "accuracy": 1.0, "learning_rate": 2.052621313907846e-07, "epoch": 2.4051141552511415, "percentage": 60.16, "elapsed_time": "9:01:43", "remaining_time": "5:58:44"} +{"current_steps": 3293, "total_steps": 5472, "loss": 0.0862, "accuracy": 1.0, "learning_rate": 2.0510521114297247e-07, "epoch": 2.4058447488584473, "percentage": 60.18, "elapsed_time": "9:01:53", "remaining_time": "5:58:34"} +{"current_steps": 3294, "total_steps": 5472, "loss": 0.0775, "accuracy": 1.0, "learning_rate": 2.0494830917025243e-07, "epoch": 2.4065753424657537, "percentage": 60.2, "elapsed_time": "9:02:05", "remaining_time": "5:58:26"} +{"current_steps": 3295, "total_steps": 5472, "loss": 0.0916, "accuracy": 1.0, "learning_rate": 2.0479142553649397e-07, "epoch": 2.4073059360730595, "percentage": 60.22, "elapsed_time": "9:02:14", "remaining_time": "5:58:15"} +{"current_steps": 3296, "total_steps": 5472, "loss": 0.0501, "accuracy": 1.0, "learning_rate": 2.046345603055587e-07, "epoch": 2.4080365296803654, "percentage": 60.23, "elapsed_time": "9:02:25", "remaining_time": "5:58:06"} +{"current_steps": 3297, "total_steps": 5472, "loss": 0.0585, "accuracy": 1.0, "learning_rate": 2.0447771354130096e-07, "epoch": 2.4087671232876713, "percentage": 60.25, "elapsed_time": "9:02:34", "remaining_time": "5:57:56"} +{"current_steps": 3298, "total_steps": 5472, "loss": 0.0499, "accuracy": 1.0, "learning_rate": 2.0432088530756767e-07, "epoch": 2.409497716894977, "percentage": 60.27, "elapsed_time": "9:02:44", "remaining_time": "5:57:46"} +{"current_steps": 3299, "total_steps": 5472, "loss": 0.0299, "accuracy": 1.0, "learning_rate": 2.04164075668198e-07, "epoch": 2.410228310502283, "percentage": 60.29, "elapsed_time": "9:02:53", "remaining_time": "5:57:35"} +{"current_steps": 3300, "total_steps": 5472, "loss": 0.0392, "accuracy": 1.0, "learning_rate": 2.0400728468702374e-07, "epoch": 2.410958904109589, "percentage": 60.31, "elapsed_time": "9:03:02", "remaining_time": "5:57:25"} +{"current_steps": 3301, "total_steps": 5472, "loss": 0.0489, "accuracy": 1.0, "learning_rate": 2.038505124278689e-07, "epoch": 2.4116894977168952, "percentage": 60.33, "elapsed_time": "9:03:12", "remaining_time": "5:57:15"} +{"current_steps": 3302, "total_steps": 5472, "loss": 0.0559, "accuracy": 1.0, "learning_rate": 2.0369375895454998e-07, "epoch": 2.412420091324201, "percentage": 60.34, "elapsed_time": "9:03:22", "remaining_time": "5:57:05"} +{"current_steps": 3303, "total_steps": 5472, "loss": 0.0311, "accuracy": 1.0, "learning_rate": 2.0353702433087583e-07, "epoch": 2.413150684931507, "percentage": 60.36, "elapsed_time": "9:03:31", "remaining_time": "5:56:55"} +{"current_steps": 3304, "total_steps": 5472, "loss": 0.0251, "accuracy": 1.0, "learning_rate": 2.033803086206477e-07, "epoch": 2.413881278538813, "percentage": 60.38, "elapsed_time": "9:03:43", "remaining_time": "5:56:46"} +{"current_steps": 3305, "total_steps": 5472, "loss": 0.0409, "accuracy": 1.0, "learning_rate": 2.032236118876589e-07, "epoch": 2.4146118721461187, "percentage": 60.4, "elapsed_time": "9:03:53", "remaining_time": "5:56:37"} +{"current_steps": 3306, "total_steps": 5472, "loss": 0.0753, "accuracy": 1.0, "learning_rate": 2.0306693419569524e-07, "epoch": 2.4153424657534246, "percentage": 60.42, "elapsed_time": "9:04:03", "remaining_time": "5:56:26"} +{"current_steps": 3307, "total_steps": 5472, "loss": 0.0764, "accuracy": 1.0, "learning_rate": 2.0291027560853473e-07, "epoch": 2.4160730593607305, "percentage": 60.43, "elapsed_time": "9:04:11", "remaining_time": "5:56:16"} +{"current_steps": 3308, "total_steps": 5472, "loss": 0.0595, "accuracy": 1.0, "learning_rate": 2.027536361899476e-07, "epoch": 2.4168036529680363, "percentage": 60.45, "elapsed_time": "9:04:21", "remaining_time": "5:56:06"} +{"current_steps": 3309, "total_steps": 5472, "loss": 0.0404, "accuracy": 1.0, "learning_rate": 2.0259701600369616e-07, "epoch": 2.417534246575342, "percentage": 60.47, "elapsed_time": "9:04:31", "remaining_time": "5:55:56"} +{"current_steps": 3310, "total_steps": 5472, "loss": 0.024, "accuracy": 1.0, "learning_rate": 2.0244041511353505e-07, "epoch": 2.4182648401826485, "percentage": 60.49, "elapsed_time": "9:04:41", "remaining_time": "5:55:46"} +{"current_steps": 3311, "total_steps": 5472, "loss": 0.0708, "accuracy": 1.0, "learning_rate": 2.022838335832109e-07, "epoch": 2.4189954337899544, "percentage": 60.51, "elapsed_time": "9:04:50", "remaining_time": "5:55:36"} +{"current_steps": 3312, "total_steps": 5472, "loss": 0.0335, "accuracy": 1.0, "learning_rate": 2.021272714764627e-07, "epoch": 2.4197260273972603, "percentage": 60.53, "elapsed_time": "9:04:59", "remaining_time": "5:55:25"} +{"current_steps": 3313, "total_steps": 5472, "loss": 0.0718, "accuracy": 0.875, "learning_rate": 2.0197072885702145e-07, "epoch": 2.420456621004566, "percentage": 60.54, "elapsed_time": "9:05:08", "remaining_time": "5:55:15"} +{"current_steps": 3314, "total_steps": 5472, "loss": 0.0553, "accuracy": 1.0, "learning_rate": 2.018142057886099e-07, "epoch": 2.421187214611872, "percentage": 60.56, "elapsed_time": "9:05:17", "remaining_time": "5:55:05"} +{"current_steps": 3315, "total_steps": 5472, "loss": 0.0414, "accuracy": 1.0, "learning_rate": 2.016577023349432e-07, "epoch": 2.421917808219178, "percentage": 60.58, "elapsed_time": "9:05:29", "remaining_time": "5:54:56"} +{"current_steps": 3316, "total_steps": 5472, "loss": 0.0428, "accuracy": 1.0, "learning_rate": 2.0150121855972845e-07, "epoch": 2.4226484018264838, "percentage": 60.6, "elapsed_time": "9:05:39", "remaining_time": "5:54:46"} +{"current_steps": 3317, "total_steps": 5472, "loss": 0.071, "accuracy": 1.0, "learning_rate": 2.0134475452666477e-07, "epoch": 2.42337899543379, "percentage": 60.62, "elapsed_time": "9:05:49", "remaining_time": "5:54:36"} +{"current_steps": 3318, "total_steps": 5472, "loss": 0.0294, "accuracy": 1.0, "learning_rate": 2.01188310299443e-07, "epoch": 2.424109589041096, "percentage": 60.64, "elapsed_time": "9:05:58", "remaining_time": "5:54:26"} +{"current_steps": 3319, "total_steps": 5472, "loss": 0.0735, "accuracy": 1.0, "learning_rate": 2.010318859417462e-07, "epoch": 2.424840182648402, "percentage": 60.65, "elapsed_time": "9:06:08", "remaining_time": "5:54:16"} +{"current_steps": 3320, "total_steps": 5472, "loss": 0.0309, "accuracy": 1.0, "learning_rate": 2.008754815172492e-07, "epoch": 2.4255707762557077, "percentage": 60.67, "elapsed_time": "9:06:18", "remaining_time": "5:54:06"} +{"current_steps": 3321, "total_steps": 5472, "loss": 0.0572, "accuracy": 1.0, "learning_rate": 2.0071909708961875e-07, "epoch": 2.4263013698630136, "percentage": 60.69, "elapsed_time": "9:06:27", "remaining_time": "5:53:56"} +{"current_steps": 3322, "total_steps": 5472, "loss": 0.0987, "accuracy": 1.0, "learning_rate": 2.0056273272251357e-07, "epoch": 2.4270319634703195, "percentage": 60.71, "elapsed_time": "9:06:36", "remaining_time": "5:53:46"} +{"current_steps": 3323, "total_steps": 5472, "loss": 0.0497, "accuracy": 1.0, "learning_rate": 2.0040638847958392e-07, "epoch": 2.4277625570776253, "percentage": 60.73, "elapsed_time": "9:06:46", "remaining_time": "5:53:35"} +{"current_steps": 3324, "total_steps": 5472, "loss": 0.0557, "accuracy": 1.0, "learning_rate": 2.0025006442447212e-07, "epoch": 2.4284931506849317, "percentage": 60.75, "elapsed_time": "9:06:55", "remaining_time": "5:53:25"} +{"current_steps": 3325, "total_steps": 5472, "loss": 0.0575, "accuracy": 1.0, "learning_rate": 2.0009376062081223e-07, "epoch": 2.4292237442922375, "percentage": 60.76, "elapsed_time": "9:07:05", "remaining_time": "5:53:15"} +{"current_steps": 3326, "total_steps": 5472, "loss": 0.0632, "accuracy": 1.0, "learning_rate": 1.9993747713223016e-07, "epoch": 2.4299543378995434, "percentage": 60.78, "elapsed_time": "9:07:14", "remaining_time": "5:53:05"} +{"current_steps": 3327, "total_steps": 5472, "loss": 0.0482, "accuracy": 1.0, "learning_rate": 1.9978121402234318e-07, "epoch": 2.4306849315068493, "percentage": 60.8, "elapsed_time": "9:07:25", "remaining_time": "5:52:56"} +{"current_steps": 3328, "total_steps": 5472, "loss": 0.0343, "accuracy": 1.0, "learning_rate": 1.9962497135476063e-07, "epoch": 2.431415525114155, "percentage": 60.82, "elapsed_time": "9:07:37", "remaining_time": "5:52:47"} +{"current_steps": 3329, "total_steps": 5472, "loss": 0.0327, "accuracy": 1.0, "learning_rate": 1.9946874919308337e-07, "epoch": 2.432146118721461, "percentage": 60.84, "elapsed_time": "9:07:47", "remaining_time": "5:52:37"} +{"current_steps": 3330, "total_steps": 5472, "loss": 0.0488, "accuracy": 1.0, "learning_rate": 1.9931254760090418e-07, "epoch": 2.432876712328767, "percentage": 60.86, "elapsed_time": "9:07:58", "remaining_time": "5:52:28"} +{"current_steps": 3331, "total_steps": 5472, "loss": 0.0647, "accuracy": 1.0, "learning_rate": 1.9915636664180697e-07, "epoch": 2.433607305936073, "percentage": 60.87, "elapsed_time": "9:08:07", "remaining_time": "5:52:18"} +{"current_steps": 3332, "total_steps": 5472, "loss": 0.0519, "accuracy": 1.0, "learning_rate": 1.990002063793676e-07, "epoch": 2.434337899543379, "percentage": 60.89, "elapsed_time": "9:08:16", "remaining_time": "5:52:08"} +{"current_steps": 3333, "total_steps": 5472, "loss": 0.0665, "accuracy": 1.0, "learning_rate": 1.9884406687715347e-07, "epoch": 2.435068493150685, "percentage": 60.91, "elapsed_time": "9:08:26", "remaining_time": "5:51:57"} +{"current_steps": 3334, "total_steps": 5472, "loss": 0.0934, "accuracy": 1.0, "learning_rate": 1.9868794819872344e-07, "epoch": 2.435799086757991, "percentage": 60.93, "elapsed_time": "9:08:35", "remaining_time": "5:51:47"} +{"current_steps": 3335, "total_steps": 5472, "loss": 0.0405, "accuracy": 1.0, "learning_rate": 1.9853185040762807e-07, "epoch": 2.4365296803652967, "percentage": 60.95, "elapsed_time": "9:08:45", "remaining_time": "5:51:37"} +{"current_steps": 3336, "total_steps": 5472, "loss": 0.066, "accuracy": 1.0, "learning_rate": 1.9837577356740913e-07, "epoch": 2.4372602739726026, "percentage": 60.96, "elapsed_time": "9:08:55", "remaining_time": "5:51:27"} +{"current_steps": 3337, "total_steps": 5472, "loss": 0.0829, "accuracy": 0.875, "learning_rate": 1.982197177416001e-07, "epoch": 2.4379908675799085, "percentage": 60.98, "elapsed_time": "9:09:04", "remaining_time": "5:51:18"} +{"current_steps": 3338, "total_steps": 5472, "loss": 0.0434, "accuracy": 1.0, "learning_rate": 1.9806368299372577e-07, "epoch": 2.438721461187215, "percentage": 61.0, "elapsed_time": "9:09:14", "remaining_time": "5:51:07"} +{"current_steps": 3339, "total_steps": 5472, "loss": 0.0712, "accuracy": 1.0, "learning_rate": 1.9790766938730255e-07, "epoch": 2.4394520547945207, "percentage": 61.02, "elapsed_time": "9:09:24", "remaining_time": "5:50:58"} +{"current_steps": 3340, "total_steps": 5472, "loss": 0.0402, "accuracy": 1.0, "learning_rate": 1.9775167698583793e-07, "epoch": 2.4401826484018265, "percentage": 61.04, "elapsed_time": "9:09:33", "remaining_time": "5:50:47"} +{"current_steps": 3341, "total_steps": 5472, "loss": 0.0523, "accuracy": 1.0, "learning_rate": 1.97595705852831e-07, "epoch": 2.4409132420091324, "percentage": 61.06, "elapsed_time": "9:09:42", "remaining_time": "5:50:37"} +{"current_steps": 3342, "total_steps": 5472, "loss": 0.0367, "accuracy": 1.0, "learning_rate": 1.9743975605177215e-07, "epoch": 2.4416438356164383, "percentage": 61.07, "elapsed_time": "9:09:53", "remaining_time": "5:50:27"} +{"current_steps": 3343, "total_steps": 5472, "loss": 0.0662, "accuracy": 1.0, "learning_rate": 1.972838276461432e-07, "epoch": 2.442374429223744, "percentage": 61.09, "elapsed_time": "9:10:02", "remaining_time": "5:50:17"} +{"current_steps": 3344, "total_steps": 5472, "loss": 0.0328, "accuracy": 1.0, "learning_rate": 1.9712792069941683e-07, "epoch": 2.44310502283105, "percentage": 61.11, "elapsed_time": "9:10:12", "remaining_time": "5:50:07"} +{"current_steps": 3345, "total_steps": 5472, "loss": 0.0369, "accuracy": 1.0, "learning_rate": 1.9697203527505745e-07, "epoch": 2.4438356164383563, "percentage": 61.13, "elapsed_time": "9:10:21", "remaining_time": "5:49:57"} +{"current_steps": 3346, "total_steps": 5472, "loss": 0.0501, "accuracy": 1.0, "learning_rate": 1.9681617143652057e-07, "epoch": 2.444566210045662, "percentage": 61.15, "elapsed_time": "9:10:30", "remaining_time": "5:49:47"} +{"current_steps": 3347, "total_steps": 5472, "loss": 0.0463, "accuracy": 1.0, "learning_rate": 1.9666032924725275e-07, "epoch": 2.445296803652968, "percentage": 61.17, "elapsed_time": "9:10:40", "remaining_time": "5:49:37"} +{"current_steps": 3348, "total_steps": 5472, "loss": 0.0614, "accuracy": 1.0, "learning_rate": 1.9650450877069218e-07, "epoch": 2.446027397260274, "percentage": 61.18, "elapsed_time": "9:10:49", "remaining_time": "5:49:27"} +{"current_steps": 3349, "total_steps": 5472, "loss": 0.0399, "accuracy": 1.0, "learning_rate": 1.9634871007026756e-07, "epoch": 2.44675799086758, "percentage": 61.2, "elapsed_time": "9:10:59", "remaining_time": "5:49:16"} +{"current_steps": 3350, "total_steps": 5472, "loss": 0.0327, "accuracy": 1.0, "learning_rate": 1.9619293320939926e-07, "epoch": 2.4474885844748857, "percentage": 61.22, "elapsed_time": "9:11:08", "remaining_time": "5:49:06"} +{"current_steps": 3351, "total_steps": 5472, "loss": 0.0423, "accuracy": 1.0, "learning_rate": 1.9603717825149846e-07, "epoch": 2.4482191780821916, "percentage": 61.24, "elapsed_time": "9:11:17", "remaining_time": "5:48:56"} +{"current_steps": 3352, "total_steps": 5472, "loss": 0.1157, "accuracy": 1.0, "learning_rate": 1.958814452599677e-07, "epoch": 2.448949771689498, "percentage": 61.26, "elapsed_time": "9:11:27", "remaining_time": "5:48:46"} +{"current_steps": 3353, "total_steps": 5472, "loss": 0.055, "accuracy": 1.0, "learning_rate": 1.9572573429820023e-07, "epoch": 2.4496803652968038, "percentage": 61.28, "elapsed_time": "9:11:38", "remaining_time": "5:48:37"} +{"current_steps": 3354, "total_steps": 5472, "loss": 0.0336, "accuracy": 1.0, "learning_rate": 1.9557004542958054e-07, "epoch": 2.4504109589041096, "percentage": 61.29, "elapsed_time": "9:11:48", "remaining_time": "5:48:27"} +{"current_steps": 3355, "total_steps": 5472, "loss": 0.0325, "accuracy": 1.0, "learning_rate": 1.9541437871748423e-07, "epoch": 2.4511415525114155, "percentage": 61.31, "elapsed_time": "9:11:57", "remaining_time": "5:48:17"} +{"current_steps": 3356, "total_steps": 5472, "loss": 0.0957, "accuracy": 1.0, "learning_rate": 1.952587342252777e-07, "epoch": 2.4518721461187214, "percentage": 61.33, "elapsed_time": "9:12:08", "remaining_time": "5:48:07"} +{"current_steps": 3357, "total_steps": 5472, "loss": 0.058, "accuracy": 1.0, "learning_rate": 1.9510311201631828e-07, "epoch": 2.4526027397260273, "percentage": 61.35, "elapsed_time": "9:12:17", "remaining_time": "5:47:57"} +{"current_steps": 3358, "total_steps": 5472, "loss": 0.0492, "accuracy": 1.0, "learning_rate": 1.9494751215395436e-07, "epoch": 2.453333333333333, "percentage": 61.37, "elapsed_time": "9:12:26", "remaining_time": "5:47:47"} +{"current_steps": 3359, "total_steps": 5472, "loss": 0.0578, "accuracy": 1.0, "learning_rate": 1.947919347015252e-07, "epoch": 2.4540639269406395, "percentage": 61.39, "elapsed_time": "9:12:35", "remaining_time": "5:47:36"} +{"current_steps": 3360, "total_steps": 5472, "loss": 0.0774, "accuracy": 1.0, "learning_rate": 1.9463637972236086e-07, "epoch": 2.4547945205479453, "percentage": 61.4, "elapsed_time": "9:12:44", "remaining_time": "5:47:26"} +{"current_steps": 3361, "total_steps": 5472, "loss": 0.0644, "accuracy": 1.0, "learning_rate": 1.9448084727978248e-07, "epoch": 2.455525114155251, "percentage": 61.42, "elapsed_time": "9:12:53", "remaining_time": "5:47:15"} +{"current_steps": 3362, "total_steps": 5472, "loss": 0.0594, "accuracy": 1.0, "learning_rate": 1.943253374371016e-07, "epoch": 2.456255707762557, "percentage": 61.44, "elapsed_time": "9:13:03", "remaining_time": "5:47:05"} +{"current_steps": 3363, "total_steps": 5472, "loss": 0.0198, "accuracy": 1.0, "learning_rate": 1.9416985025762098e-07, "epoch": 2.456986301369863, "percentage": 61.46, "elapsed_time": "9:13:12", "remaining_time": "5:46:55"} +{"current_steps": 3364, "total_steps": 5472, "loss": 0.0907, "accuracy": 1.0, "learning_rate": 1.9401438580463387e-07, "epoch": 2.457716894977169, "percentage": 61.48, "elapsed_time": "9:13:22", "remaining_time": "5:46:45"} +{"current_steps": 3365, "total_steps": 5472, "loss": 0.0497, "accuracy": 1.0, "learning_rate": 1.9385894414142464e-07, "epoch": 2.4584474885844747, "percentage": 61.49, "elapsed_time": "9:13:31", "remaining_time": "5:46:35"} +{"current_steps": 3366, "total_steps": 5472, "loss": 0.0918, "accuracy": 0.875, "learning_rate": 1.9370352533126788e-07, "epoch": 2.459178082191781, "percentage": 61.51, "elapsed_time": "9:13:40", "remaining_time": "5:46:25"} +{"current_steps": 3367, "total_steps": 5472, "loss": 0.0605, "accuracy": 1.0, "learning_rate": 1.9354812943742917e-07, "epoch": 2.459908675799087, "percentage": 61.53, "elapsed_time": "9:13:51", "remaining_time": "5:46:15"} +{"current_steps": 3368, "total_steps": 5472, "loss": 0.0706, "accuracy": 1.0, "learning_rate": 1.933927565231648e-07, "epoch": 2.4606392694063928, "percentage": 61.55, "elapsed_time": "9:14:01", "remaining_time": "5:46:05"} +{"current_steps": 3369, "total_steps": 5472, "loss": 0.0774, "accuracy": 1.0, "learning_rate": 1.9323740665172167e-07, "epoch": 2.4613698630136986, "percentage": 61.57, "elapsed_time": "9:14:11", "remaining_time": "5:45:56"} +{"current_steps": 3370, "total_steps": 5472, "loss": 0.051, "accuracy": 1.0, "learning_rate": 1.930820798863371e-07, "epoch": 2.4621004566210045, "percentage": 61.59, "elapsed_time": "9:14:21", "remaining_time": "5:45:46"} +{"current_steps": 3371, "total_steps": 5472, "loss": 0.0487, "accuracy": 1.0, "learning_rate": 1.9292677629023923e-07, "epoch": 2.4628310502283104, "percentage": 61.6, "elapsed_time": "9:14:31", "remaining_time": "5:45:36"} +{"current_steps": 3372, "total_steps": 5472, "loss": 0.0438, "accuracy": 1.0, "learning_rate": 1.9277149592664673e-07, "epoch": 2.4635616438356163, "percentage": 61.62, "elapsed_time": "9:14:40", "remaining_time": "5:45:26"} +{"current_steps": 3373, "total_steps": 5472, "loss": 0.0631, "accuracy": 1.0, "learning_rate": 1.926162388587688e-07, "epoch": 2.4642922374429226, "percentage": 61.64, "elapsed_time": "9:14:49", "remaining_time": "5:45:15"} +{"current_steps": 3374, "total_steps": 5472, "loss": 0.044, "accuracy": 1.0, "learning_rate": 1.9246100514980512e-07, "epoch": 2.4650228310502285, "percentage": 61.66, "elapsed_time": "9:14:58", "remaining_time": "5:45:05"} +{"current_steps": 3375, "total_steps": 5472, "loss": 0.0362, "accuracy": 1.0, "learning_rate": 1.9230579486294586e-07, "epoch": 2.4657534246575343, "percentage": 61.68, "elapsed_time": "9:15:08", "remaining_time": "5:44:55"} +{"current_steps": 3376, "total_steps": 5472, "loss": 0.0468, "accuracy": 1.0, "learning_rate": 1.9215060806137168e-07, "epoch": 2.46648401826484, "percentage": 61.7, "elapsed_time": "9:15:17", "remaining_time": "5:44:45"} +{"current_steps": 3377, "total_steps": 5472, "loss": 0.0382, "accuracy": 1.0, "learning_rate": 1.919954448082537e-07, "epoch": 2.467214611872146, "percentage": 61.71, "elapsed_time": "9:15:28", "remaining_time": "5:44:36"} +{"current_steps": 3378, "total_steps": 5472, "loss": 0.0594, "accuracy": 1.0, "learning_rate": 1.9184030516675347e-07, "epoch": 2.467945205479452, "percentage": 61.73, "elapsed_time": "9:15:37", "remaining_time": "5:44:25"} +{"current_steps": 3379, "total_steps": 5472, "loss": 0.0432, "accuracy": 1.0, "learning_rate": 1.916851892000228e-07, "epoch": 2.468675799086758, "percentage": 61.75, "elapsed_time": "9:15:46", "remaining_time": "5:44:15"} +{"current_steps": 3380, "total_steps": 5472, "loss": 0.045, "accuracy": 1.0, "learning_rate": 1.9153009697120398e-07, "epoch": 2.469406392694064, "percentage": 61.77, "elapsed_time": "9:15:56", "remaining_time": "5:44:05"} +{"current_steps": 3381, "total_steps": 5472, "loss": 0.082, "accuracy": 1.0, "learning_rate": 1.913750285434296e-07, "epoch": 2.47013698630137, "percentage": 61.79, "elapsed_time": "9:16:06", "remaining_time": "5:43:55"} +{"current_steps": 3382, "total_steps": 5472, "loss": 0.0838, "accuracy": 1.0, "learning_rate": 1.9121998397982268e-07, "epoch": 2.470867579908676, "percentage": 61.81, "elapsed_time": "9:16:15", "remaining_time": "5:43:45"} +{"current_steps": 3383, "total_steps": 5472, "loss": 0.0759, "accuracy": 1.0, "learning_rate": 1.9106496334349626e-07, "epoch": 2.4715981735159818, "percentage": 61.82, "elapsed_time": "9:16:24", "remaining_time": "5:43:35"} +{"current_steps": 3384, "total_steps": 5472, "loss": 0.0586, "accuracy": 1.0, "learning_rate": 1.9090996669755388e-07, "epoch": 2.4723287671232876, "percentage": 61.84, "elapsed_time": "9:16:35", "remaining_time": "5:43:25"} +{"current_steps": 3385, "total_steps": 5472, "loss": 0.0506, "accuracy": 1.0, "learning_rate": 1.9075499410508925e-07, "epoch": 2.4730593607305935, "percentage": 61.86, "elapsed_time": "9:16:45", "remaining_time": "5:43:16"} +{"current_steps": 3386, "total_steps": 5472, "loss": 0.0675, "accuracy": 1.0, "learning_rate": 1.9060004562918621e-07, "epoch": 2.4737899543378994, "percentage": 61.88, "elapsed_time": "9:16:55", "remaining_time": "5:43:06"} +{"current_steps": 3387, "total_steps": 5472, "loss": 0.0379, "accuracy": 1.0, "learning_rate": 1.9044512133291897e-07, "epoch": 2.4745205479452057, "percentage": 61.9, "elapsed_time": "9:17:05", "remaining_time": "5:42:56"} +{"current_steps": 3388, "total_steps": 5472, "loss": 0.0737, "accuracy": 1.0, "learning_rate": 1.902902212793516e-07, "epoch": 2.4752511415525116, "percentage": 61.92, "elapsed_time": "9:17:14", "remaining_time": "5:42:46"} +{"current_steps": 3389, "total_steps": 5472, "loss": 0.0446, "accuracy": 1.0, "learning_rate": 1.9013534553153857e-07, "epoch": 2.4759817351598175, "percentage": 61.93, "elapsed_time": "9:17:23", "remaining_time": "5:42:35"} +{"current_steps": 3390, "total_steps": 5472, "loss": 0.0133, "accuracy": 1.0, "learning_rate": 1.8998049415252435e-07, "epoch": 2.4767123287671233, "percentage": 61.95, "elapsed_time": "9:17:34", "remaining_time": "5:42:26"} +{"current_steps": 3391, "total_steps": 5472, "loss": 0.0465, "accuracy": 1.0, "learning_rate": 1.8982566720534358e-07, "epoch": 2.477442922374429, "percentage": 61.97, "elapsed_time": "9:17:43", "remaining_time": "5:42:16"} +{"current_steps": 3392, "total_steps": 5472, "loss": 0.0393, "accuracy": 1.0, "learning_rate": 1.8967086475302064e-07, "epoch": 2.478173515981735, "percentage": 61.99, "elapsed_time": "9:17:53", "remaining_time": "5:42:06"} +{"current_steps": 3393, "total_steps": 5472, "loss": 0.0366, "accuracy": 1.0, "learning_rate": 1.8951608685857034e-07, "epoch": 2.478904109589041, "percentage": 62.01, "elapsed_time": "9:18:03", "remaining_time": "5:41:56"} +{"current_steps": 3394, "total_steps": 5472, "loss": 0.0668, "accuracy": 1.0, "learning_rate": 1.8936133358499734e-07, "epoch": 2.4796347031963473, "percentage": 62.02, "elapsed_time": "9:18:13", "remaining_time": "5:41:46"} +{"current_steps": 3395, "total_steps": 5472, "loss": 0.0739, "accuracy": 1.0, "learning_rate": 1.8920660499529632e-07, "epoch": 2.480365296803653, "percentage": 62.04, "elapsed_time": "9:18:23", "remaining_time": "5:41:36"} +{"current_steps": 3396, "total_steps": 5472, "loss": 0.0625, "accuracy": 1.0, "learning_rate": 1.8905190115245167e-07, "epoch": 2.481095890410959, "percentage": 62.06, "elapsed_time": "9:18:35", "remaining_time": "5:41:28"} +{"current_steps": 3397, "total_steps": 5472, "loss": 0.0486, "accuracy": 1.0, "learning_rate": 1.8889722211943798e-07, "epoch": 2.481826484018265, "percentage": 62.08, "elapsed_time": "9:18:44", "remaining_time": "5:41:17"} +{"current_steps": 3398, "total_steps": 5472, "loss": 0.1071, "accuracy": 1.0, "learning_rate": 1.8874256795921966e-07, "epoch": 2.4825570776255708, "percentage": 62.1, "elapsed_time": "9:18:55", "remaining_time": "5:41:08"} +{"current_steps": 3399, "total_steps": 5472, "loss": 0.0963, "accuracy": 1.0, "learning_rate": 1.8858793873475098e-07, "epoch": 2.4832876712328766, "percentage": 62.12, "elapsed_time": "9:19:03", "remaining_time": "5:40:57"} +{"current_steps": 3400, "total_steps": 5472, "loss": 0.0456, "accuracy": 1.0, "learning_rate": 1.8843333450897614e-07, "epoch": 2.4840182648401825, "percentage": 62.13, "elapsed_time": "9:19:14", "remaining_time": "5:40:48"} +{"current_steps": 3401, "total_steps": 5472, "loss": 0.031, "accuracy": 1.0, "learning_rate": 1.8827875534482897e-07, "epoch": 2.484748858447489, "percentage": 62.15, "elapsed_time": "9:19:23", "remaining_time": "5:40:38"} +{"current_steps": 3402, "total_steps": 5472, "loss": 0.0562, "accuracy": 1.0, "learning_rate": 1.8812420130523326e-07, "epoch": 2.4854794520547947, "percentage": 62.17, "elapsed_time": "9:19:33", "remaining_time": "5:40:28"} +{"current_steps": 3403, "total_steps": 5472, "loss": 0.0288, "accuracy": 1.0, "learning_rate": 1.8796967245310258e-07, "epoch": 2.4862100456621006, "percentage": 62.19, "elapsed_time": "9:19:42", "remaining_time": "5:40:17"} +{"current_steps": 3404, "total_steps": 5472, "loss": 0.0336, "accuracy": 1.0, "learning_rate": 1.878151688513402e-07, "epoch": 2.4869406392694065, "percentage": 62.21, "elapsed_time": "9:19:51", "remaining_time": "5:40:07"} +{"current_steps": 3405, "total_steps": 5472, "loss": 0.0261, "accuracy": 1.0, "learning_rate": 1.8766069056283906e-07, "epoch": 2.4876712328767123, "percentage": 62.23, "elapsed_time": "9:20:01", "remaining_time": "5:39:57"} +{"current_steps": 3406, "total_steps": 5472, "loss": 0.044, "accuracy": 1.0, "learning_rate": 1.8750623765048183e-07, "epoch": 2.488401826484018, "percentage": 62.24, "elapsed_time": "9:20:10", "remaining_time": "5:39:47"} +{"current_steps": 3407, "total_steps": 5472, "loss": 0.054, "accuracy": 1.0, "learning_rate": 1.8735181017714092e-07, "epoch": 2.489132420091324, "percentage": 62.26, "elapsed_time": "9:20:20", "remaining_time": "5:39:37"} +{"current_steps": 3408, "total_steps": 5472, "loss": 0.0607, "accuracy": 1.0, "learning_rate": 1.8719740820567834e-07, "epoch": 2.48986301369863, "percentage": 62.28, "elapsed_time": "9:20:30", "remaining_time": "5:39:27"} +{"current_steps": 3409, "total_steps": 5472, "loss": 0.0652, "accuracy": 1.0, "learning_rate": 1.8704303179894572e-07, "epoch": 2.4905936073059363, "percentage": 62.3, "elapsed_time": "9:20:40", "remaining_time": "5:39:18"} +{"current_steps": 3410, "total_steps": 5472, "loss": 0.0551, "accuracy": 1.0, "learning_rate": 1.8688868101978416e-07, "epoch": 2.491324200913242, "percentage": 62.32, "elapsed_time": "9:20:52", "remaining_time": "5:39:09"} +{"current_steps": 3411, "total_steps": 5472, "loss": 0.07, "accuracy": 1.0, "learning_rate": 1.867343559310246e-07, "epoch": 2.492054794520548, "percentage": 62.34, "elapsed_time": "9:21:00", "remaining_time": "5:38:58"} +{"current_steps": 3412, "total_steps": 5472, "loss": 0.026, "accuracy": 1.0, "learning_rate": 1.8658005659548723e-07, "epoch": 2.492785388127854, "percentage": 62.35, "elapsed_time": "9:21:09", "remaining_time": "5:38:48"} +{"current_steps": 3413, "total_steps": 5472, "loss": 0.0397, "accuracy": 1.0, "learning_rate": 1.8642578307598207e-07, "epoch": 2.4935159817351598, "percentage": 62.37, "elapsed_time": "9:21:20", "remaining_time": "5:38:38"} +{"current_steps": 3414, "total_steps": 5472, "loss": 0.0379, "accuracy": 1.0, "learning_rate": 1.8627153543530825e-07, "epoch": 2.4942465753424656, "percentage": 62.39, "elapsed_time": "9:21:30", "remaining_time": "5:38:28"} +{"current_steps": 3415, "total_steps": 5472, "loss": 0.0533, "accuracy": 1.0, "learning_rate": 1.861173137362546e-07, "epoch": 2.4949771689497715, "percentage": 62.41, "elapsed_time": "9:21:38", "remaining_time": "5:38:18"} +{"current_steps": 3416, "total_steps": 5472, "loss": 0.0586, "accuracy": 1.0, "learning_rate": 1.8596311804159947e-07, "epoch": 2.4957077625570774, "percentage": 62.43, "elapsed_time": "9:21:49", "remaining_time": "5:38:08"} +{"current_steps": 3417, "total_steps": 5472, "loss": 0.0557, "accuracy": 1.0, "learning_rate": 1.8580894841411048e-07, "epoch": 2.4964383561643837, "percentage": 62.45, "elapsed_time": "9:21:58", "remaining_time": "5:37:58"} +{"current_steps": 3418, "total_steps": 5472, "loss": 0.0395, "accuracy": 1.0, "learning_rate": 1.856548049165446e-07, "epoch": 2.4971689497716896, "percentage": 62.46, "elapsed_time": "9:22:07", "remaining_time": "5:37:48"} +{"current_steps": 3419, "total_steps": 5472, "loss": 0.0712, "accuracy": 1.0, "learning_rate": 1.8550068761164828e-07, "epoch": 2.4978995433789954, "percentage": 62.48, "elapsed_time": "9:22:17", "remaining_time": "5:37:38"} +{"current_steps": 3420, "total_steps": 5472, "loss": 0.0615, "accuracy": 1.0, "learning_rate": 1.8534659656215728e-07, "epoch": 2.4986301369863013, "percentage": 62.5, "elapsed_time": "9:22:27", "remaining_time": "5:37:28"} +{"current_steps": 3421, "total_steps": 5472, "loss": 0.0286, "accuracy": 1.0, "learning_rate": 1.8519253183079665e-07, "epoch": 2.499360730593607, "percentage": 62.52, "elapsed_time": "9:22:37", "remaining_time": "5:37:18"} +{"current_steps": 3422, "total_steps": 5472, "loss": 0.0348, "accuracy": 1.0, "learning_rate": 1.850384934802807e-07, "epoch": 2.5000913242009135, "percentage": 62.54, "elapsed_time": "9:22:46", "remaining_time": "5:37:08"} +{"current_steps": 3423, "total_steps": 5472, "loss": 0.0703, "accuracy": 1.0, "learning_rate": 1.848844815733131e-07, "epoch": 2.500821917808219, "percentage": 62.55, "elapsed_time": "9:22:56", "remaining_time": "5:36:58"} +{"current_steps": 3424, "total_steps": 5472, "loss": 0.0989, "accuracy": 1.0, "learning_rate": 1.847304961725866e-07, "epoch": 2.5015525114155253, "percentage": 62.57, "elapsed_time": "9:23:06", "remaining_time": "5:36:48"} +{"current_steps": 3425, "total_steps": 5472, "loss": 0.0684, "accuracy": 1.0, "learning_rate": 1.8457653734078329e-07, "epoch": 2.502283105022831, "percentage": 62.59, "elapsed_time": "9:23:15", "remaining_time": "5:36:38"} +{"current_steps": 3426, "total_steps": 5472, "loss": 0.0362, "accuracy": 1.0, "learning_rate": 1.8442260514057457e-07, "epoch": 2.503013698630137, "percentage": 62.61, "elapsed_time": "9:23:25", "remaining_time": "5:36:28"} +{"current_steps": 3427, "total_steps": 5472, "loss": 0.0763, "accuracy": 1.0, "learning_rate": 1.8426869963462044e-07, "epoch": 2.503744292237443, "percentage": 62.63, "elapsed_time": "9:23:33", "remaining_time": "5:36:17"} +{"current_steps": 3428, "total_steps": 5472, "loss": 0.0475, "accuracy": 1.0, "learning_rate": 1.8411482088557076e-07, "epoch": 2.5044748858447488, "percentage": 62.65, "elapsed_time": "9:23:45", "remaining_time": "5:36:09"} +{"current_steps": 3429, "total_steps": 5472, "loss": 0.0315, "accuracy": 1.0, "learning_rate": 1.8396096895606407e-07, "epoch": 2.5052054794520546, "percentage": 62.66, "elapsed_time": "9:23:56", "remaining_time": "5:35:59"} +{"current_steps": 3430, "total_steps": 5472, "loss": 0.0542, "accuracy": 1.0, "learning_rate": 1.8380714390872814e-07, "epoch": 2.5059360730593605, "percentage": 62.68, "elapsed_time": "9:24:04", "remaining_time": "5:35:49"} +{"current_steps": 3431, "total_steps": 5472, "loss": 0.0568, "accuracy": 1.0, "learning_rate": 1.8365334580617964e-07, "epoch": 2.506666666666667, "percentage": 62.7, "elapsed_time": "9:24:14", "remaining_time": "5:35:39"} +{"current_steps": 3432, "total_steps": 5472, "loss": 0.0269, "accuracy": 1.0, "learning_rate": 1.834995747110244e-07, "epoch": 2.5073972602739727, "percentage": 62.72, "elapsed_time": "9:24:23", "remaining_time": "5:35:28"} +{"current_steps": 3433, "total_steps": 5472, "loss": 0.0363, "accuracy": 1.0, "learning_rate": 1.833458306858573e-07, "epoch": 2.5081278538812786, "percentage": 62.74, "elapsed_time": "9:24:32", "remaining_time": "5:35:18"} +{"current_steps": 3434, "total_steps": 5472, "loss": 0.1074, "accuracy": 1.0, "learning_rate": 1.8319211379326205e-07, "epoch": 2.5088584474885844, "percentage": 62.76, "elapsed_time": "9:24:44", "remaining_time": "5:35:09"} +{"current_steps": 3435, "total_steps": 5472, "loss": 0.0502, "accuracy": 1.0, "learning_rate": 1.8303842409581153e-07, "epoch": 2.5095890410958903, "percentage": 62.77, "elapsed_time": "9:24:52", "remaining_time": "5:34:58"} +{"current_steps": 3436, "total_steps": 5472, "loss": 0.0323, "accuracy": 1.0, "learning_rate": 1.8288476165606724e-07, "epoch": 2.510319634703196, "percentage": 62.79, "elapsed_time": "9:25:02", "remaining_time": "5:34:49"} +{"current_steps": 3437, "total_steps": 5472, "loss": 0.0306, "accuracy": 1.0, "learning_rate": 1.8273112653657992e-07, "epoch": 2.511050228310502, "percentage": 62.81, "elapsed_time": "9:25:11", "remaining_time": "5:34:38"} +{"current_steps": 3438, "total_steps": 5472, "loss": 0.0245, "accuracy": 1.0, "learning_rate": 1.8257751879988893e-07, "epoch": 2.5117808219178084, "percentage": 62.83, "elapsed_time": "9:25:21", "remaining_time": "5:34:28"} +{"current_steps": 3439, "total_steps": 5472, "loss": 0.0425, "accuracy": 1.0, "learning_rate": 1.824239385085227e-07, "epoch": 2.5125114155251143, "percentage": 62.85, "elapsed_time": "9:25:30", "remaining_time": "5:34:18"} +{"current_steps": 3440, "total_steps": 5472, "loss": 0.0503, "accuracy": 1.0, "learning_rate": 1.8227038572499826e-07, "epoch": 2.51324200913242, "percentage": 62.87, "elapsed_time": "9:25:41", "remaining_time": "5:34:09"} +{"current_steps": 3441, "total_steps": 5472, "loss": 0.032, "accuracy": 1.0, "learning_rate": 1.8211686051182157e-07, "epoch": 2.513972602739726, "percentage": 62.88, "elapsed_time": "9:25:52", "remaining_time": "5:33:59"} +{"current_steps": 3442, "total_steps": 5472, "loss": 0.0667, "accuracy": 1.0, "learning_rate": 1.8196336293148736e-07, "epoch": 2.514703196347032, "percentage": 62.9, "elapsed_time": "9:26:03", "remaining_time": "5:33:50"} +{"current_steps": 3443, "total_steps": 5472, "loss": 0.0316, "accuracy": 1.0, "learning_rate": 1.8180989304647926e-07, "epoch": 2.5154337899543378, "percentage": 62.92, "elapsed_time": "9:26:12", "remaining_time": "5:33:40"} +{"current_steps": 3444, "total_steps": 5472, "loss": 0.0508, "accuracy": 1.0, "learning_rate": 1.8165645091926923e-07, "epoch": 2.5161643835616436, "percentage": 62.94, "elapsed_time": "9:26:21", "remaining_time": "5:33:29"} +{"current_steps": 3445, "total_steps": 5472, "loss": 0.0972, "accuracy": 1.0, "learning_rate": 1.8150303661231824e-07, "epoch": 2.51689497716895, "percentage": 62.96, "elapsed_time": "9:26:29", "remaining_time": "5:33:19"} +{"current_steps": 3446, "total_steps": 5472, "loss": 0.0344, "accuracy": 1.0, "learning_rate": 1.8134965018807596e-07, "epoch": 2.517625570776256, "percentage": 62.98, "elapsed_time": "9:26:41", "remaining_time": "5:33:10"} +{"current_steps": 3447, "total_steps": 5472, "loss": 0.0474, "accuracy": 1.0, "learning_rate": 1.8119629170898055e-07, "epoch": 2.5183561643835617, "percentage": 62.99, "elapsed_time": "9:26:50", "remaining_time": "5:32:59"} +{"current_steps": 3448, "total_steps": 5472, "loss": 0.0498, "accuracy": 1.0, "learning_rate": 1.81042961237459e-07, "epoch": 2.5190867579908676, "percentage": 63.01, "elapsed_time": "9:26:59", "remaining_time": "5:32:49"} +{"current_steps": 3449, "total_steps": 5472, "loss": 0.0483, "accuracy": 1.0, "learning_rate": 1.808896588359265e-07, "epoch": 2.5198173515981734, "percentage": 63.03, "elapsed_time": "9:27:08", "remaining_time": "5:32:39"} +{"current_steps": 3450, "total_steps": 5472, "loss": 0.0445, "accuracy": 1.0, "learning_rate": 1.8073638456678723e-07, "epoch": 2.5205479452054793, "percentage": 63.05, "elapsed_time": "9:27:18", "remaining_time": "5:32:29"} +{"current_steps": 3451, "total_steps": 5472, "loss": 0.0305, "accuracy": 1.0, "learning_rate": 1.8058313849243374e-07, "epoch": 2.521278538812785, "percentage": 63.07, "elapsed_time": "9:27:28", "remaining_time": "5:32:19"} +{"current_steps": 3452, "total_steps": 5472, "loss": 0.0212, "accuracy": 1.0, "learning_rate": 1.804299206752472e-07, "epoch": 2.5220091324200915, "percentage": 63.08, "elapsed_time": "9:27:37", "remaining_time": "5:32:09"} +{"current_steps": 3453, "total_steps": 5472, "loss": 0.0575, "accuracy": 1.0, "learning_rate": 1.8027673117759705e-07, "epoch": 2.5227397260273974, "percentage": 63.1, "elapsed_time": "9:27:46", "remaining_time": "5:31:59"} +{"current_steps": 3454, "total_steps": 5472, "loss": 0.101, "accuracy": 0.875, "learning_rate": 1.8012357006184149e-07, "epoch": 2.5234703196347033, "percentage": 63.12, "elapsed_time": "9:27:55", "remaining_time": "5:31:48"} +{"current_steps": 3455, "total_steps": 5472, "loss": 0.0735, "accuracy": 0.875, "learning_rate": 1.7997043739032693e-07, "epoch": 2.524200913242009, "percentage": 63.14, "elapsed_time": "9:28:05", "remaining_time": "5:31:38"} +{"current_steps": 3456, "total_steps": 5472, "loss": 0.0622, "accuracy": 1.0, "learning_rate": 1.7981733322538844e-07, "epoch": 2.524931506849315, "percentage": 63.16, "elapsed_time": "9:28:14", "remaining_time": "5:31:28"} +{"current_steps": 3457, "total_steps": 5472, "loss": 0.0485, "accuracy": 1.0, "learning_rate": 1.7966425762934923e-07, "epoch": 2.525662100456621, "percentage": 63.18, "elapsed_time": "9:28:22", "remaining_time": "5:31:17"} +{"current_steps": 3458, "total_steps": 5472, "loss": 0.0604, "accuracy": 1.0, "learning_rate": 1.7951121066452103e-07, "epoch": 2.5263926940639267, "percentage": 63.19, "elapsed_time": "9:28:31", "remaining_time": "5:31:07"} +{"current_steps": 3459, "total_steps": 5472, "loss": 0.0685, "accuracy": 1.0, "learning_rate": 1.7935819239320386e-07, "epoch": 2.527123287671233, "percentage": 63.21, "elapsed_time": "9:28:41", "remaining_time": "5:30:57"} +{"current_steps": 3460, "total_steps": 5472, "loss": 0.051, "accuracy": 1.0, "learning_rate": 1.7920520287768613e-07, "epoch": 2.527853881278539, "percentage": 63.23, "elapsed_time": "9:28:49", "remaining_time": "5:30:46"} +{"current_steps": 3461, "total_steps": 5472, "loss": 0.0547, "accuracy": 1.0, "learning_rate": 1.790522421802446e-07, "epoch": 2.528584474885845, "percentage": 63.25, "elapsed_time": "9:28:58", "remaining_time": "5:30:36"} +{"current_steps": 3462, "total_steps": 5472, "loss": 0.0705, "accuracy": 1.0, "learning_rate": 1.7889931036314391e-07, "epoch": 2.5293150684931507, "percentage": 63.27, "elapsed_time": "9:29:07", "remaining_time": "5:30:25"} +{"current_steps": 3463, "total_steps": 5472, "loss": 0.0767, "accuracy": 0.875, "learning_rate": 1.7874640748863745e-07, "epoch": 2.5300456621004566, "percentage": 63.29, "elapsed_time": "9:29:16", "remaining_time": "5:30:15"} +{"current_steps": 3464, "total_steps": 5472, "loss": 0.0405, "accuracy": 1.0, "learning_rate": 1.7859353361896662e-07, "epoch": 2.5307762557077624, "percentage": 63.3, "elapsed_time": "9:29:27", "remaining_time": "5:30:06"} +{"current_steps": 3465, "total_steps": 5472, "loss": 0.0369, "accuracy": 1.0, "learning_rate": 1.7844068881636105e-07, "epoch": 2.5315068493150683, "percentage": 63.32, "elapsed_time": "9:29:39", "remaining_time": "5:29:57"} +{"current_steps": 3466, "total_steps": 5472, "loss": 0.1022, "accuracy": 0.875, "learning_rate": 1.7828787314303825e-07, "epoch": 2.5322374429223746, "percentage": 63.34, "elapsed_time": "9:29:49", "remaining_time": "5:29:47"} +{"current_steps": 3467, "total_steps": 5472, "loss": 0.0467, "accuracy": 1.0, "learning_rate": 1.7813508666120432e-07, "epoch": 2.5329680365296805, "percentage": 63.36, "elapsed_time": "9:30:00", "remaining_time": "5:29:38"} +{"current_steps": 3468, "total_steps": 5472, "loss": 0.1108, "accuracy": 1.0, "learning_rate": 1.7798232943305313e-07, "epoch": 2.5336986301369864, "percentage": 63.38, "elapsed_time": "9:30:10", "remaining_time": "5:29:28"} +{"current_steps": 3469, "total_steps": 5472, "loss": 0.0357, "accuracy": 1.0, "learning_rate": 1.7782960152076698e-07, "epoch": 2.5344292237442922, "percentage": 63.4, "elapsed_time": "9:30:20", "remaining_time": "5:29:18"} +{"current_steps": 3470, "total_steps": 5472, "loss": 0.0617, "accuracy": 1.0, "learning_rate": 1.776769029865159e-07, "epoch": 2.535159817351598, "percentage": 63.41, "elapsed_time": "9:30:29", "remaining_time": "5:29:08"} +{"current_steps": 3471, "total_steps": 5472, "loss": 0.0613, "accuracy": 1.0, "learning_rate": 1.7752423389245807e-07, "epoch": 2.535890410958904, "percentage": 63.43, "elapsed_time": "9:30:39", "remaining_time": "5:28:58"} +{"current_steps": 3472, "total_steps": 5472, "loss": 0.058, "accuracy": 1.0, "learning_rate": 1.773715943007398e-07, "epoch": 2.53662100456621, "percentage": 63.45, "elapsed_time": "9:30:50", "remaining_time": "5:28:49"} +{"current_steps": 3473, "total_steps": 5472, "loss": 0.0661, "accuracy": 1.0, "learning_rate": 1.772189842734953e-07, "epoch": 2.537351598173516, "percentage": 63.47, "elapsed_time": "9:30:59", "remaining_time": "5:28:39"} +{"current_steps": 3474, "total_steps": 5472, "loss": 0.0728, "accuracy": 1.0, "learning_rate": 1.7706640387284676e-07, "epoch": 2.538082191780822, "percentage": 63.49, "elapsed_time": "9:31:09", "remaining_time": "5:28:29"} +{"current_steps": 3475, "total_steps": 5472, "loss": 0.0711, "accuracy": 1.0, "learning_rate": 1.7691385316090425e-07, "epoch": 2.538812785388128, "percentage": 63.51, "elapsed_time": "9:31:19", "remaining_time": "5:28:19"} +{"current_steps": 3476, "total_steps": 5472, "loss": 0.0911, "accuracy": 1.0, "learning_rate": 1.7676133219976586e-07, "epoch": 2.539543378995434, "percentage": 63.52, "elapsed_time": "9:31:27", "remaining_time": "5:28:08"} +{"current_steps": 3477, "total_steps": 5472, "loss": 0.046, "accuracy": 1.0, "learning_rate": 1.7660884105151747e-07, "epoch": 2.5402739726027397, "percentage": 63.54, "elapsed_time": "9:31:36", "remaining_time": "5:27:58"} +{"current_steps": 3478, "total_steps": 5472, "loss": 0.0498, "accuracy": 0.875, "learning_rate": 1.76456379778233e-07, "epoch": 2.5410045662100456, "percentage": 63.56, "elapsed_time": "9:31:46", "remaining_time": "5:27:48"} +{"current_steps": 3479, "total_steps": 5472, "loss": 0.061, "accuracy": 1.0, "learning_rate": 1.763039484419739e-07, "epoch": 2.5417351598173514, "percentage": 63.58, "elapsed_time": "9:31:54", "remaining_time": "5:27:37"} +{"current_steps": 3480, "total_steps": 5472, "loss": 0.0759, "accuracy": 1.0, "learning_rate": 1.761515471047896e-07, "epoch": 2.5424657534246577, "percentage": 63.6, "elapsed_time": "9:32:03", "remaining_time": "5:27:27"} +{"current_steps": 3481, "total_steps": 5472, "loss": 0.0656, "accuracy": 1.0, "learning_rate": 1.7599917582871751e-07, "epoch": 2.5431963470319636, "percentage": 63.61, "elapsed_time": "9:32:12", "remaining_time": "5:27:16"} +{"current_steps": 3482, "total_steps": 5472, "loss": 0.0511, "accuracy": 1.0, "learning_rate": 1.7584683467578266e-07, "epoch": 2.5439269406392695, "percentage": 63.63, "elapsed_time": "9:32:21", "remaining_time": "5:27:06"} +{"current_steps": 3483, "total_steps": 5472, "loss": 0.0759, "accuracy": 1.0, "learning_rate": 1.7569452370799752e-07, "epoch": 2.5446575342465754, "percentage": 63.65, "elapsed_time": "9:32:30", "remaining_time": "5:26:56"} +{"current_steps": 3484, "total_steps": 5472, "loss": 0.1396, "accuracy": 0.875, "learning_rate": 1.7554224298736275e-07, "epoch": 2.5453881278538812, "percentage": 63.67, "elapsed_time": "9:32:39", "remaining_time": "5:26:45"} +{"current_steps": 3485, "total_steps": 5472, "loss": 0.0389, "accuracy": 1.0, "learning_rate": 1.753899925758664e-07, "epoch": 2.546118721461187, "percentage": 63.69, "elapsed_time": "9:32:48", "remaining_time": "5:26:35"} +{"current_steps": 3486, "total_steps": 5472, "loss": 0.0327, "accuracy": 1.0, "learning_rate": 1.7523777253548427e-07, "epoch": 2.546849315068493, "percentage": 63.71, "elapsed_time": "9:32:59", "remaining_time": "5:26:25"} +{"current_steps": 3487, "total_steps": 5472, "loss": 0.0382, "accuracy": 1.0, "learning_rate": 1.7508558292817987e-07, "epoch": 2.5475799086757993, "percentage": 63.72, "elapsed_time": "9:33:07", "remaining_time": "5:26:15"} +{"current_steps": 3488, "total_steps": 5472, "loss": 0.0426, "accuracy": 1.0, "learning_rate": 1.7493342381590414e-07, "epoch": 2.548310502283105, "percentage": 63.74, "elapsed_time": "9:33:19", "remaining_time": "5:26:06"} +{"current_steps": 3489, "total_steps": 5472, "loss": 0.059, "accuracy": 1.0, "learning_rate": 1.7478129526059574e-07, "epoch": 2.549041095890411, "percentage": 63.76, "elapsed_time": "9:33:30", "remaining_time": "5:25:57"} +{"current_steps": 3490, "total_steps": 5472, "loss": 0.0888, "accuracy": 1.0, "learning_rate": 1.7462919732418092e-07, "epoch": 2.549771689497717, "percentage": 63.78, "elapsed_time": "9:33:39", "remaining_time": "5:25:46"} +{"current_steps": 3491, "total_steps": 5472, "loss": 0.0948, "accuracy": 1.0, "learning_rate": 1.7447713006857338e-07, "epoch": 2.550502283105023, "percentage": 63.8, "elapsed_time": "9:33:48", "remaining_time": "5:25:36"} +{"current_steps": 3492, "total_steps": 5472, "loss": 0.068, "accuracy": 1.0, "learning_rate": 1.743250935556743e-07, "epoch": 2.5512328767123287, "percentage": 63.82, "elapsed_time": "9:33:57", "remaining_time": "5:25:26"} +{"current_steps": 3493, "total_steps": 5472, "loss": 0.0589, "accuracy": 1.0, "learning_rate": 1.7417308784737245e-07, "epoch": 2.5519634703196346, "percentage": 63.83, "elapsed_time": "9:34:06", "remaining_time": "5:25:15"} +{"current_steps": 3494, "total_steps": 5472, "loss": 0.0341, "accuracy": 1.0, "learning_rate": 1.7402111300554408e-07, "epoch": 2.552694063926941, "percentage": 63.85, "elapsed_time": "9:34:15", "remaining_time": "5:25:05"} +{"current_steps": 3495, "total_steps": 5472, "loss": 0.049, "accuracy": 1.0, "learning_rate": 1.738691690920527e-07, "epoch": 2.5534246575342463, "percentage": 63.87, "elapsed_time": "9:34:24", "remaining_time": "5:24:55"} +{"current_steps": 3496, "total_steps": 5472, "loss": 0.0684, "accuracy": 0.875, "learning_rate": 1.737172561687495e-07, "epoch": 2.5541552511415526, "percentage": 63.89, "elapsed_time": "9:34:33", "remaining_time": "5:24:45"} +{"current_steps": 3497, "total_steps": 5472, "loss": 0.0674, "accuracy": 1.0, "learning_rate": 1.735653742974727e-07, "epoch": 2.5548858447488585, "percentage": 63.91, "elapsed_time": "9:34:42", "remaining_time": "5:24:34"} +{"current_steps": 3498, "total_steps": 5472, "loss": 0.0952, "accuracy": 0.875, "learning_rate": 1.7341352354004813e-07, "epoch": 2.5556164383561644, "percentage": 63.93, "elapsed_time": "9:34:52", "remaining_time": "5:24:24"} +{"current_steps": 3499, "total_steps": 5472, "loss": 0.0606, "accuracy": 1.0, "learning_rate": 1.73261703958289e-07, "epoch": 2.5563470319634702, "percentage": 63.94, "elapsed_time": "9:35:02", "remaining_time": "5:24:15"} +{"current_steps": 3500, "total_steps": 5472, "loss": 0.0415, "accuracy": 1.0, "learning_rate": 1.7310991561399574e-07, "epoch": 2.557077625570776, "percentage": 63.96, "elapsed_time": "9:35:12", "remaining_time": "5:24:05"} +{"current_steps": 3501, "total_steps": 5472, "loss": 0.0463, "accuracy": 1.0, "learning_rate": 1.7295815856895592e-07, "epoch": 2.5578082191780824, "percentage": 63.98, "elapsed_time": "9:35:23", "remaining_time": "5:23:56"} +{"current_steps": 3502, "total_steps": 5472, "loss": 0.0215, "accuracy": 1.0, "learning_rate": 1.7280643288494455e-07, "epoch": 2.558538812785388, "percentage": 64.0, "elapsed_time": "9:35:32", "remaining_time": "5:23:45"} +{"current_steps": 3503, "total_steps": 5472, "loss": 0.0792, "accuracy": 1.0, "learning_rate": 1.7265473862372386e-07, "epoch": 2.559269406392694, "percentage": 64.02, "elapsed_time": "9:35:41", "remaining_time": "5:23:35"} +{"current_steps": 3504, "total_steps": 5472, "loss": 0.0451, "accuracy": 1.0, "learning_rate": 1.7250307584704332e-07, "epoch": 2.56, "percentage": 64.04, "elapsed_time": "9:35:50", "remaining_time": "5:23:25"} +{"current_steps": 3505, "total_steps": 5472, "loss": 0.0555, "accuracy": 1.0, "learning_rate": 1.7235144461663935e-07, "epoch": 2.560730593607306, "percentage": 64.05, "elapsed_time": "9:36:01", "remaining_time": "5:23:15"} +{"current_steps": 3506, "total_steps": 5472, "loss": 0.0379, "accuracy": 1.0, "learning_rate": 1.7219984499423585e-07, "epoch": 2.561461187214612, "percentage": 64.07, "elapsed_time": "9:36:10", "remaining_time": "5:23:05"} +{"current_steps": 3507, "total_steps": 5472, "loss": 0.0571, "accuracy": 1.0, "learning_rate": 1.720482770415436e-07, "epoch": 2.5621917808219177, "percentage": 64.09, "elapsed_time": "9:36:19", "remaining_time": "5:22:55"} +{"current_steps": 3508, "total_steps": 5472, "loss": 0.0666, "accuracy": 1.0, "learning_rate": 1.7189674082026067e-07, "epoch": 2.562922374429224, "percentage": 64.11, "elapsed_time": "9:36:29", "remaining_time": "5:22:45"} +{"current_steps": 3509, "total_steps": 5472, "loss": 0.1031, "accuracy": 1.0, "learning_rate": 1.7174523639207216e-07, "epoch": 2.5636529680365294, "percentage": 64.13, "elapsed_time": "9:36:38", "remaining_time": "5:22:34"} +{"current_steps": 3510, "total_steps": 5472, "loss": 0.0489, "accuracy": 1.0, "learning_rate": 1.7159376381865013e-07, "epoch": 2.5643835616438357, "percentage": 64.14, "elapsed_time": "9:36:48", "remaining_time": "5:22:25"} +{"current_steps": 3511, "total_steps": 5472, "loss": 0.0434, "accuracy": 1.0, "learning_rate": 1.714423231616537e-07, "epoch": 2.5651141552511416, "percentage": 64.16, "elapsed_time": "9:36:57", "remaining_time": "5:22:14"} +{"current_steps": 3512, "total_steps": 5472, "loss": 0.0662, "accuracy": 1.0, "learning_rate": 1.7129091448272916e-07, "epoch": 2.5658447488584475, "percentage": 64.18, "elapsed_time": "9:37:08", "remaining_time": "5:22:05"} +{"current_steps": 3513, "total_steps": 5472, "loss": 0.0643, "accuracy": 1.0, "learning_rate": 1.711395378435097e-07, "epoch": 2.5665753424657534, "percentage": 64.2, "elapsed_time": "9:37:17", "remaining_time": "5:21:55"} +{"current_steps": 3514, "total_steps": 5472, "loss": 0.0329, "accuracy": 1.0, "learning_rate": 1.7098819330561527e-07, "epoch": 2.5673059360730592, "percentage": 64.22, "elapsed_time": "9:37:27", "remaining_time": "5:21:45"} +{"current_steps": 3515, "total_steps": 5472, "loss": 0.0614, "accuracy": 1.0, "learning_rate": 1.7083688093065294e-07, "epoch": 2.5680365296803656, "percentage": 64.24, "elapsed_time": "9:37:37", "remaining_time": "5:21:35"} +{"current_steps": 3516, "total_steps": 5472, "loss": 0.0533, "accuracy": 1.0, "learning_rate": 1.7068560078021677e-07, "epoch": 2.568767123287671, "percentage": 64.25, "elapsed_time": "9:37:47", "remaining_time": "5:21:25"} +{"current_steps": 3517, "total_steps": 5472, "loss": 0.0435, "accuracy": 1.0, "learning_rate": 1.7053435291588764e-07, "epoch": 2.5694977168949773, "percentage": 64.27, "elapsed_time": "9:37:56", "remaining_time": "5:21:15"} +{"current_steps": 3518, "total_steps": 5472, "loss": 0.0313, "accuracy": 1.0, "learning_rate": 1.7038313739923306e-07, "epoch": 2.570228310502283, "percentage": 64.29, "elapsed_time": "9:38:05", "remaining_time": "5:21:05"} +{"current_steps": 3519, "total_steps": 5472, "loss": 0.0977, "accuracy": 1.0, "learning_rate": 1.7023195429180767e-07, "epoch": 2.570958904109589, "percentage": 64.31, "elapsed_time": "9:38:13", "remaining_time": "5:20:54"} +{"current_steps": 3520, "total_steps": 5472, "loss": 0.046, "accuracy": 1.0, "learning_rate": 1.7008080365515277e-07, "epoch": 2.571689497716895, "percentage": 64.33, "elapsed_time": "9:38:22", "remaining_time": "5:20:44"} +{"current_steps": 3521, "total_steps": 5472, "loss": 0.0439, "accuracy": 1.0, "learning_rate": 1.699296855507965e-07, "epoch": 2.572420091324201, "percentage": 64.35, "elapsed_time": "9:38:31", "remaining_time": "5:20:33"} +{"current_steps": 3522, "total_steps": 5472, "loss": 0.0393, "accuracy": 1.0, "learning_rate": 1.697786000402538e-07, "epoch": 2.573150684931507, "percentage": 64.36, "elapsed_time": "9:38:42", "remaining_time": "5:20:24"} +{"current_steps": 3523, "total_steps": 5472, "loss": 0.0804, "accuracy": 1.0, "learning_rate": 1.6962754718502615e-07, "epoch": 2.5738812785388125, "percentage": 64.38, "elapsed_time": "9:38:51", "remaining_time": "5:20:14"} +{"current_steps": 3524, "total_steps": 5472, "loss": 0.0494, "accuracy": 1.0, "learning_rate": 1.6947652704660188e-07, "epoch": 2.574611872146119, "percentage": 64.4, "elapsed_time": "9:39:02", "remaining_time": "5:20:04"} +{"current_steps": 3525, "total_steps": 5472, "loss": 0.0309, "accuracy": 1.0, "learning_rate": 1.6932553968645605e-07, "epoch": 2.5753424657534247, "percentage": 64.42, "elapsed_time": "9:39:13", "remaining_time": "5:19:55"} +{"current_steps": 3526, "total_steps": 5472, "loss": 0.1194, "accuracy": 1.0, "learning_rate": 1.691745851660503e-07, "epoch": 2.5760730593607306, "percentage": 64.44, "elapsed_time": "9:39:22", "remaining_time": "5:19:45"} +{"current_steps": 3527, "total_steps": 5472, "loss": 0.0321, "accuracy": 1.0, "learning_rate": 1.6902366354683292e-07, "epoch": 2.5768036529680365, "percentage": 64.46, "elapsed_time": "9:39:31", "remaining_time": "5:19:35"} +{"current_steps": 3528, "total_steps": 5472, "loss": 0.0618, "accuracy": 1.0, "learning_rate": 1.6887277489023875e-07, "epoch": 2.5775342465753424, "percentage": 64.47, "elapsed_time": "9:39:42", "remaining_time": "5:19:25"} +{"current_steps": 3529, "total_steps": 5472, "loss": 0.068, "accuracy": 1.0, "learning_rate": 1.687219192576893e-07, "epoch": 2.5782648401826487, "percentage": 64.49, "elapsed_time": "9:39:51", "remaining_time": "5:19:15"} +{"current_steps": 3530, "total_steps": 5472, "loss": 0.0519, "accuracy": 1.0, "learning_rate": 1.6857109671059268e-07, "epoch": 2.578995433789954, "percentage": 64.51, "elapsed_time": "9:40:00", "remaining_time": "5:19:05"} +{"current_steps": 3531, "total_steps": 5472, "loss": 0.047, "accuracy": 1.0, "learning_rate": 1.684203073103433e-07, "epoch": 2.5797260273972604, "percentage": 64.53, "elapsed_time": "9:40:09", "remaining_time": "5:18:54"} +{"current_steps": 3532, "total_steps": 5472, "loss": 0.0924, "accuracy": 1.0, "learning_rate": 1.682695511183223e-07, "epoch": 2.5804566210045663, "percentage": 64.55, "elapsed_time": "9:40:19", "remaining_time": "5:18:45"} +{"current_steps": 3533, "total_steps": 5472, "loss": 0.0387, "accuracy": 1.0, "learning_rate": 1.6811882819589718e-07, "epoch": 2.581187214611872, "percentage": 64.57, "elapsed_time": "9:40:29", "remaining_time": "5:18:35"} +{"current_steps": 3534, "total_steps": 5472, "loss": 0.038, "accuracy": 1.0, "learning_rate": 1.6796813860442202e-07, "epoch": 2.581917808219178, "percentage": 64.58, "elapsed_time": "9:40:40", "remaining_time": "5:18:25"} +{"current_steps": 3535, "total_steps": 5472, "loss": 0.1003, "accuracy": 0.875, "learning_rate": 1.6781748240523737e-07, "epoch": 2.582648401826484, "percentage": 64.6, "elapsed_time": "9:40:50", "remaining_time": "5:18:16"} +{"current_steps": 3536, "total_steps": 5472, "loss": 0.0394, "accuracy": 1.0, "learning_rate": 1.6766685965966987e-07, "epoch": 2.58337899543379, "percentage": 64.62, "elapsed_time": "9:40:59", "remaining_time": "5:18:06"} +{"current_steps": 3537, "total_steps": 5472, "loss": 0.0262, "accuracy": 1.0, "learning_rate": 1.6751627042903283e-07, "epoch": 2.5841095890410957, "percentage": 64.64, "elapsed_time": "9:41:08", "remaining_time": "5:17:55"} +{"current_steps": 3538, "total_steps": 5472, "loss": 0.0208, "accuracy": 1.0, "learning_rate": 1.673657147746258e-07, "epoch": 2.584840182648402, "percentage": 64.66, "elapsed_time": "9:41:18", "remaining_time": "5:17:45"} +{"current_steps": 3539, "total_steps": 5472, "loss": 0.0488, "accuracy": 1.0, "learning_rate": 1.6721519275773483e-07, "epoch": 2.585570776255708, "percentage": 64.67, "elapsed_time": "9:41:27", "remaining_time": "5:17:35"} +{"current_steps": 3540, "total_steps": 5472, "loss": 0.1269, "accuracy": 1.0, "learning_rate": 1.67064704439632e-07, "epoch": 2.5863013698630137, "percentage": 64.69, "elapsed_time": "9:41:36", "remaining_time": "5:17:25"} +{"current_steps": 3541, "total_steps": 5472, "loss": 0.0725, "accuracy": 1.0, "learning_rate": 1.6691424988157592e-07, "epoch": 2.5870319634703196, "percentage": 64.71, "elapsed_time": "9:41:46", "remaining_time": "5:17:15"} +{"current_steps": 3542, "total_steps": 5472, "loss": 0.0815, "accuracy": 1.0, "learning_rate": 1.6676382914481128e-07, "epoch": 2.5877625570776255, "percentage": 64.73, "elapsed_time": "9:41:56", "remaining_time": "5:17:05"} +{"current_steps": 3543, "total_steps": 5472, "loss": 0.0159, "accuracy": 1.0, "learning_rate": 1.6661344229056917e-07, "epoch": 2.5884931506849314, "percentage": 64.75, "elapsed_time": "9:42:05", "remaining_time": "5:16:55"} +{"current_steps": 3544, "total_steps": 5472, "loss": 0.0509, "accuracy": 1.0, "learning_rate": 1.664630893800667e-07, "epoch": 2.5892237442922372, "percentage": 64.77, "elapsed_time": "9:42:15", "remaining_time": "5:16:45"} +{"current_steps": 3545, "total_steps": 5472, "loss": 0.08, "accuracy": 0.875, "learning_rate": 1.6631277047450728e-07, "epoch": 2.5899543378995435, "percentage": 64.78, "elapsed_time": "9:42:24", "remaining_time": "5:16:35"} +{"current_steps": 3546, "total_steps": 5472, "loss": 0.0547, "accuracy": 1.0, "learning_rate": 1.6616248563508052e-07, "epoch": 2.5906849315068494, "percentage": 64.8, "elapsed_time": "9:42:34", "remaining_time": "5:16:25"} +{"current_steps": 3547, "total_steps": 5472, "loss": 0.0631, "accuracy": 1.0, "learning_rate": 1.6601223492296206e-07, "epoch": 2.5914155251141553, "percentage": 64.82, "elapsed_time": "9:42:44", "remaining_time": "5:16:15"} +{"current_steps": 3548, "total_steps": 5472, "loss": 0.0353, "accuracy": 1.0, "learning_rate": 1.658620183993138e-07, "epoch": 2.592146118721461, "percentage": 64.84, "elapsed_time": "9:42:54", "remaining_time": "5:16:05"} +{"current_steps": 3549, "total_steps": 5472, "loss": 0.0823, "accuracy": 1.0, "learning_rate": 1.6571183612528338e-07, "epoch": 2.592876712328767, "percentage": 64.86, "elapsed_time": "9:43:04", "remaining_time": "5:15:55"} +{"current_steps": 3550, "total_steps": 5472, "loss": 0.0258, "accuracy": 1.0, "learning_rate": 1.655616881620049e-07, "epoch": 2.593607305936073, "percentage": 64.88, "elapsed_time": "9:43:13", "remaining_time": "5:15:45"} +{"current_steps": 3551, "total_steps": 5472, "loss": 0.0827, "accuracy": 1.0, "learning_rate": 1.654115745705982e-07, "epoch": 2.594337899543379, "percentage": 64.89, "elapsed_time": "9:43:22", "remaining_time": "5:15:35"} +{"current_steps": 3552, "total_steps": 5472, "loss": 0.0481, "accuracy": 1.0, "learning_rate": 1.652614954121695e-07, "epoch": 2.595068493150685, "percentage": 64.91, "elapsed_time": "9:43:32", "remaining_time": "5:15:25"} +{"current_steps": 3553, "total_steps": 5472, "loss": 0.0523, "accuracy": 1.0, "learning_rate": 1.651114507478105e-07, "epoch": 2.595799086757991, "percentage": 64.93, "elapsed_time": "9:43:41", "remaining_time": "5:15:15"} +{"current_steps": 3554, "total_steps": 5472, "loss": 0.0475, "accuracy": 1.0, "learning_rate": 1.6496144063859918e-07, "epoch": 2.596529680365297, "percentage": 64.95, "elapsed_time": "9:43:50", "remaining_time": "5:15:04"} +{"current_steps": 3555, "total_steps": 5472, "loss": 0.0514, "accuracy": 1.0, "learning_rate": 1.6481146514559943e-07, "epoch": 2.5972602739726027, "percentage": 64.97, "elapsed_time": "9:43:58", "remaining_time": "5:14:54"} +{"current_steps": 3556, "total_steps": 5472, "loss": 0.0417, "accuracy": 1.0, "learning_rate": 1.6466152432986104e-07, "epoch": 2.5979908675799086, "percentage": 64.99, "elapsed_time": "9:44:07", "remaining_time": "5:14:44"} +{"current_steps": 3557, "total_steps": 5472, "loss": 0.0696, "accuracy": 1.0, "learning_rate": 1.6451161825241955e-07, "epoch": 2.5987214611872145, "percentage": 65.0, "elapsed_time": "9:44:18", "remaining_time": "5:14:34"} +{"current_steps": 3558, "total_steps": 5472, "loss": 0.0479, "accuracy": 1.0, "learning_rate": 1.643617469742965e-07, "epoch": 2.5994520547945204, "percentage": 65.02, "elapsed_time": "9:44:27", "remaining_time": "5:14:24"} +{"current_steps": 3559, "total_steps": 5472, "loss": 0.0394, "accuracy": 1.0, "learning_rate": 1.6421191055649925e-07, "epoch": 2.6001826484018267, "percentage": 65.04, "elapsed_time": "9:44:36", "remaining_time": "5:14:13"} +{"current_steps": 3560, "total_steps": 5472, "loss": 0.0835, "accuracy": 0.875, "learning_rate": 1.640621090600209e-07, "epoch": 2.6009132420091325, "percentage": 65.06, "elapsed_time": "9:44:45", "remaining_time": "5:14:03"} +{"current_steps": 3561, "total_steps": 5472, "loss": 0.032, "accuracy": 1.0, "learning_rate": 1.6391234254584046e-07, "epoch": 2.6016438356164384, "percentage": 65.08, "elapsed_time": "9:44:55", "remaining_time": "5:13:53"} +{"current_steps": 3562, "total_steps": 5472, "loss": 0.0307, "accuracy": 1.0, "learning_rate": 1.6376261107492255e-07, "epoch": 2.6023744292237443, "percentage": 65.1, "elapsed_time": "9:45:04", "remaining_time": "5:13:43"} +{"current_steps": 3563, "total_steps": 5472, "loss": 0.0341, "accuracy": 1.0, "learning_rate": 1.636129147082176e-07, "epoch": 2.60310502283105, "percentage": 65.11, "elapsed_time": "9:45:15", "remaining_time": "5:13:34"} +{"current_steps": 3564, "total_steps": 5472, "loss": 0.0733, "accuracy": 1.0, "learning_rate": 1.6346325350666176e-07, "epoch": 2.603835616438356, "percentage": 65.13, "elapsed_time": "9:45:25", "remaining_time": "5:13:24"} +{"current_steps": 3565, "total_steps": 5472, "loss": 0.09, "accuracy": 1.0, "learning_rate": 1.6331362753117695e-07, "epoch": 2.604566210045662, "percentage": 65.15, "elapsed_time": "9:45:33", "remaining_time": "5:13:13"} +{"current_steps": 3566, "total_steps": 5472, "loss": 0.0849, "accuracy": 1.0, "learning_rate": 1.6316403684267043e-07, "epoch": 2.6052968036529682, "percentage": 65.17, "elapsed_time": "9:45:43", "remaining_time": "5:13:03"} +{"current_steps": 3567, "total_steps": 5472, "loss": 0.0589, "accuracy": 1.0, "learning_rate": 1.6301448150203545e-07, "epoch": 2.606027397260274, "percentage": 65.19, "elapsed_time": "9:45:53", "remaining_time": "5:12:54"} +{"current_steps": 3568, "total_steps": 5472, "loss": 0.0709, "accuracy": 1.0, "learning_rate": 1.6286496157015068e-07, "epoch": 2.60675799086758, "percentage": 65.2, "elapsed_time": "9:46:02", "remaining_time": "5:12:43"} +{"current_steps": 3569, "total_steps": 5472, "loss": 0.0646, "accuracy": 1.0, "learning_rate": 1.6271547710788063e-07, "epoch": 2.607488584474886, "percentage": 65.22, "elapsed_time": "9:46:13", "remaining_time": "5:12:34"} +{"current_steps": 3570, "total_steps": 5472, "loss": 0.0523, "accuracy": 1.0, "learning_rate": 1.6256602817607493e-07, "epoch": 2.6082191780821917, "percentage": 65.24, "elapsed_time": "9:46:21", "remaining_time": "5:12:23"} +{"current_steps": 3571, "total_steps": 5472, "loss": 0.0415, "accuracy": 1.0, "learning_rate": 1.6241661483556906e-07, "epoch": 2.6089497716894976, "percentage": 65.26, "elapsed_time": "9:46:31", "remaining_time": "5:12:14"} +{"current_steps": 3572, "total_steps": 5472, "loss": 0.0406, "accuracy": 1.0, "learning_rate": 1.6226723714718398e-07, "epoch": 2.6096803652968035, "percentage": 65.28, "elapsed_time": "9:46:41", "remaining_time": "5:12:04"} +{"current_steps": 3573, "total_steps": 5472, "loss": 0.0703, "accuracy": 1.0, "learning_rate": 1.6211789517172607e-07, "epoch": 2.61041095890411, "percentage": 65.3, "elapsed_time": "9:46:50", "remaining_time": "5:11:53"} +{"current_steps": 3574, "total_steps": 5472, "loss": 0.0816, "accuracy": 0.875, "learning_rate": 1.6196858896998732e-07, "epoch": 2.6111415525114157, "percentage": 65.31, "elapsed_time": "9:46:58", "remaining_time": "5:11:43"} +{"current_steps": 3575, "total_steps": 5472, "loss": 0.0284, "accuracy": 1.0, "learning_rate": 1.618193186027449e-07, "epoch": 2.6118721461187215, "percentage": 65.33, "elapsed_time": "9:47:08", "remaining_time": "5:11:33"} +{"current_steps": 3576, "total_steps": 5472, "loss": 0.088, "accuracy": 0.875, "learning_rate": 1.6167008413076156e-07, "epoch": 2.6126027397260274, "percentage": 65.35, "elapsed_time": "9:47:17", "remaining_time": "5:11:23"} +{"current_steps": 3577, "total_steps": 5472, "loss": 0.0326, "accuracy": 1.0, "learning_rate": 1.6152088561478542e-07, "epoch": 2.6133333333333333, "percentage": 65.37, "elapsed_time": "9:47:27", "remaining_time": "5:11:12"} +{"current_steps": 3578, "total_steps": 5472, "loss": 0.0454, "accuracy": 1.0, "learning_rate": 1.6137172311555004e-07, "epoch": 2.614063926940639, "percentage": 65.39, "elapsed_time": "9:47:37", "remaining_time": "5:11:03"} +{"current_steps": 3579, "total_steps": 5472, "loss": 0.0412, "accuracy": 1.0, "learning_rate": 1.6122259669377412e-07, "epoch": 2.614794520547945, "percentage": 65.41, "elapsed_time": "9:47:46", "remaining_time": "5:10:53"} +{"current_steps": 3580, "total_steps": 5472, "loss": 0.0276, "accuracy": 1.0, "learning_rate": 1.6107350641016182e-07, "epoch": 2.6155251141552514, "percentage": 65.42, "elapsed_time": "9:47:57", "remaining_time": "5:10:43"} +{"current_steps": 3581, "total_steps": 5472, "loss": 0.0601, "accuracy": 1.0, "learning_rate": 1.609244523254026e-07, "epoch": 2.6162557077625572, "percentage": 65.44, "elapsed_time": "9:48:08", "remaining_time": "5:10:34"} +{"current_steps": 3582, "total_steps": 5472, "loss": 0.0409, "accuracy": 1.0, "learning_rate": 1.6077543450017112e-07, "epoch": 2.616986301369863, "percentage": 65.46, "elapsed_time": "9:48:18", "remaining_time": "5:10:24"} +{"current_steps": 3583, "total_steps": 5472, "loss": 0.0353, "accuracy": 1.0, "learning_rate": 1.6062645299512744e-07, "epoch": 2.617716894977169, "percentage": 65.48, "elapsed_time": "9:48:27", "remaining_time": "5:10:14"} +{"current_steps": 3584, "total_steps": 5472, "loss": 0.0499, "accuracy": 1.0, "learning_rate": 1.6047750787091642e-07, "epoch": 2.618447488584475, "percentage": 65.5, "elapsed_time": "9:48:36", "remaining_time": "5:10:04"} +{"current_steps": 3585, "total_steps": 5472, "loss": 0.0938, "accuracy": 1.0, "learning_rate": 1.6032859918816854e-07, "epoch": 2.6191780821917807, "percentage": 65.52, "elapsed_time": "9:48:45", "remaining_time": "5:09:53"} +{"current_steps": 3586, "total_steps": 5472, "loss": 0.0492, "accuracy": 1.0, "learning_rate": 1.6017972700749927e-07, "epoch": 2.6199086757990866, "percentage": 65.53, "elapsed_time": "9:48:55", "remaining_time": "5:09:43"} +{"current_steps": 3587, "total_steps": 5472, "loss": 0.0378, "accuracy": 1.0, "learning_rate": 1.6003089138950944e-07, "epoch": 2.620639269406393, "percentage": 65.55, "elapsed_time": "9:49:05", "remaining_time": "5:09:34"} +{"current_steps": 3588, "total_steps": 5472, "loss": 0.0602, "accuracy": 1.0, "learning_rate": 1.598820923947845e-07, "epoch": 2.621369863013699, "percentage": 65.57, "elapsed_time": "9:49:15", "remaining_time": "5:09:24"} +{"current_steps": 3589, "total_steps": 5472, "loss": 0.0366, "accuracy": 1.0, "learning_rate": 1.597333300838954e-07, "epoch": 2.6221004566210047, "percentage": 65.59, "elapsed_time": "9:49:24", "remaining_time": "5:09:14"} +{"current_steps": 3590, "total_steps": 5472, "loss": 0.0671, "accuracy": 1.0, "learning_rate": 1.5958460451739814e-07, "epoch": 2.6228310502283105, "percentage": 65.61, "elapsed_time": "9:49:33", "remaining_time": "5:09:04"} +{"current_steps": 3591, "total_steps": 5472, "loss": 0.0452, "accuracy": 1.0, "learning_rate": 1.5943591575583366e-07, "epoch": 2.6235616438356164, "percentage": 65.62, "elapsed_time": "9:49:44", "remaining_time": "5:08:54"} +{"current_steps": 3592, "total_steps": 5472, "loss": 0.0486, "accuracy": 1.0, "learning_rate": 1.5928726385972784e-07, "epoch": 2.6242922374429223, "percentage": 65.64, "elapsed_time": "9:49:54", "remaining_time": "5:08:45"} +{"current_steps": 3593, "total_steps": 5472, "loss": 0.0846, "accuracy": 1.0, "learning_rate": 1.591386488895917e-07, "epoch": 2.625022831050228, "percentage": 65.66, "elapsed_time": "9:50:04", "remaining_time": "5:08:34"} +{"current_steps": 3594, "total_steps": 5472, "loss": 0.1006, "accuracy": 0.875, "learning_rate": 1.5899007090592115e-07, "epoch": 2.6257534246575345, "percentage": 65.68, "elapsed_time": "9:50:13", "remaining_time": "5:08:24"} +{"current_steps": 3595, "total_steps": 5472, "loss": 0.1029, "accuracy": 1.0, "learning_rate": 1.5884152996919715e-07, "epoch": 2.6264840182648403, "percentage": 65.7, "elapsed_time": "9:50:21", "remaining_time": "5:08:14"} +{"current_steps": 3596, "total_steps": 5472, "loss": 0.0406, "accuracy": 1.0, "learning_rate": 1.5869302613988545e-07, "epoch": 2.627214611872146, "percentage": 65.72, "elapsed_time": "9:50:31", "remaining_time": "5:08:04"} +{"current_steps": 3597, "total_steps": 5472, "loss": 0.0657, "accuracy": 1.0, "learning_rate": 1.585445594784367e-07, "epoch": 2.627945205479452, "percentage": 65.73, "elapsed_time": "9:50:41", "remaining_time": "5:07:54"} +{"current_steps": 3598, "total_steps": 5472, "loss": 0.052, "accuracy": 1.0, "learning_rate": 1.5839613004528652e-07, "epoch": 2.628675799086758, "percentage": 65.75, "elapsed_time": "9:50:51", "remaining_time": "5:07:44"} +{"current_steps": 3599, "total_steps": 5472, "loss": 0.0459, "accuracy": 1.0, "learning_rate": 1.582477379008553e-07, "epoch": 2.629406392694064, "percentage": 65.77, "elapsed_time": "9:51:01", "remaining_time": "5:07:34"} +{"current_steps": 3600, "total_steps": 5472, "loss": 0.0897, "accuracy": 1.0, "learning_rate": 1.5809938310554838e-07, "epoch": 2.6301369863013697, "percentage": 65.79, "elapsed_time": "9:51:10", "remaining_time": "5:07:24"} +{"current_steps": 3601, "total_steps": 5472, "loss": 0.0506, "accuracy": 1.0, "learning_rate": 1.5795106571975559e-07, "epoch": 2.630867579908676, "percentage": 65.81, "elapsed_time": "9:51:19", "remaining_time": "5:07:14"} +{"current_steps": 3602, "total_steps": 5472, "loss": 0.0904, "accuracy": 0.875, "learning_rate": 1.578027858038518e-07, "epoch": 2.6315981735159815, "percentage": 65.83, "elapsed_time": "9:51:28", "remaining_time": "5:07:04"} +{"current_steps": 3603, "total_steps": 5472, "loss": 0.0567, "accuracy": 1.0, "learning_rate": 1.5765454341819655e-07, "epoch": 2.632328767123288, "percentage": 65.84, "elapsed_time": "9:51:38", "remaining_time": "5:06:54"} +{"current_steps": 3604, "total_steps": 5472, "loss": 0.0494, "accuracy": 1.0, "learning_rate": 1.5750633862313434e-07, "epoch": 2.6330593607305937, "percentage": 65.86, "elapsed_time": "9:51:48", "remaining_time": "5:06:44"} +{"current_steps": 3605, "total_steps": 5472, "loss": 0.0293, "accuracy": 1.0, "learning_rate": 1.5735817147899378e-07, "epoch": 2.6337899543378995, "percentage": 65.88, "elapsed_time": "9:51:57", "remaining_time": "5:06:34"} +{"current_steps": 3606, "total_steps": 5472, "loss": 0.0585, "accuracy": 1.0, "learning_rate": 1.5721004204608871e-07, "epoch": 2.6345205479452054, "percentage": 65.9, "elapsed_time": "9:52:06", "remaining_time": "5:06:23"} +{"current_steps": 3607, "total_steps": 5472, "loss": 0.02, "accuracy": 1.0, "learning_rate": 1.5706195038471737e-07, "epoch": 2.6352511415525113, "percentage": 65.92, "elapsed_time": "9:52:17", "remaining_time": "5:06:14"} +{"current_steps": 3608, "total_steps": 5472, "loss": 0.0516, "accuracy": 1.0, "learning_rate": 1.569138965551627e-07, "epoch": 2.6359817351598176, "percentage": 65.94, "elapsed_time": "9:52:28", "remaining_time": "5:06:05"} +{"current_steps": 3609, "total_steps": 5472, "loss": 0.0477, "accuracy": 1.0, "learning_rate": 1.5676588061769222e-07, "epoch": 2.636712328767123, "percentage": 65.95, "elapsed_time": "9:52:40", "remaining_time": "5:05:56"} +{"current_steps": 3610, "total_steps": 5472, "loss": 0.0345, "accuracy": 1.0, "learning_rate": 1.5661790263255798e-07, "epoch": 2.6374429223744293, "percentage": 65.97, "elapsed_time": "9:52:49", "remaining_time": "5:05:46"} +{"current_steps": 3611, "total_steps": 5472, "loss": 0.0775, "accuracy": 1.0, "learning_rate": 1.5646996265999663e-07, "epoch": 2.638173515981735, "percentage": 65.99, "elapsed_time": "9:52:57", "remaining_time": "5:05:35"} +{"current_steps": 3612, "total_steps": 5472, "loss": 0.0387, "accuracy": 1.0, "learning_rate": 1.5632206076022935e-07, "epoch": 2.638904109589041, "percentage": 66.01, "elapsed_time": "9:53:07", "remaining_time": "5:05:25"} +{"current_steps": 3613, "total_steps": 5472, "loss": 0.037, "accuracy": 1.0, "learning_rate": 1.561741969934619e-07, "epoch": 2.639634703196347, "percentage": 66.03, "elapsed_time": "9:53:17", "remaining_time": "5:05:15"} +{"current_steps": 3614, "total_steps": 5472, "loss": 0.0258, "accuracy": 1.0, "learning_rate": 1.5602637141988428e-07, "epoch": 2.640365296803653, "percentage": 66.05, "elapsed_time": "9:53:26", "remaining_time": "5:05:05"} +{"current_steps": 3615, "total_steps": 5472, "loss": 0.0481, "accuracy": 1.0, "learning_rate": 1.5587858409967118e-07, "epoch": 2.641095890410959, "percentage": 66.06, "elapsed_time": "9:53:36", "remaining_time": "5:04:55"} +{"current_steps": 3616, "total_steps": 5472, "loss": 0.0446, "accuracy": 1.0, "learning_rate": 1.5573083509298158e-07, "epoch": 2.6418264840182646, "percentage": 66.08, "elapsed_time": "9:53:46", "remaining_time": "5:04:46"} +{"current_steps": 3617, "total_steps": 5472, "loss": 0.0204, "accuracy": 1.0, "learning_rate": 1.5558312445995903e-07, "epoch": 2.642557077625571, "percentage": 66.1, "elapsed_time": "9:53:56", "remaining_time": "5:04:36"} +{"current_steps": 3618, "total_steps": 5472, "loss": 0.0544, "accuracy": 1.0, "learning_rate": 1.5543545226073113e-07, "epoch": 2.643287671232877, "percentage": 66.12, "elapsed_time": "9:54:06", "remaining_time": "5:04:26"} +{"current_steps": 3619, "total_steps": 5472, "loss": 0.0483, "accuracy": 1.0, "learning_rate": 1.5528781855541018e-07, "epoch": 2.6440182648401827, "percentage": 66.14, "elapsed_time": "9:54:15", "remaining_time": "5:04:16"} +{"current_steps": 3620, "total_steps": 5472, "loss": 0.0616, "accuracy": 1.0, "learning_rate": 1.5514022340409267e-07, "epoch": 2.6447488584474885, "percentage": 66.15, "elapsed_time": "9:54:27", "remaining_time": "5:04:07"} +{"current_steps": 3621, "total_steps": 5472, "loss": 0.0266, "accuracy": 1.0, "learning_rate": 1.5499266686685934e-07, "epoch": 2.6454794520547944, "percentage": 66.17, "elapsed_time": "9:54:36", "remaining_time": "5:03:57"} +{"current_steps": 3622, "total_steps": 5472, "loss": 0.0394, "accuracy": 1.0, "learning_rate": 1.5484514900377548e-07, "epoch": 2.6462100456621007, "percentage": 66.19, "elapsed_time": "9:54:47", "remaining_time": "5:03:47"} +{"current_steps": 3623, "total_steps": 5472, "loss": 0.0484, "accuracy": 1.0, "learning_rate": 1.5469766987489016e-07, "epoch": 2.646940639269406, "percentage": 66.21, "elapsed_time": "9:54:58", "remaining_time": "5:03:38"} +{"current_steps": 3624, "total_steps": 5472, "loss": 0.0466, "accuracy": 0.875, "learning_rate": 1.545502295402371e-07, "epoch": 2.6476712328767125, "percentage": 66.23, "elapsed_time": "9:55:07", "remaining_time": "5:03:28"} +{"current_steps": 3625, "total_steps": 5472, "loss": 0.0265, "accuracy": 1.0, "learning_rate": 1.5440282805983406e-07, "epoch": 2.6484018264840183, "percentage": 66.25, "elapsed_time": "9:55:18", "remaining_time": "5:03:19"} +{"current_steps": 3626, "total_steps": 5472, "loss": 0.0394, "accuracy": 1.0, "learning_rate": 1.5425546549368306e-07, "epoch": 2.649132420091324, "percentage": 66.26, "elapsed_time": "9:55:28", "remaining_time": "5:03:09"} +{"current_steps": 3627, "total_steps": 5472, "loss": 0.0263, "accuracy": 1.0, "learning_rate": 1.5410814190177012e-07, "epoch": 2.64986301369863, "percentage": 66.28, "elapsed_time": "9:55:37", "remaining_time": "5:02:59"} +{"current_steps": 3628, "total_steps": 5472, "loss": 0.0465, "accuracy": 1.0, "learning_rate": 1.5396085734406555e-07, "epoch": 2.650593607305936, "percentage": 66.3, "elapsed_time": "9:55:46", "remaining_time": "5:02:48"} +{"current_steps": 3629, "total_steps": 5472, "loss": 0.0705, "accuracy": 1.0, "learning_rate": 1.5381361188052378e-07, "epoch": 2.6513242009132423, "percentage": 66.32, "elapsed_time": "9:55:55", "remaining_time": "5:02:38"} +{"current_steps": 3630, "total_steps": 5472, "loss": 0.0308, "accuracy": 1.0, "learning_rate": 1.5366640557108323e-07, "epoch": 2.6520547945205477, "percentage": 66.34, "elapsed_time": "9:56:04", "remaining_time": "5:02:28"} +{"current_steps": 3631, "total_steps": 5472, "loss": 0.0534, "accuracy": 1.0, "learning_rate": 1.5351923847566634e-07, "epoch": 2.652785388127854, "percentage": 66.36, "elapsed_time": "9:56:15", "remaining_time": "5:02:19"} +{"current_steps": 3632, "total_steps": 5472, "loss": 0.043, "accuracy": 1.0, "learning_rate": 1.533721106541797e-07, "epoch": 2.65351598173516, "percentage": 66.37, "elapsed_time": "9:56:25", "remaining_time": "5:02:09"} +{"current_steps": 3633, "total_steps": 5472, "loss": 0.0569, "accuracy": 1.0, "learning_rate": 1.5322502216651394e-07, "epoch": 2.6542465753424658, "percentage": 66.39, "elapsed_time": "9:56:35", "remaining_time": "5:01:59"} +{"current_steps": 3634, "total_steps": 5472, "loss": 0.0655, "accuracy": 0.875, "learning_rate": 1.530779730725436e-07, "epoch": 2.6549771689497716, "percentage": 66.41, "elapsed_time": "9:56:44", "remaining_time": "5:01:49"} +{"current_steps": 3635, "total_steps": 5472, "loss": 0.0524, "accuracy": 1.0, "learning_rate": 1.5293096343212734e-07, "epoch": 2.6557077625570775, "percentage": 66.43, "elapsed_time": "9:56:53", "remaining_time": "5:01:39"} +{"current_steps": 3636, "total_steps": 5472, "loss": 0.0509, "accuracy": 1.0, "learning_rate": 1.5278399330510733e-07, "epoch": 2.6564383561643834, "percentage": 66.45, "elapsed_time": "9:57:02", "remaining_time": "5:01:28"} +{"current_steps": 3637, "total_steps": 5472, "loss": 0.0632, "accuracy": 1.0, "learning_rate": 1.5263706275131008e-07, "epoch": 2.6571689497716893, "percentage": 66.47, "elapsed_time": "9:57:12", "remaining_time": "5:01:18"} +{"current_steps": 3638, "total_steps": 5472, "loss": 0.0422, "accuracy": 1.0, "learning_rate": 1.5249017183054587e-07, "epoch": 2.6578995433789956, "percentage": 66.48, "elapsed_time": "9:57:21", "remaining_time": "5:01:08"} +{"current_steps": 3639, "total_steps": 5472, "loss": 0.0404, "accuracy": 1.0, "learning_rate": 1.5234332060260894e-07, "epoch": 2.6586301369863015, "percentage": 66.5, "elapsed_time": "9:57:31", "remaining_time": "5:00:58"} +{"current_steps": 3640, "total_steps": 5472, "loss": 0.0335, "accuracy": 1.0, "learning_rate": 1.521965091272771e-07, "epoch": 2.6593607305936073, "percentage": 66.52, "elapsed_time": "9:57:41", "remaining_time": "5:00:48"} +{"current_steps": 3641, "total_steps": 5472, "loss": 0.0273, "accuracy": 1.0, "learning_rate": 1.520497374643122e-07, "epoch": 2.660091324200913, "percentage": 66.54, "elapsed_time": "9:57:50", "remaining_time": "5:00:38"} +{"current_steps": 3642, "total_steps": 5472, "loss": 0.0945, "accuracy": 0.875, "learning_rate": 1.5190300567345983e-07, "epoch": 2.660821917808219, "percentage": 66.56, "elapsed_time": "9:57:59", "remaining_time": "5:00:28"} +{"current_steps": 3643, "total_steps": 5472, "loss": 0.0837, "accuracy": 1.0, "learning_rate": 1.517563138144494e-07, "epoch": 2.661552511415525, "percentage": 66.58, "elapsed_time": "9:58:10", "remaining_time": "5:00:19"} +{"current_steps": 3644, "total_steps": 5472, "loss": 0.0536, "accuracy": 1.0, "learning_rate": 1.5160966194699399e-07, "epoch": 2.662283105022831, "percentage": 66.59, "elapsed_time": "9:58:19", "remaining_time": "5:00:08"} +{"current_steps": 3645, "total_steps": 5472, "loss": 0.0474, "accuracy": 1.0, "learning_rate": 1.514630501307904e-07, "epoch": 2.663013698630137, "percentage": 66.61, "elapsed_time": "9:58:27", "remaining_time": "4:59:58"} +{"current_steps": 3646, "total_steps": 5472, "loss": 0.0538, "accuracy": 1.0, "learning_rate": 1.5131647842551914e-07, "epoch": 2.663744292237443, "percentage": 66.63, "elapsed_time": "9:58:36", "remaining_time": "4:59:47"} +{"current_steps": 3647, "total_steps": 5472, "loss": 0.0404, "accuracy": 1.0, "learning_rate": 1.5116994689084444e-07, "epoch": 2.664474885844749, "percentage": 66.65, "elapsed_time": "9:58:45", "remaining_time": "4:59:37"} +{"current_steps": 3648, "total_steps": 5472, "loss": 0.0457, "accuracy": 1.0, "learning_rate": 1.5102345558641427e-07, "epoch": 2.6652054794520548, "percentage": 66.67, "elapsed_time": "9:58:55", "remaining_time": "4:59:27"} +{"current_steps": 3649, "total_steps": 5472, "loss": 0.0229, "accuracy": 1.0, "learning_rate": 1.5087700457185976e-07, "epoch": 2.6659360730593606, "percentage": 66.68, "elapsed_time": "9:59:04", "remaining_time": "4:59:17"} +{"current_steps": 3650, "total_steps": 5472, "loss": 0.0684, "accuracy": 1.0, "learning_rate": 1.5073059390679626e-07, "epoch": 2.6666666666666665, "percentage": 66.7, "elapsed_time": "9:59:14", "remaining_time": "4:59:07"} +{"current_steps": 3651, "total_steps": 5472, "loss": 0.0942, "accuracy": 1.0, "learning_rate": 1.5058422365082233e-07, "epoch": 2.6673972602739724, "percentage": 66.72, "elapsed_time": "9:59:23", "remaining_time": "4:58:57"} +{"current_steps": 3652, "total_steps": 5472, "loss": 0.0383, "accuracy": 1.0, "learning_rate": 1.5043789386352023e-07, "epoch": 2.6681278538812787, "percentage": 66.74, "elapsed_time": "9:59:33", "remaining_time": "4:58:47"} +{"current_steps": 3653, "total_steps": 5472, "loss": 0.0672, "accuracy": 1.0, "learning_rate": 1.5029160460445555e-07, "epoch": 2.6688584474885846, "percentage": 66.76, "elapsed_time": "9:59:45", "remaining_time": "4:58:38"} +{"current_steps": 3654, "total_steps": 5472, "loss": 0.0478, "accuracy": 1.0, "learning_rate": 1.5014535593317756e-07, "epoch": 2.6695890410958905, "percentage": 66.78, "elapsed_time": "9:59:53", "remaining_time": "4:58:28"} +{"current_steps": 3655, "total_steps": 5472, "loss": 0.0927, "accuracy": 1.0, "learning_rate": 1.4999914790921895e-07, "epoch": 2.6703196347031963, "percentage": 66.79, "elapsed_time": "10:00:04", "remaining_time": "4:58:18"} +{"current_steps": 3656, "total_steps": 5472, "loss": 0.0243, "accuracy": 1.0, "learning_rate": 1.4985298059209595e-07, "epoch": 2.671050228310502, "percentage": 66.81, "elapsed_time": "10:00:16", "remaining_time": "4:58:09"} +{"current_steps": 3657, "total_steps": 5472, "loss": 0.0995, "accuracy": 1.0, "learning_rate": 1.49706854041308e-07, "epoch": 2.671780821917808, "percentage": 66.83, "elapsed_time": "10:00:26", "remaining_time": "4:58:00"} +{"current_steps": 3658, "total_steps": 5472, "loss": 0.0385, "accuracy": 1.0, "learning_rate": 1.4956076831633825e-07, "epoch": 2.672511415525114, "percentage": 66.85, "elapsed_time": "10:00:35", "remaining_time": "4:57:50"} +{"current_steps": 3659, "total_steps": 5472, "loss": 0.0307, "accuracy": 1.0, "learning_rate": 1.494147234766529e-07, "epoch": 2.6732420091324203, "percentage": 66.87, "elapsed_time": "10:00:45", "remaining_time": "4:57:40"} +{"current_steps": 3660, "total_steps": 5472, "loss": 0.0676, "accuracy": 1.0, "learning_rate": 1.4926871958170183e-07, "epoch": 2.673972602739726, "percentage": 66.89, "elapsed_time": "10:00:56", "remaining_time": "4:57:30"} +{"current_steps": 3661, "total_steps": 5472, "loss": 0.0206, "accuracy": 1.0, "learning_rate": 1.4912275669091807e-07, "epoch": 2.674703196347032, "percentage": 66.9, "elapsed_time": "10:01:05", "remaining_time": "4:57:20"} +{"current_steps": 3662, "total_steps": 5472, "loss": 0.0712, "accuracy": 1.0, "learning_rate": 1.4897683486371786e-07, "epoch": 2.675433789954338, "percentage": 66.92, "elapsed_time": "10:01:14", "remaining_time": "4:57:10"} +{"current_steps": 3663, "total_steps": 5472, "loss": 0.0609, "accuracy": 1.0, "learning_rate": 1.48830954159501e-07, "epoch": 2.6761643835616438, "percentage": 66.94, "elapsed_time": "10:01:26", "remaining_time": "4:57:01"} +{"current_steps": 3664, "total_steps": 5472, "loss": 0.0383, "accuracy": 1.0, "learning_rate": 1.4868511463765032e-07, "epoch": 2.6768949771689496, "percentage": 66.96, "elapsed_time": "10:01:36", "remaining_time": "4:56:51"} +{"current_steps": 3665, "total_steps": 5472, "loss": 0.0509, "accuracy": 1.0, "learning_rate": 1.4853931635753212e-07, "epoch": 2.6776255707762555, "percentage": 66.98, "elapsed_time": "10:01:45", "remaining_time": "4:56:41"} +{"current_steps": 3666, "total_steps": 5472, "loss": 0.0579, "accuracy": 0.875, "learning_rate": 1.4839355937849547e-07, "epoch": 2.678356164383562, "percentage": 67.0, "elapsed_time": "10:01:54", "remaining_time": "4:56:31"} +{"current_steps": 3667, "total_steps": 5472, "loss": 0.0275, "accuracy": 1.0, "learning_rate": 1.4824784375987313e-07, "epoch": 2.6790867579908677, "percentage": 67.01, "elapsed_time": "10:02:04", "remaining_time": "4:56:21"} +{"current_steps": 3668, "total_steps": 5472, "loss": 0.043, "accuracy": 1.0, "learning_rate": 1.4810216956098075e-07, "epoch": 2.6798173515981736, "percentage": 67.03, "elapsed_time": "10:02:14", "remaining_time": "4:56:11"} +{"current_steps": 3669, "total_steps": 5472, "loss": 0.0295, "accuracy": 1.0, "learning_rate": 1.4795653684111734e-07, "epoch": 2.6805479452054795, "percentage": 67.05, "elapsed_time": "10:02:23", "remaining_time": "4:56:01"} +{"current_steps": 3670, "total_steps": 5472, "loss": 0.062, "accuracy": 1.0, "learning_rate": 1.4781094565956458e-07, "epoch": 2.6812785388127853, "percentage": 67.07, "elapsed_time": "10:02:35", "remaining_time": "4:55:52"} +{"current_steps": 3671, "total_steps": 5472, "loss": 0.0631, "accuracy": 1.0, "learning_rate": 1.476653960755877e-07, "epoch": 2.682009132420091, "percentage": 67.09, "elapsed_time": "10:02:46", "remaining_time": "4:55:43"} +{"current_steps": 3672, "total_steps": 5472, "loss": 0.0307, "accuracy": 1.0, "learning_rate": 1.475198881484348e-07, "epoch": 2.682739726027397, "percentage": 67.11, "elapsed_time": "10:02:55", "remaining_time": "4:55:33"} +{"current_steps": 3673, "total_steps": 5472, "loss": 0.1138, "accuracy": 1.0, "learning_rate": 1.47374421937337e-07, "epoch": 2.6834703196347034, "percentage": 67.12, "elapsed_time": "10:03:05", "remaining_time": "4:55:23"} +{"current_steps": 3674, "total_steps": 5472, "loss": 0.0222, "accuracy": 1.0, "learning_rate": 1.4722899750150864e-07, "epoch": 2.6842009132420093, "percentage": 67.14, "elapsed_time": "10:03:14", "remaining_time": "4:55:12"} +{"current_steps": 3675, "total_steps": 5472, "loss": 0.0407, "accuracy": 1.0, "learning_rate": 1.4708361490014673e-07, "epoch": 2.684931506849315, "percentage": 67.16, "elapsed_time": "10:03:23", "remaining_time": "4:55:02"} +{"current_steps": 3676, "total_steps": 5472, "loss": 0.0896, "accuracy": 1.0, "learning_rate": 1.469382741924315e-07, "epoch": 2.685662100456621, "percentage": 67.18, "elapsed_time": "10:03:33", "remaining_time": "4:54:53"} +{"current_steps": 3677, "total_steps": 5472, "loss": 0.0446, "accuracy": 1.0, "learning_rate": 1.46792975437526e-07, "epoch": 2.686392694063927, "percentage": 67.2, "elapsed_time": "10:03:43", "remaining_time": "4:54:43"} +{"current_steps": 3678, "total_steps": 5472, "loss": 0.0588, "accuracy": 1.0, "learning_rate": 1.4664771869457632e-07, "epoch": 2.6871232876712328, "percentage": 67.21, "elapsed_time": "10:03:54", "remaining_time": "4:54:33"} +{"current_steps": 3679, "total_steps": 5472, "loss": 0.0424, "accuracy": 1.0, "learning_rate": 1.465025040227113e-07, "epoch": 2.6878538812785386, "percentage": 67.23, "elapsed_time": "10:04:02", "remaining_time": "4:54:23"} +{"current_steps": 3680, "total_steps": 5472, "loss": 0.0382, "accuracy": 1.0, "learning_rate": 1.4635733148104282e-07, "epoch": 2.688584474885845, "percentage": 67.25, "elapsed_time": "10:04:11", "remaining_time": "4:54:13"} +{"current_steps": 3681, "total_steps": 5472, "loss": 0.0242, "accuracy": 1.0, "learning_rate": 1.4621220112866544e-07, "epoch": 2.689315068493151, "percentage": 67.27, "elapsed_time": "10:04:22", "remaining_time": "4:54:03"} +{"current_steps": 3682, "total_steps": 5472, "loss": 0.0829, "accuracy": 1.0, "learning_rate": 1.4606711302465673e-07, "epoch": 2.6900456621004567, "percentage": 67.29, "elapsed_time": "10:04:31", "remaining_time": "4:53:53"} +{"current_steps": 3683, "total_steps": 5472, "loss": 0.057, "accuracy": 1.0, "learning_rate": 1.4592206722807697e-07, "epoch": 2.6907762557077626, "percentage": 67.31, "elapsed_time": "10:04:42", "remaining_time": "4:53:44"} +{"current_steps": 3684, "total_steps": 5472, "loss": 0.0395, "accuracy": 1.0, "learning_rate": 1.45777063797969e-07, "epoch": 2.6915068493150685, "percentage": 67.32, "elapsed_time": "10:04:52", "remaining_time": "4:53:34"} +{"current_steps": 3685, "total_steps": 5472, "loss": 0.0239, "accuracy": 1.0, "learning_rate": 1.4563210279335887e-07, "epoch": 2.6922374429223743, "percentage": 67.34, "elapsed_time": "10:05:03", "remaining_time": "4:53:24"} +{"current_steps": 3686, "total_steps": 5472, "loss": 0.0373, "accuracy": 1.0, "learning_rate": 1.454871842732549e-07, "epoch": 2.69296803652968, "percentage": 67.36, "elapsed_time": "10:05:13", "remaining_time": "4:53:15"} +{"current_steps": 3687, "total_steps": 5472, "loss": 0.0391, "accuracy": 1.0, "learning_rate": 1.4534230829664855e-07, "epoch": 2.6936986301369865, "percentage": 67.38, "elapsed_time": "10:05:21", "remaining_time": "4:53:04"} +{"current_steps": 3688, "total_steps": 5472, "loss": 0.0775, "accuracy": 1.0, "learning_rate": 1.4519747492251367e-07, "epoch": 2.6944292237442924, "percentage": 67.4, "elapsed_time": "10:05:30", "remaining_time": "4:52:54"} +{"current_steps": 3689, "total_steps": 5472, "loss": 0.0556, "accuracy": 1.0, "learning_rate": 1.450526842098067e-07, "epoch": 2.6951598173515983, "percentage": 67.42, "elapsed_time": "10:05:41", "remaining_time": "4:52:45"} +{"current_steps": 3690, "total_steps": 5472, "loss": 0.0368, "accuracy": 1.0, "learning_rate": 1.4490793621746705e-07, "epoch": 2.695890410958904, "percentage": 67.43, "elapsed_time": "10:05:51", "remaining_time": "4:52:35"} +{"current_steps": 3691, "total_steps": 5472, "loss": 0.0701, "accuracy": 1.0, "learning_rate": 1.447632310044165e-07, "epoch": 2.69662100456621, "percentage": 67.45, "elapsed_time": "10:06:00", "remaining_time": "4:52:24"} +{"current_steps": 3692, "total_steps": 5472, "loss": 0.0392, "accuracy": 1.0, "learning_rate": 1.446185686295594e-07, "epoch": 2.697351598173516, "percentage": 67.47, "elapsed_time": "10:06:09", "remaining_time": "4:52:14"} +{"current_steps": 3693, "total_steps": 5472, "loss": 0.0533, "accuracy": 1.0, "learning_rate": 1.4447394915178261e-07, "epoch": 2.6980821917808218, "percentage": 67.49, "elapsed_time": "10:06:18", "remaining_time": "4:52:04"} +{"current_steps": 3694, "total_steps": 5472, "loss": 0.0839, "accuracy": 0.875, "learning_rate": 1.4432937262995584e-07, "epoch": 2.698812785388128, "percentage": 67.51, "elapsed_time": "10:06:28", "remaining_time": "4:51:54"} +{"current_steps": 3695, "total_steps": 5472, "loss": 0.0506, "accuracy": 1.0, "learning_rate": 1.4418483912293115e-07, "epoch": 2.699543378995434, "percentage": 67.53, "elapsed_time": "10:06:37", "remaining_time": "4:51:44"} +{"current_steps": 3696, "total_steps": 5472, "loss": 0.0223, "accuracy": 1.0, "learning_rate": 1.4404034868954292e-07, "epoch": 2.70027397260274, "percentage": 67.54, "elapsed_time": "10:06:47", "remaining_time": "4:51:34"} +{"current_steps": 3697, "total_steps": 5472, "loss": 0.0443, "accuracy": 1.0, "learning_rate": 1.438959013886082e-07, "epoch": 2.7010045662100457, "percentage": 67.56, "elapsed_time": "10:06:57", "remaining_time": "4:51:24"} +{"current_steps": 3698, "total_steps": 5472, "loss": 0.0262, "accuracy": 1.0, "learning_rate": 1.4375149727892626e-07, "epoch": 2.7017351598173516, "percentage": 67.58, "elapsed_time": "10:07:06", "remaining_time": "4:51:14"} +{"current_steps": 3699, "total_steps": 5472, "loss": 0.0516, "accuracy": 1.0, "learning_rate": 1.4360713641927918e-07, "epoch": 2.7024657534246574, "percentage": 67.6, "elapsed_time": "10:07:16", "remaining_time": "4:51:04"} +{"current_steps": 3700, "total_steps": 5472, "loss": 0.0556, "accuracy": 1.0, "learning_rate": 1.4346281886843108e-07, "epoch": 2.7031963470319633, "percentage": 67.62, "elapsed_time": "10:07:25", "remaining_time": "4:50:54"} +{"current_steps": 3701, "total_steps": 5472, "loss": 0.0457, "accuracy": 1.0, "learning_rate": 1.433185446851285e-07, "epoch": 2.7039269406392696, "percentage": 67.64, "elapsed_time": "10:07:34", "remaining_time": "4:50:44"} +{"current_steps": 3702, "total_steps": 5472, "loss": 0.0491, "accuracy": 1.0, "learning_rate": 1.4317431392810054e-07, "epoch": 2.704657534246575, "percentage": 67.65, "elapsed_time": "10:07:43", "remaining_time": "4:50:33"} +{"current_steps": 3703, "total_steps": 5472, "loss": 0.0382, "accuracy": 1.0, "learning_rate": 1.4303012665605832e-07, "epoch": 2.7053881278538814, "percentage": 67.67, "elapsed_time": "10:07:52", "remaining_time": "4:50:23"} +{"current_steps": 3704, "total_steps": 5472, "loss": 0.0448, "accuracy": 1.0, "learning_rate": 1.428859829276956e-07, "epoch": 2.7061187214611873, "percentage": 67.69, "elapsed_time": "10:08:00", "remaining_time": "4:50:13"} +{"current_steps": 3705, "total_steps": 5472, "loss": 0.0896, "accuracy": 0.875, "learning_rate": 1.4274188280168811e-07, "epoch": 2.706849315068493, "percentage": 67.71, "elapsed_time": "10:08:09", "remaining_time": "4:50:02"} +{"current_steps": 3706, "total_steps": 5472, "loss": 0.0384, "accuracy": 1.0, "learning_rate": 1.4259782633669387e-07, "epoch": 2.707579908675799, "percentage": 67.73, "elapsed_time": "10:08:22", "remaining_time": "4:49:54"} +{"current_steps": 3707, "total_steps": 5472, "loss": 0.0696, "accuracy": 1.0, "learning_rate": 1.4245381359135345e-07, "epoch": 2.708310502283105, "percentage": 67.74, "elapsed_time": "10:08:31", "remaining_time": "4:49:44"} +{"current_steps": 3708, "total_steps": 5472, "loss": 0.0647, "accuracy": 1.0, "learning_rate": 1.423098446242891e-07, "epoch": 2.709041095890411, "percentage": 67.76, "elapsed_time": "10:08:43", "remaining_time": "4:49:35"} +{"current_steps": 3709, "total_steps": 5472, "loss": 0.0429, "accuracy": 1.0, "learning_rate": 1.421659194941059e-07, "epoch": 2.7097716894977166, "percentage": 67.78, "elapsed_time": "10:08:55", "remaining_time": "4:49:26"} +{"current_steps": 3710, "total_steps": 5472, "loss": 0.0267, "accuracy": 1.0, "learning_rate": 1.4202203825939024e-07, "epoch": 2.710502283105023, "percentage": 67.8, "elapsed_time": "10:09:03", "remaining_time": "4:49:15"} +{"current_steps": 3711, "total_steps": 5472, "loss": 0.0294, "accuracy": 1.0, "learning_rate": 1.4187820097871142e-07, "epoch": 2.711232876712329, "percentage": 67.82, "elapsed_time": "10:09:12", "remaining_time": "4:49:05"} +{"current_steps": 3712, "total_steps": 5472, "loss": 0.0497, "accuracy": 1.0, "learning_rate": 1.4173440771062055e-07, "epoch": 2.7119634703196347, "percentage": 67.84, "elapsed_time": "10:09:22", "remaining_time": "4:48:55"} +{"current_steps": 3713, "total_steps": 5472, "loss": 0.0311, "accuracy": 1.0, "learning_rate": 1.4159065851365083e-07, "epoch": 2.7126940639269406, "percentage": 67.85, "elapsed_time": "10:09:32", "remaining_time": "4:48:45"} +{"current_steps": 3714, "total_steps": 5472, "loss": 0.0616, "accuracy": 1.0, "learning_rate": 1.414469534463174e-07, "epoch": 2.7134246575342464, "percentage": 67.87, "elapsed_time": "10:09:43", "remaining_time": "4:48:36"} +{"current_steps": 3715, "total_steps": 5472, "loss": 0.0299, "accuracy": 1.0, "learning_rate": 1.413032925671175e-07, "epoch": 2.7141552511415528, "percentage": 67.89, "elapsed_time": "10:09:52", "remaining_time": "4:48:26"} +{"current_steps": 3716, "total_steps": 5472, "loss": 0.0164, "accuracy": 1.0, "learning_rate": 1.4115967593453062e-07, "epoch": 2.714885844748858, "percentage": 67.91, "elapsed_time": "10:10:00", "remaining_time": "4:48:15"} +{"current_steps": 3717, "total_steps": 5472, "loss": 0.0531, "accuracy": 1.0, "learning_rate": 1.4101610360701796e-07, "epoch": 2.7156164383561645, "percentage": 67.93, "elapsed_time": "10:10:09", "remaining_time": "4:48:05"} +{"current_steps": 3718, "total_steps": 5472, "loss": 0.0553, "accuracy": 1.0, "learning_rate": 1.4087257564302267e-07, "epoch": 2.7163470319634704, "percentage": 67.95, "elapsed_time": "10:10:19", "remaining_time": "4:47:55"} +{"current_steps": 3719, "total_steps": 5472, "loss": 0.0648, "accuracy": 0.875, "learning_rate": 1.4072909210097012e-07, "epoch": 2.7170776255707763, "percentage": 67.96, "elapsed_time": "10:10:29", "remaining_time": "4:47:45"} +{"current_steps": 3720, "total_steps": 5472, "loss": 0.1169, "accuracy": 1.0, "learning_rate": 1.4058565303926723e-07, "epoch": 2.717808219178082, "percentage": 67.98, "elapsed_time": "10:10:39", "remaining_time": "4:47:35"} +{"current_steps": 3721, "total_steps": 5472, "loss": 0.0454, "accuracy": 1.0, "learning_rate": 1.4044225851630326e-07, "epoch": 2.718538812785388, "percentage": 68.0, "elapsed_time": "10:10:48", "remaining_time": "4:47:25"} +{"current_steps": 3722, "total_steps": 5472, "loss": 0.0815, "accuracy": 1.0, "learning_rate": 1.402989085904489e-07, "epoch": 2.7192694063926943, "percentage": 68.02, "elapsed_time": "10:10:59", "remaining_time": "4:47:16"} +{"current_steps": 3723, "total_steps": 5472, "loss": 0.0687, "accuracy": 1.0, "learning_rate": 1.4015560332005682e-07, "epoch": 2.7199999999999998, "percentage": 68.04, "elapsed_time": "10:11:07", "remaining_time": "4:47:05"} +{"current_steps": 3724, "total_steps": 5472, "loss": 0.0603, "accuracy": 1.0, "learning_rate": 1.4001234276346173e-07, "epoch": 2.720730593607306, "percentage": 68.06, "elapsed_time": "10:11:17", "remaining_time": "4:46:55"} +{"current_steps": 3725, "total_steps": 5472, "loss": 0.0854, "accuracy": 1.0, "learning_rate": 1.3986912697897985e-07, "epoch": 2.721461187214612, "percentage": 68.07, "elapsed_time": "10:11:25", "remaining_time": "4:46:45"} +{"current_steps": 3726, "total_steps": 5472, "loss": 0.0574, "accuracy": 1.0, "learning_rate": 1.3972595602490956e-07, "epoch": 2.722191780821918, "percentage": 68.09, "elapsed_time": "10:11:36", "remaining_time": "4:46:35"} +{"current_steps": 3727, "total_steps": 5472, "loss": 0.0556, "accuracy": 1.0, "learning_rate": 1.3958282995953025e-07, "epoch": 2.7229223744292237, "percentage": 68.11, "elapsed_time": "10:11:45", "remaining_time": "4:46:25"} +{"current_steps": 3728, "total_steps": 5472, "loss": 0.0481, "accuracy": 1.0, "learning_rate": 1.3943974884110382e-07, "epoch": 2.7236529680365296, "percentage": 68.13, "elapsed_time": "10:11:54", "remaining_time": "4:46:15"} +{"current_steps": 3729, "total_steps": 5472, "loss": 0.0886, "accuracy": 0.875, "learning_rate": 1.3929671272787362e-07, "epoch": 2.724383561643836, "percentage": 68.15, "elapsed_time": "10:12:04", "remaining_time": "4:46:05"} +{"current_steps": 3730, "total_steps": 5472, "loss": 0.0549, "accuracy": 1.0, "learning_rate": 1.3915372167806448e-07, "epoch": 2.7251141552511413, "percentage": 68.17, "elapsed_time": "10:12:13", "remaining_time": "4:45:55"} +{"current_steps": 3731, "total_steps": 5472, "loss": 0.0431, "accuracy": 1.0, "learning_rate": 1.3901077574988317e-07, "epoch": 2.7258447488584476, "percentage": 68.18, "elapsed_time": "10:12:22", "remaining_time": "4:45:45"} +{"current_steps": 3732, "total_steps": 5472, "loss": 0.0559, "accuracy": 1.0, "learning_rate": 1.3886787500151774e-07, "epoch": 2.7265753424657535, "percentage": 68.2, "elapsed_time": "10:12:30", "remaining_time": "4:45:34"} +{"current_steps": 3733, "total_steps": 5472, "loss": 0.0326, "accuracy": 1.0, "learning_rate": 1.3872501949113835e-07, "epoch": 2.7273059360730594, "percentage": 68.22, "elapsed_time": "10:12:40", "remaining_time": "4:45:24"} +{"current_steps": 3734, "total_steps": 5472, "loss": 0.0673, "accuracy": 1.0, "learning_rate": 1.3858220927689622e-07, "epoch": 2.7280365296803653, "percentage": 68.24, "elapsed_time": "10:12:50", "remaining_time": "4:45:14"} +{"current_steps": 3735, "total_steps": 5472, "loss": 0.0439, "accuracy": 1.0, "learning_rate": 1.384394444169245e-07, "epoch": 2.728767123287671, "percentage": 68.26, "elapsed_time": "10:13:00", "remaining_time": "4:45:05"} +{"current_steps": 3736, "total_steps": 5472, "loss": 0.0941, "accuracy": 1.0, "learning_rate": 1.382967249693378e-07, "epoch": 2.7294977168949774, "percentage": 68.27, "elapsed_time": "10:13:09", "remaining_time": "4:44:54"} +{"current_steps": 3737, "total_steps": 5472, "loss": 0.0217, "accuracy": 1.0, "learning_rate": 1.38154050992232e-07, "epoch": 2.730228310502283, "percentage": 68.29, "elapsed_time": "10:13:18", "remaining_time": "4:44:44"} +{"current_steps": 3738, "total_steps": 5472, "loss": 0.0364, "accuracy": 1.0, "learning_rate": 1.3801142254368488e-07, "epoch": 2.730958904109589, "percentage": 68.31, "elapsed_time": "10:13:27", "remaining_time": "4:44:34"} +{"current_steps": 3739, "total_steps": 5472, "loss": 0.0431, "accuracy": 1.0, "learning_rate": 1.3786883968175538e-07, "epoch": 2.731689497716895, "percentage": 68.33, "elapsed_time": "10:13:35", "remaining_time": "4:44:23"} +{"current_steps": 3740, "total_steps": 5472, "loss": 0.0436, "accuracy": 1.0, "learning_rate": 1.3772630246448392e-07, "epoch": 2.732420091324201, "percentage": 68.35, "elapsed_time": "10:13:45", "remaining_time": "4:44:14"} +{"current_steps": 3741, "total_steps": 5472, "loss": 0.0642, "accuracy": 1.0, "learning_rate": 1.3758381094989252e-07, "epoch": 2.733150684931507, "percentage": 68.37, "elapsed_time": "10:13:54", "remaining_time": "4:44:03"} +{"current_steps": 3742, "total_steps": 5472, "loss": 0.0507, "accuracy": 1.0, "learning_rate": 1.3744136519598428e-07, "epoch": 2.7338812785388127, "percentage": 68.38, "elapsed_time": "10:14:05", "remaining_time": "4:43:54"} +{"current_steps": 3743, "total_steps": 5472, "loss": 0.0465, "accuracy": 1.0, "learning_rate": 1.372989652607442e-07, "epoch": 2.7346118721461186, "percentage": 68.4, "elapsed_time": "10:14:15", "remaining_time": "4:43:44"} +{"current_steps": 3744, "total_steps": 5472, "loss": 0.0485, "accuracy": 1.0, "learning_rate": 1.3715661120213793e-07, "epoch": 2.7353424657534244, "percentage": 68.42, "elapsed_time": "10:14:23", "remaining_time": "4:43:34"} +{"current_steps": 3745, "total_steps": 5472, "loss": 0.0428, "accuracy": 1.0, "learning_rate": 1.37014303078113e-07, "epoch": 2.7360730593607308, "percentage": 68.44, "elapsed_time": "10:14:33", "remaining_time": "4:43:24"} +{"current_steps": 3746, "total_steps": 5472, "loss": 0.0293, "accuracy": 1.0, "learning_rate": 1.36872040946598e-07, "epoch": 2.7368036529680366, "percentage": 68.46, "elapsed_time": "10:14:42", "remaining_time": "4:43:14"} +{"current_steps": 3747, "total_steps": 5472, "loss": 0.0565, "accuracy": 1.0, "learning_rate": 1.3672982486550277e-07, "epoch": 2.7375342465753425, "percentage": 68.48, "elapsed_time": "10:14:52", "remaining_time": "4:43:03"} +{"current_steps": 3748, "total_steps": 5472, "loss": 0.0488, "accuracy": 1.0, "learning_rate": 1.3658765489271883e-07, "epoch": 2.7382648401826484, "percentage": 68.49, "elapsed_time": "10:15:00", "remaining_time": "4:42:53"} +{"current_steps": 3749, "total_steps": 5472, "loss": 0.0572, "accuracy": 1.0, "learning_rate": 1.3644553108611813e-07, "epoch": 2.7389954337899542, "percentage": 68.51, "elapsed_time": "10:15:09", "remaining_time": "4:42:43"} +{"current_steps": 3750, "total_steps": 5472, "loss": 0.1108, "accuracy": 1.0, "learning_rate": 1.3630345350355455e-07, "epoch": 2.73972602739726, "percentage": 68.53, "elapsed_time": "10:15:19", "remaining_time": "4:42:33"} +{"current_steps": 3751, "total_steps": 5472, "loss": 0.0371, "accuracy": 1.0, "learning_rate": 1.3616142220286272e-07, "epoch": 2.740456621004566, "percentage": 68.55, "elapsed_time": "10:15:28", "remaining_time": "4:42:23"} +{"current_steps": 3752, "total_steps": 5472, "loss": 0.1107, "accuracy": 1.0, "learning_rate": 1.3601943724185882e-07, "epoch": 2.7411872146118723, "percentage": 68.57, "elapsed_time": "10:15:38", "remaining_time": "4:42:13"} +{"current_steps": 3753, "total_steps": 5472, "loss": 0.0339, "accuracy": 1.0, "learning_rate": 1.3587749867833977e-07, "epoch": 2.741917808219178, "percentage": 68.59, "elapsed_time": "10:15:47", "remaining_time": "4:42:03"} +{"current_steps": 3754, "total_steps": 5472, "loss": 0.0595, "accuracy": 1.0, "learning_rate": 1.3573560657008376e-07, "epoch": 2.742648401826484, "percentage": 68.6, "elapsed_time": "10:15:58", "remaining_time": "4:41:53"} +{"current_steps": 3755, "total_steps": 5472, "loss": 0.0795, "accuracy": 1.0, "learning_rate": 1.355937609748502e-07, "epoch": 2.74337899543379, "percentage": 68.62, "elapsed_time": "10:16:08", "remaining_time": "4:41:44"} +{"current_steps": 3756, "total_steps": 5472, "loss": 0.0295, "accuracy": 1.0, "learning_rate": 1.3545196195037944e-07, "epoch": 2.744109589041096, "percentage": 68.64, "elapsed_time": "10:16:17", "remaining_time": "4:41:33"} +{"current_steps": 3757, "total_steps": 5472, "loss": 0.028, "accuracy": 1.0, "learning_rate": 1.353102095543927e-07, "epoch": 2.7448401826484017, "percentage": 68.66, "elapsed_time": "10:16:27", "remaining_time": "4:41:24"} +{"current_steps": 3758, "total_steps": 5472, "loss": 0.0662, "accuracy": 1.0, "learning_rate": 1.3516850384459265e-07, "epoch": 2.7455707762557076, "percentage": 68.68, "elapsed_time": "10:16:37", "remaining_time": "4:41:14"} +{"current_steps": 3759, "total_steps": 5472, "loss": 0.082, "accuracy": 1.0, "learning_rate": 1.3502684487866253e-07, "epoch": 2.746301369863014, "percentage": 68.7, "elapsed_time": "10:16:47", "remaining_time": "4:41:04"} +{"current_steps": 3760, "total_steps": 5472, "loss": 0.04, "accuracy": 1.0, "learning_rate": 1.3488523271426689e-07, "epoch": 2.7470319634703197, "percentage": 68.71, "elapsed_time": "10:16:56", "remaining_time": "4:40:54"} +{"current_steps": 3761, "total_steps": 5472, "loss": 0.0711, "accuracy": 1.0, "learning_rate": 1.3474366740905097e-07, "epoch": 2.7477625570776256, "percentage": 68.73, "elapsed_time": "10:17:04", "remaining_time": "4:40:43"} +{"current_steps": 3762, "total_steps": 5472, "loss": 0.0263, "accuracy": 1.0, "learning_rate": 1.3460214902064104e-07, "epoch": 2.7484931506849315, "percentage": 68.75, "elapsed_time": "10:17:13", "remaining_time": "4:40:33"} +{"current_steps": 3763, "total_steps": 5472, "loss": 0.0431, "accuracy": 1.0, "learning_rate": 1.3446067760664417e-07, "epoch": 2.7492237442922374, "percentage": 68.77, "elapsed_time": "10:17:22", "remaining_time": "4:40:23"} +{"current_steps": 3764, "total_steps": 5472, "loss": 0.0628, "accuracy": 1.0, "learning_rate": 1.343192532246485e-07, "epoch": 2.7499543378995432, "percentage": 68.79, "elapsed_time": "10:17:31", "remaining_time": "4:40:12"} +{"current_steps": 3765, "total_steps": 5472, "loss": 0.0557, "accuracy": 1.0, "learning_rate": 1.3417787593222318e-07, "epoch": 2.750684931506849, "percentage": 68.8, "elapsed_time": "10:17:41", "remaining_time": "4:40:03"} +{"current_steps": 3766, "total_steps": 5472, "loss": 0.0405, "accuracy": 1.0, "learning_rate": 1.3403654578691747e-07, "epoch": 2.7514155251141554, "percentage": 68.82, "elapsed_time": "10:17:50", "remaining_time": "4:39:53"} +{"current_steps": 3767, "total_steps": 5472, "loss": 0.0773, "accuracy": 1.0, "learning_rate": 1.3389526284626225e-07, "epoch": 2.7521461187214613, "percentage": 68.84, "elapsed_time": "10:18:00", "remaining_time": "4:39:42"} +{"current_steps": 3768, "total_steps": 5472, "loss": 0.0322, "accuracy": 1.0, "learning_rate": 1.3375402716776863e-07, "epoch": 2.752876712328767, "percentage": 68.86, "elapsed_time": "10:18:09", "remaining_time": "4:39:32"} +{"current_steps": 3769, "total_steps": 5472, "loss": 0.026, "accuracy": 1.0, "learning_rate": 1.3361283880892887e-07, "epoch": 2.753607305936073, "percentage": 68.88, "elapsed_time": "10:18:18", "remaining_time": "4:39:22"} +{"current_steps": 3770, "total_steps": 5472, "loss": 0.0579, "accuracy": 1.0, "learning_rate": 1.3347169782721574e-07, "epoch": 2.754337899543379, "percentage": 68.9, "elapsed_time": "10:18:26", "remaining_time": "4:39:12"} +{"current_steps": 3771, "total_steps": 5472, "loss": 0.0508, "accuracy": 1.0, "learning_rate": 1.333306042800827e-07, "epoch": 2.755068493150685, "percentage": 68.91, "elapsed_time": "10:18:36", "remaining_time": "4:39:02"} +{"current_steps": 3772, "total_steps": 5472, "loss": 0.0814, "accuracy": 0.875, "learning_rate": 1.331895582249641e-07, "epoch": 2.7557990867579907, "percentage": 68.93, "elapsed_time": "10:18:45", "remaining_time": "4:38:52"} +{"current_steps": 3773, "total_steps": 5472, "loss": 0.0777, "accuracy": 0.875, "learning_rate": 1.3304855971927465e-07, "epoch": 2.756529680365297, "percentage": 68.95, "elapsed_time": "10:18:54", "remaining_time": "4:38:42"} +{"current_steps": 3774, "total_steps": 5472, "loss": 0.0751, "accuracy": 1.0, "learning_rate": 1.3290760882041014e-07, "epoch": 2.757260273972603, "percentage": 68.97, "elapsed_time": "10:19:06", "remaining_time": "4:38:32"} +{"current_steps": 3775, "total_steps": 5472, "loss": 0.0305, "accuracy": 1.0, "learning_rate": 1.3276670558574663e-07, "epoch": 2.7579908675799087, "percentage": 68.99, "elapsed_time": "10:19:15", "remaining_time": "4:38:22"} +{"current_steps": 3776, "total_steps": 5472, "loss": 0.0645, "accuracy": 1.0, "learning_rate": 1.3262585007264072e-07, "epoch": 2.7587214611872146, "percentage": 69.01, "elapsed_time": "10:19:24", "remaining_time": "4:38:12"} +{"current_steps": 3777, "total_steps": 5472, "loss": 0.0919, "accuracy": 0.875, "learning_rate": 1.3248504233843e-07, "epoch": 2.7594520547945205, "percentage": 69.02, "elapsed_time": "10:19:32", "remaining_time": "4:38:01"} +{"current_steps": 3778, "total_steps": 5472, "loss": 0.0538, "accuracy": 1.0, "learning_rate": 1.3234428244043223e-07, "epoch": 2.7601826484018264, "percentage": 69.04, "elapsed_time": "10:19:41", "remaining_time": "4:37:51"} +{"current_steps": 3779, "total_steps": 5472, "loss": 0.0312, "accuracy": 1.0, "learning_rate": 1.3220357043594582e-07, "epoch": 2.7609132420091322, "percentage": 69.06, "elapsed_time": "10:19:51", "remaining_time": "4:37:41"} +{"current_steps": 3780, "total_steps": 5472, "loss": 0.0499, "accuracy": 1.0, "learning_rate": 1.3206290638224962e-07, "epoch": 2.7616438356164386, "percentage": 69.08, "elapsed_time": "10:20:00", "remaining_time": "4:37:31"} +{"current_steps": 3781, "total_steps": 5472, "loss": 0.0319, "accuracy": 1.0, "learning_rate": 1.3192229033660306e-07, "epoch": 2.7623744292237444, "percentage": 69.1, "elapsed_time": "10:20:10", "remaining_time": "4:37:21"} +{"current_steps": 3782, "total_steps": 5472, "loss": 0.051, "accuracy": 1.0, "learning_rate": 1.3178172235624618e-07, "epoch": 2.7631050228310503, "percentage": 69.12, "elapsed_time": "10:20:20", "remaining_time": "4:37:12"} +{"current_steps": 3783, "total_steps": 5472, "loss": 0.044, "accuracy": 1.0, "learning_rate": 1.316412024983991e-07, "epoch": 2.763835616438356, "percentage": 69.13, "elapsed_time": "10:20:30", "remaining_time": "4:37:02"} +{"current_steps": 3784, "total_steps": 5472, "loss": 0.0529, "accuracy": 1.0, "learning_rate": 1.3150073082026253e-07, "epoch": 2.764566210045662, "percentage": 69.15, "elapsed_time": "10:20:40", "remaining_time": "4:36:52"} +{"current_steps": 3785, "total_steps": 5472, "loss": 0.0443, "accuracy": 1.0, "learning_rate": 1.313603073790175e-07, "epoch": 2.765296803652968, "percentage": 69.17, "elapsed_time": "10:20:50", "remaining_time": "4:36:42"} +{"current_steps": 3786, "total_steps": 5472, "loss": 0.0633, "accuracy": 1.0, "learning_rate": 1.312199322318256e-07, "epoch": 2.766027397260274, "percentage": 69.19, "elapsed_time": "10:21:00", "remaining_time": "4:36:32"} +{"current_steps": 3787, "total_steps": 5472, "loss": 0.0691, "accuracy": 1.0, "learning_rate": 1.3107960543582858e-07, "epoch": 2.76675799086758, "percentage": 69.21, "elapsed_time": "10:21:11", "remaining_time": "4:36:23"} +{"current_steps": 3788, "total_steps": 5472, "loss": 0.0428, "accuracy": 1.0, "learning_rate": 1.3093932704814845e-07, "epoch": 2.767488584474886, "percentage": 69.23, "elapsed_time": "10:21:21", "remaining_time": "4:36:14"} +{"current_steps": 3789, "total_steps": 5472, "loss": 0.0828, "accuracy": 1.0, "learning_rate": 1.3079909712588777e-07, "epoch": 2.768219178082192, "percentage": 69.24, "elapsed_time": "10:21:32", "remaining_time": "4:36:04"} +{"current_steps": 3790, "total_steps": 5472, "loss": 0.0737, "accuracy": 1.0, "learning_rate": 1.3065891572612901e-07, "epoch": 2.7689497716894977, "percentage": 69.26, "elapsed_time": "10:21:41", "remaining_time": "4:35:54"} +{"current_steps": 3791, "total_steps": 5472, "loss": 0.0626, "accuracy": 1.0, "learning_rate": 1.305187829059354e-07, "epoch": 2.7696803652968036, "percentage": 69.28, "elapsed_time": "10:21:51", "remaining_time": "4:35:44"} +{"current_steps": 3792, "total_steps": 5472, "loss": 0.0298, "accuracy": 1.0, "learning_rate": 1.3037869872234985e-07, "epoch": 2.7704109589041095, "percentage": 69.3, "elapsed_time": "10:22:02", "remaining_time": "4:35:35"} +{"current_steps": 3793, "total_steps": 5472, "loss": 0.0482, "accuracy": 1.0, "learning_rate": 1.3023866323239572e-07, "epoch": 2.7711415525114154, "percentage": 69.32, "elapsed_time": "10:22:13", "remaining_time": "4:35:25"} +{"current_steps": 3794, "total_steps": 5472, "loss": 0.0291, "accuracy": 1.0, "learning_rate": 1.300986764930767e-07, "epoch": 2.7718721461187217, "percentage": 69.33, "elapsed_time": "10:22:21", "remaining_time": "4:35:15"} +{"current_steps": 3795, "total_steps": 5472, "loss": 0.0404, "accuracy": 1.0, "learning_rate": 1.2995873856137623e-07, "epoch": 2.7726027397260276, "percentage": 69.35, "elapsed_time": "10:22:30", "remaining_time": "4:35:05"} +{"current_steps": 3796, "total_steps": 5472, "loss": 0.0391, "accuracy": 1.0, "learning_rate": 1.2981884949425854e-07, "epoch": 2.7733333333333334, "percentage": 69.37, "elapsed_time": "10:22:39", "remaining_time": "4:34:54"} +{"current_steps": 3797, "total_steps": 5472, "loss": 0.0659, "accuracy": 1.0, "learning_rate": 1.2967900934866704e-07, "epoch": 2.7740639269406393, "percentage": 69.39, "elapsed_time": "10:22:48", "remaining_time": "4:34:44"} +{"current_steps": 3798, "total_steps": 5472, "loss": 0.0607, "accuracy": 1.0, "learning_rate": 1.2953921818152605e-07, "epoch": 2.774794520547945, "percentage": 69.41, "elapsed_time": "10:22:58", "remaining_time": "4:34:34"} +{"current_steps": 3799, "total_steps": 5472, "loss": 0.0487, "accuracy": 1.0, "learning_rate": 1.2939947604973967e-07, "epoch": 2.775525114155251, "percentage": 69.43, "elapsed_time": "10:23:08", "remaining_time": "4:34:25"} +{"current_steps": 3800, "total_steps": 5472, "loss": 0.0559, "accuracy": 0.875, "learning_rate": 1.292597830101919e-07, "epoch": 2.776255707762557, "percentage": 69.44, "elapsed_time": "10:23:19", "remaining_time": "4:34:15"} +{"current_steps": 3801, "total_steps": 5472, "loss": 0.05, "accuracy": 1.0, "learning_rate": 1.2912013911974696e-07, "epoch": 2.7769863013698632, "percentage": 69.46, "elapsed_time": "10:23:29", "remaining_time": "4:34:06"} +{"current_steps": 3802, "total_steps": 5472, "loss": 0.0307, "accuracy": 1.0, "learning_rate": 1.289805444352488e-07, "epoch": 2.777716894977169, "percentage": 69.48, "elapsed_time": "10:23:39", "remaining_time": "4:33:56"} +{"current_steps": 3803, "total_steps": 5472, "loss": 0.0416, "accuracy": 1.0, "learning_rate": 1.2884099901352175e-07, "epoch": 2.778447488584475, "percentage": 69.5, "elapsed_time": "10:23:50", "remaining_time": "4:33:46"} +{"current_steps": 3804, "total_steps": 5472, "loss": 0.0298, "accuracy": 1.0, "learning_rate": 1.287015029113697e-07, "epoch": 2.779178082191781, "percentage": 69.52, "elapsed_time": "10:23:59", "remaining_time": "4:33:36"} +{"current_steps": 3805, "total_steps": 5472, "loss": 0.0638, "accuracy": 1.0, "learning_rate": 1.285620561855766e-07, "epoch": 2.7799086757990867, "percentage": 69.54, "elapsed_time": "10:24:09", "remaining_time": "4:33:26"} +{"current_steps": 3806, "total_steps": 5472, "loss": 0.0587, "accuracy": 1.0, "learning_rate": 1.2842265889290647e-07, "epoch": 2.7806392694063926, "percentage": 69.55, "elapsed_time": "10:24:18", "remaining_time": "4:33:16"} +{"current_steps": 3807, "total_steps": 5472, "loss": 0.0712, "accuracy": 1.0, "learning_rate": 1.2828331109010281e-07, "epoch": 2.7813698630136985, "percentage": 69.57, "elapsed_time": "10:24:27", "remaining_time": "4:33:06"} +{"current_steps": 3808, "total_steps": 5472, "loss": 0.0177, "accuracy": 1.0, "learning_rate": 1.2814401283388951e-07, "epoch": 2.782100456621005, "percentage": 69.59, "elapsed_time": "10:24:36", "remaining_time": "4:32:56"} +{"current_steps": 3809, "total_steps": 5472, "loss": 0.0271, "accuracy": 1.0, "learning_rate": 1.2800476418096984e-07, "epoch": 2.7828310502283102, "percentage": 69.61, "elapsed_time": "10:24:45", "remaining_time": "4:32:46"} +{"current_steps": 3810, "total_steps": 5472, "loss": 0.0617, "accuracy": 1.0, "learning_rate": 1.2786556518802691e-07, "epoch": 2.7835616438356166, "percentage": 69.63, "elapsed_time": "10:24:57", "remaining_time": "4:32:37"} +{"current_steps": 3811, "total_steps": 5472, "loss": 0.0241, "accuracy": 1.0, "learning_rate": 1.2772641591172401e-07, "epoch": 2.7842922374429224, "percentage": 69.65, "elapsed_time": "10:25:07", "remaining_time": "4:32:27"} +{"current_steps": 3812, "total_steps": 5472, "loss": 0.0826, "accuracy": 1.0, "learning_rate": 1.275873164087037e-07, "epoch": 2.7850228310502283, "percentage": 69.66, "elapsed_time": "10:25:17", "remaining_time": "4:32:17"} +{"current_steps": 3813, "total_steps": 5472, "loss": 0.0629, "accuracy": 1.0, "learning_rate": 1.2744826673558875e-07, "epoch": 2.785753424657534, "percentage": 69.68, "elapsed_time": "10:25:25", "remaining_time": "4:32:07"} +{"current_steps": 3814, "total_steps": 5472, "loss": 0.0211, "accuracy": 1.0, "learning_rate": 1.273092669489811e-07, "epoch": 2.78648401826484, "percentage": 69.7, "elapsed_time": "10:25:34", "remaining_time": "4:31:56"} +{"current_steps": 3815, "total_steps": 5472, "loss": 0.0669, "accuracy": 1.0, "learning_rate": 1.2717031710546289e-07, "epoch": 2.7872146118721464, "percentage": 69.72, "elapsed_time": "10:25:44", "remaining_time": "4:31:46"} +{"current_steps": 3816, "total_steps": 5472, "loss": 0.1428, "accuracy": 1.0, "learning_rate": 1.2703141726159556e-07, "epoch": 2.787945205479452, "percentage": 69.74, "elapsed_time": "10:25:53", "remaining_time": "4:31:36"} +{"current_steps": 3817, "total_steps": 5472, "loss": 0.0365, "accuracy": 1.0, "learning_rate": 1.2689256747392059e-07, "epoch": 2.788675799086758, "percentage": 69.76, "elapsed_time": "10:26:05", "remaining_time": "4:31:27"} +{"current_steps": 3818, "total_steps": 5472, "loss": 0.0507, "accuracy": 1.0, "learning_rate": 1.267537677989587e-07, "epoch": 2.789406392694064, "percentage": 69.77, "elapsed_time": "10:26:13", "remaining_time": "4:31:17"} +{"current_steps": 3819, "total_steps": 5472, "loss": 0.0381, "accuracy": 1.0, "learning_rate": 1.266150182932103e-07, "epoch": 2.79013698630137, "percentage": 69.79, "elapsed_time": "10:26:22", "remaining_time": "4:31:07"} +{"current_steps": 3820, "total_steps": 5472, "loss": 0.0597, "accuracy": 1.0, "learning_rate": 1.264763190131556e-07, "epoch": 2.7908675799086757, "percentage": 69.81, "elapsed_time": "10:26:31", "remaining_time": "4:30:56"} +{"current_steps": 3821, "total_steps": 5472, "loss": 0.076, "accuracy": 1.0, "learning_rate": 1.2633767001525408e-07, "epoch": 2.7915981735159816, "percentage": 69.83, "elapsed_time": "10:26:40", "remaining_time": "4:30:46"} +{"current_steps": 3822, "total_steps": 5472, "loss": 0.0196, "accuracy": 1.0, "learning_rate": 1.2619907135594503e-07, "epoch": 2.792328767123288, "percentage": 69.85, "elapsed_time": "10:26:50", "remaining_time": "4:30:36"} +{"current_steps": 3823, "total_steps": 5472, "loss": 0.0583, "accuracy": 1.0, "learning_rate": 1.2606052309164698e-07, "epoch": 2.7930593607305934, "percentage": 69.86, "elapsed_time": "10:26:59", "remaining_time": "4:30:26"} +{"current_steps": 3824, "total_steps": 5472, "loss": 0.0215, "accuracy": 1.0, "learning_rate": 1.2592202527875798e-07, "epoch": 2.7937899543378997, "percentage": 69.88, "elapsed_time": "10:27:07", "remaining_time": "4:30:16"} +{"current_steps": 3825, "total_steps": 5472, "loss": 0.0451, "accuracy": 1.0, "learning_rate": 1.2578357797365586e-07, "epoch": 2.7945205479452055, "percentage": 69.9, "elapsed_time": "10:27:18", "remaining_time": "4:30:06"} +{"current_steps": 3826, "total_steps": 5472, "loss": 0.0607, "accuracy": 1.0, "learning_rate": 1.2564518123269748e-07, "epoch": 2.7952511415525114, "percentage": 69.92, "elapsed_time": "10:27:30", "remaining_time": "4:29:57"} +{"current_steps": 3827, "total_steps": 5472, "loss": 0.0604, "accuracy": 1.0, "learning_rate": 1.255068351122193e-07, "epoch": 2.7959817351598173, "percentage": 69.94, "elapsed_time": "10:27:39", "remaining_time": "4:29:47"} +{"current_steps": 3828, "total_steps": 5472, "loss": 0.0582, "accuracy": 1.0, "learning_rate": 1.2536853966853728e-07, "epoch": 2.796712328767123, "percentage": 69.96, "elapsed_time": "10:27:49", "remaining_time": "4:29:37"} +{"current_steps": 3829, "total_steps": 5472, "loss": 0.0473, "accuracy": 1.0, "learning_rate": 1.2523029495794646e-07, "epoch": 2.7974429223744295, "percentage": 69.97, "elapsed_time": "10:27:58", "remaining_time": "4:29:27"} +{"current_steps": 3830, "total_steps": 5472, "loss": 0.0997, "accuracy": 1.0, "learning_rate": 1.2509210103672175e-07, "epoch": 2.798173515981735, "percentage": 69.99, "elapsed_time": "10:28:09", "remaining_time": "4:29:18"} +{"current_steps": 3831, "total_steps": 5472, "loss": 0.0575, "accuracy": 1.0, "learning_rate": 1.2495395796111658e-07, "epoch": 2.7989041095890412, "percentage": 70.01, "elapsed_time": "10:28:19", "remaining_time": "4:29:08"} +{"current_steps": 3832, "total_steps": 5472, "loss": 0.0787, "accuracy": 1.0, "learning_rate": 1.2481586578736446e-07, "epoch": 2.799634703196347, "percentage": 70.03, "elapsed_time": "10:28:30", "remaining_time": "4:28:59"} +{"current_steps": 3833, "total_steps": 5472, "loss": 0.0559, "accuracy": 1.0, "learning_rate": 1.2467782457167773e-07, "epoch": 2.800365296803653, "percentage": 70.05, "elapsed_time": "10:28:41", "remaining_time": "4:28:49"} +{"current_steps": 3834, "total_steps": 5472, "loss": 0.0209, "accuracy": 1.0, "learning_rate": 1.2453983437024814e-07, "epoch": 2.801095890410959, "percentage": 70.07, "elapsed_time": "10:28:49", "remaining_time": "4:28:39"} +{"current_steps": 3835, "total_steps": 5472, "loss": 0.0396, "accuracy": 1.0, "learning_rate": 1.244018952392469e-07, "epoch": 2.8018264840182647, "percentage": 70.08, "elapsed_time": "10:29:02", "remaining_time": "4:28:30"} +{"current_steps": 3836, "total_steps": 5472, "loss": 0.0792, "accuracy": 1.0, "learning_rate": 1.2426400723482377e-07, "epoch": 2.802557077625571, "percentage": 70.1, "elapsed_time": "10:29:12", "remaining_time": "4:28:20"} +{"current_steps": 3837, "total_steps": 5472, "loss": 0.0833, "accuracy": 0.875, "learning_rate": 1.2412617041310844e-07, "epoch": 2.8032876712328765, "percentage": 70.12, "elapsed_time": "10:29:22", "remaining_time": "4:28:10"} +{"current_steps": 3838, "total_steps": 5472, "loss": 0.0329, "accuracy": 1.0, "learning_rate": 1.2398838483020918e-07, "epoch": 2.804018264840183, "percentage": 70.14, "elapsed_time": "10:29:31", "remaining_time": "4:28:01"} +{"current_steps": 3839, "total_steps": 5472, "loss": 0.0377, "accuracy": 1.0, "learning_rate": 1.2385065054221394e-07, "epoch": 2.8047488584474887, "percentage": 70.16, "elapsed_time": "10:29:41", "remaining_time": "4:27:51"} +{"current_steps": 3840, "total_steps": 5472, "loss": 0.0491, "accuracy": 1.0, "learning_rate": 1.2371296760518935e-07, "epoch": 2.8054794520547945, "percentage": 70.18, "elapsed_time": "10:29:51", "remaining_time": "4:27:41"} +{"current_steps": 3841, "total_steps": 5472, "loss": 0.0343, "accuracy": 1.0, "learning_rate": 1.2357533607518124e-07, "epoch": 2.8062100456621004, "percentage": 70.19, "elapsed_time": "10:30:00", "remaining_time": "4:27:31"} +{"current_steps": 3842, "total_steps": 5472, "loss": 0.0862, "accuracy": 1.0, "learning_rate": 1.2343775600821475e-07, "epoch": 2.8069406392694063, "percentage": 70.21, "elapsed_time": "10:30:10", "remaining_time": "4:27:21"} +{"current_steps": 3843, "total_steps": 5472, "loss": 0.0469, "accuracy": 1.0, "learning_rate": 1.2330022746029377e-07, "epoch": 2.807671232876712, "percentage": 70.23, "elapsed_time": "10:30:20", "remaining_time": "4:27:11"} +{"current_steps": 3844, "total_steps": 5472, "loss": 0.0577, "accuracy": 1.0, "learning_rate": 1.2316275048740134e-07, "epoch": 2.808401826484018, "percentage": 70.25, "elapsed_time": "10:30:30", "remaining_time": "4:27:02"} +{"current_steps": 3845, "total_steps": 5472, "loss": 0.0555, "accuracy": 1.0, "learning_rate": 1.230253251454996e-07, "epoch": 2.8091324200913244, "percentage": 70.27, "elapsed_time": "10:30:40", "remaining_time": "4:26:51"} +{"current_steps": 3846, "total_steps": 5472, "loss": 0.0445, "accuracy": 1.0, "learning_rate": 1.2288795149052945e-07, "epoch": 2.8098630136986302, "percentage": 70.29, "elapsed_time": "10:30:52", "remaining_time": "4:26:43"} +{"current_steps": 3847, "total_steps": 5472, "loss": 0.089, "accuracy": 0.875, "learning_rate": 1.2275062957841105e-07, "epoch": 2.810593607305936, "percentage": 70.3, "elapsed_time": "10:31:02", "remaining_time": "4:26:33"} +{"current_steps": 3848, "total_steps": 5472, "loss": 0.0259, "accuracy": 1.0, "learning_rate": 1.226133594650432e-07, "epoch": 2.811324200913242, "percentage": 70.32, "elapsed_time": "10:31:11", "remaining_time": "4:26:23"} +{"current_steps": 3849, "total_steps": 5472, "loss": 0.026, "accuracy": 1.0, "learning_rate": 1.224761412063038e-07, "epoch": 2.812054794520548, "percentage": 70.34, "elapsed_time": "10:31:23", "remaining_time": "4:26:14"} +{"current_steps": 3850, "total_steps": 5472, "loss": 0.0518, "accuracy": 1.0, "learning_rate": 1.2233897485804944e-07, "epoch": 2.8127853881278537, "percentage": 70.36, "elapsed_time": "10:31:34", "remaining_time": "4:26:04"} +{"current_steps": 3851, "total_steps": 5472, "loss": 0.0353, "accuracy": 1.0, "learning_rate": 1.222018604761159e-07, "epoch": 2.8135159817351596, "percentage": 70.38, "elapsed_time": "10:31:43", "remaining_time": "4:25:54"} +{"current_steps": 3852, "total_steps": 5472, "loss": 0.0691, "accuracy": 1.0, "learning_rate": 1.2206479811631772e-07, "epoch": 2.814246575342466, "percentage": 70.39, "elapsed_time": "10:31:55", "remaining_time": "4:25:45"} +{"current_steps": 3853, "total_steps": 5472, "loss": 0.0371, "accuracy": 1.0, "learning_rate": 1.2192778783444786e-07, "epoch": 2.814977168949772, "percentage": 70.41, "elapsed_time": "10:32:03", "remaining_time": "4:25:35"} +{"current_steps": 3854, "total_steps": 5472, "loss": 0.0669, "accuracy": 1.0, "learning_rate": 1.217908296862787e-07, "epoch": 2.8157077625570777, "percentage": 70.43, "elapsed_time": "10:32:14", "remaining_time": "4:25:25"} +{"current_steps": 3855, "total_steps": 5472, "loss": 0.0876, "accuracy": 0.875, "learning_rate": 1.216539237275608e-07, "epoch": 2.8164383561643835, "percentage": 70.45, "elapsed_time": "10:32:25", "remaining_time": "4:25:16"} +{"current_steps": 3856, "total_steps": 5472, "loss": 0.0569, "accuracy": 0.875, "learning_rate": 1.2151707001402406e-07, "epoch": 2.8171689497716894, "percentage": 70.47, "elapsed_time": "10:32:35", "remaining_time": "4:25:06"} +{"current_steps": 3857, "total_steps": 5472, "loss": 0.0267, "accuracy": 1.0, "learning_rate": 1.2138026860137668e-07, "epoch": 2.8178995433789953, "percentage": 70.49, "elapsed_time": "10:32:43", "remaining_time": "4:24:56"} +{"current_steps": 3858, "total_steps": 5472, "loss": 0.0356, "accuracy": 1.0, "learning_rate": 1.2124351954530562e-07, "epoch": 2.818630136986301, "percentage": 70.5, "elapsed_time": "10:32:53", "remaining_time": "4:24:46"} +{"current_steps": 3859, "total_steps": 5472, "loss": 0.0323, "accuracy": 1.0, "learning_rate": 1.211068229014768e-07, "epoch": 2.8193607305936075, "percentage": 70.52, "elapsed_time": "10:33:03", "remaining_time": "4:24:36"} +{"current_steps": 3860, "total_steps": 5472, "loss": 0.0388, "accuracy": 1.0, "learning_rate": 1.2097017872553448e-07, "epoch": 2.8200913242009134, "percentage": 70.54, "elapsed_time": "10:33:13", "remaining_time": "4:24:26"} +{"current_steps": 3861, "total_steps": 5472, "loss": 0.0241, "accuracy": 1.0, "learning_rate": 1.2083358707310185e-07, "epoch": 2.8208219178082192, "percentage": 70.56, "elapsed_time": "10:33:22", "remaining_time": "4:24:16"} +{"current_steps": 3862, "total_steps": 5472, "loss": 0.025, "accuracy": 1.0, "learning_rate": 1.206970479997805e-07, "epoch": 2.821552511415525, "percentage": 70.58, "elapsed_time": "10:33:30", "remaining_time": "4:24:06"} +{"current_steps": 3863, "total_steps": 5472, "loss": 0.0571, "accuracy": 1.0, "learning_rate": 1.2056056156115058e-07, "epoch": 2.822283105022831, "percentage": 70.6, "elapsed_time": "10:33:40", "remaining_time": "4:23:56"} +{"current_steps": 3864, "total_steps": 5472, "loss": 0.0772, "accuracy": 1.0, "learning_rate": 1.204241278127711e-07, "epoch": 2.823013698630137, "percentage": 70.61, "elapsed_time": "10:33:49", "remaining_time": "4:23:46"} +{"current_steps": 3865, "total_steps": 5472, "loss": 0.0572, "accuracy": 1.0, "learning_rate": 1.2028774681017945e-07, "epoch": 2.8237442922374427, "percentage": 70.63, "elapsed_time": "10:33:59", "remaining_time": "4:23:36"} +{"current_steps": 3866, "total_steps": 5472, "loss": 0.0503, "accuracy": 1.0, "learning_rate": 1.2015141860889144e-07, "epoch": 2.824474885844749, "percentage": 70.65, "elapsed_time": "10:34:10", "remaining_time": "4:23:26"} +{"current_steps": 3867, "total_steps": 5472, "loss": 0.0687, "accuracy": 1.0, "learning_rate": 1.2001514326440146e-07, "epoch": 2.825205479452055, "percentage": 70.67, "elapsed_time": "10:34:19", "remaining_time": "4:23:16"} +{"current_steps": 3868, "total_steps": 5472, "loss": 0.0296, "accuracy": 1.0, "learning_rate": 1.1987892083218257e-07, "epoch": 2.825936073059361, "percentage": 70.69, "elapsed_time": "10:34:28", "remaining_time": "4:23:06"} +{"current_steps": 3869, "total_steps": 5472, "loss": 0.1212, "accuracy": 1.0, "learning_rate": 1.1974275136768598e-07, "epoch": 2.8266666666666667, "percentage": 70.71, "elapsed_time": "10:34:36", "remaining_time": "4:22:55"} +{"current_steps": 3870, "total_steps": 5472, "loss": 0.0462, "accuracy": 1.0, "learning_rate": 1.1960663492634166e-07, "epoch": 2.8273972602739725, "percentage": 70.72, "elapsed_time": "10:34:45", "remaining_time": "4:22:45"} +{"current_steps": 3871, "total_steps": 5472, "loss": 0.0348, "accuracy": 1.0, "learning_rate": 1.1947057156355776e-07, "epoch": 2.8281278538812784, "percentage": 70.74, "elapsed_time": "10:34:55", "remaining_time": "4:22:35"} +{"current_steps": 3872, "total_steps": 5472, "loss": 0.0189, "accuracy": 1.0, "learning_rate": 1.193345613347208e-07, "epoch": 2.8288584474885843, "percentage": 70.76, "elapsed_time": "10:35:04", "remaining_time": "4:22:25"} +{"current_steps": 3873, "total_steps": 5472, "loss": 0.0503, "accuracy": 1.0, "learning_rate": 1.191986042951959e-07, "epoch": 2.8295890410958906, "percentage": 70.78, "elapsed_time": "10:35:13", "remaining_time": "4:22:15"} +{"current_steps": 3874, "total_steps": 5472, "loss": 0.0412, "accuracy": 1.0, "learning_rate": 1.1906270050032641e-07, "epoch": 2.8303196347031965, "percentage": 70.8, "elapsed_time": "10:35:22", "remaining_time": "4:22:05"} +{"current_steps": 3875, "total_steps": 5472, "loss": 0.0665, "accuracy": 0.875, "learning_rate": 1.1892685000543381e-07, "epoch": 2.8310502283105023, "percentage": 70.82, "elapsed_time": "10:35:32", "remaining_time": "4:21:55"} +{"current_steps": 3876, "total_steps": 5472, "loss": 0.0634, "accuracy": 1.0, "learning_rate": 1.1879105286581831e-07, "epoch": 2.831780821917808, "percentage": 70.83, "elapsed_time": "10:35:40", "remaining_time": "4:21:45"} +{"current_steps": 3877, "total_steps": 5472, "loss": 0.0532, "accuracy": 1.0, "learning_rate": 1.1865530913675795e-07, "epoch": 2.832511415525114, "percentage": 70.85, "elapsed_time": "10:35:49", "remaining_time": "4:21:34"} +{"current_steps": 3878, "total_steps": 5472, "loss": 0.0748, "accuracy": 1.0, "learning_rate": 1.185196188735095e-07, "epoch": 2.83324200913242, "percentage": 70.87, "elapsed_time": "10:35:59", "remaining_time": "4:21:25"} +{"current_steps": 3879, "total_steps": 5472, "loss": 0.0395, "accuracy": 1.0, "learning_rate": 1.1838398213130735e-07, "epoch": 2.833972602739726, "percentage": 70.89, "elapsed_time": "10:36:08", "remaining_time": "4:21:14"} +{"current_steps": 3880, "total_steps": 5472, "loss": 0.0303, "accuracy": 1.0, "learning_rate": 1.1824839896536464e-07, "epoch": 2.834703196347032, "percentage": 70.91, "elapsed_time": "10:36:18", "remaining_time": "4:21:04"} +{"current_steps": 3881, "total_steps": 5472, "loss": 0.0399, "accuracy": 1.0, "learning_rate": 1.1811286943087259e-07, "epoch": 2.835433789954338, "percentage": 70.92, "elapsed_time": "10:36:29", "remaining_time": "4:20:55"} +{"current_steps": 3882, "total_steps": 5472, "loss": 0.0931, "accuracy": 1.0, "learning_rate": 1.1797739358300034e-07, "epoch": 2.836164383561644, "percentage": 70.94, "elapsed_time": "10:36:37", "remaining_time": "4:20:45"} +{"current_steps": 3883, "total_steps": 5472, "loss": 0.0251, "accuracy": 1.0, "learning_rate": 1.1784197147689565e-07, "epoch": 2.83689497716895, "percentage": 70.96, "elapsed_time": "10:36:48", "remaining_time": "4:20:35"} +{"current_steps": 3884, "total_steps": 5472, "loss": 0.0737, "accuracy": 1.0, "learning_rate": 1.1770660316768371e-07, "epoch": 2.8376255707762557, "percentage": 70.98, "elapsed_time": "10:36:58", "remaining_time": "4:20:25"} +{"current_steps": 3885, "total_steps": 5472, "loss": 0.0392, "accuracy": 1.0, "learning_rate": 1.1757128871046849e-07, "epoch": 2.8383561643835615, "percentage": 71.0, "elapsed_time": "10:37:09", "remaining_time": "4:20:16"} +{"current_steps": 3886, "total_steps": 5472, "loss": 0.0402, "accuracy": 1.0, "learning_rate": 1.1743602816033155e-07, "epoch": 2.8390867579908674, "percentage": 71.02, "elapsed_time": "10:37:19", "remaining_time": "4:20:06"} +{"current_steps": 3887, "total_steps": 5472, "loss": 0.0333, "accuracy": 1.0, "learning_rate": 1.173008215723329e-07, "epoch": 2.8398173515981737, "percentage": 71.03, "elapsed_time": "10:37:28", "remaining_time": "4:19:56"} +{"current_steps": 3888, "total_steps": 5472, "loss": 0.0718, "accuracy": 1.0, "learning_rate": 1.1716566900151035e-07, "epoch": 2.8405479452054796, "percentage": 71.05, "elapsed_time": "10:37:40", "remaining_time": "4:19:47"} +{"current_steps": 3889, "total_steps": 5472, "loss": 0.0483, "accuracy": 1.0, "learning_rate": 1.1703057050287962e-07, "epoch": 2.8412785388127855, "percentage": 71.07, "elapsed_time": "10:37:50", "remaining_time": "4:19:37"} +{"current_steps": 3890, "total_steps": 5472, "loss": 0.035, "accuracy": 1.0, "learning_rate": 1.1689552613143474e-07, "epoch": 2.8420091324200913, "percentage": 71.09, "elapsed_time": "10:38:00", "remaining_time": "4:19:27"} +{"current_steps": 3891, "total_steps": 5472, "loss": 0.0291, "accuracy": 1.0, "learning_rate": 1.1676053594214752e-07, "epoch": 2.842739726027397, "percentage": 71.11, "elapsed_time": "10:38:08", "remaining_time": "4:19:17"} +{"current_steps": 3892, "total_steps": 5472, "loss": 0.0426, "accuracy": 1.0, "learning_rate": 1.1662559998996755e-07, "epoch": 2.843470319634703, "percentage": 71.13, "elapsed_time": "10:38:18", "remaining_time": "4:19:07"} +{"current_steps": 3893, "total_steps": 5472, "loss": 0.0666, "accuracy": 1.0, "learning_rate": 1.1649071832982273e-07, "epoch": 2.844200913242009, "percentage": 71.14, "elapsed_time": "10:38:28", "remaining_time": "4:18:58"} +{"current_steps": 3894, "total_steps": 5472, "loss": 0.0659, "accuracy": 0.875, "learning_rate": 1.1635589101661847e-07, "epoch": 2.8449315068493153, "percentage": 71.16, "elapsed_time": "10:38:37", "remaining_time": "4:18:47"} +{"current_steps": 3895, "total_steps": 5472, "loss": 0.0234, "accuracy": 1.0, "learning_rate": 1.1622111810523844e-07, "epoch": 2.845662100456621, "percentage": 71.18, "elapsed_time": "10:38:47", "remaining_time": "4:18:37"} +{"current_steps": 3896, "total_steps": 5472, "loss": 0.0448, "accuracy": 1.0, "learning_rate": 1.1608639965054382e-07, "epoch": 2.846392694063927, "percentage": 71.2, "elapsed_time": "10:38:56", "remaining_time": "4:18:27"} +{"current_steps": 3897, "total_steps": 5472, "loss": 0.0806, "accuracy": 0.875, "learning_rate": 1.1595173570737371e-07, "epoch": 2.847123287671233, "percentage": 71.22, "elapsed_time": "10:39:06", "remaining_time": "4:18:18"} +{"current_steps": 3898, "total_steps": 5472, "loss": 0.034, "accuracy": 1.0, "learning_rate": 1.1581712633054522e-07, "epoch": 2.847853881278539, "percentage": 71.24, "elapsed_time": "10:39:17", "remaining_time": "4:18:08"} +{"current_steps": 3899, "total_steps": 5472, "loss": 0.0278, "accuracy": 1.0, "learning_rate": 1.1568257157485295e-07, "epoch": 2.8485844748858447, "percentage": 71.25, "elapsed_time": "10:39:26", "remaining_time": "4:17:58"} +{"current_steps": 3900, "total_steps": 5472, "loss": 0.0318, "accuracy": 1.0, "learning_rate": 1.1554807149506968e-07, "epoch": 2.8493150684931505, "percentage": 71.27, "elapsed_time": "10:39:36", "remaining_time": "4:17:48"} +{"current_steps": 3901, "total_steps": 5472, "loss": 0.0537, "accuracy": 1.0, "learning_rate": 1.154136261459453e-07, "epoch": 2.850045662100457, "percentage": 71.29, "elapsed_time": "10:39:45", "remaining_time": "4:17:38"} +{"current_steps": 3902, "total_steps": 5472, "loss": 0.0498, "accuracy": 1.0, "learning_rate": 1.1527923558220806e-07, "epoch": 2.8507762557077627, "percentage": 71.31, "elapsed_time": "10:39:53", "remaining_time": "4:17:28"} +{"current_steps": 3903, "total_steps": 5472, "loss": 0.0906, "accuracy": 1.0, "learning_rate": 1.1514489985856348e-07, "epoch": 2.8515068493150686, "percentage": 71.33, "elapsed_time": "10:40:03", "remaining_time": "4:17:18"} +{"current_steps": 3904, "total_steps": 5472, "loss": 0.0322, "accuracy": 1.0, "learning_rate": 1.1501061902969509e-07, "epoch": 2.8522374429223745, "percentage": 71.35, "elapsed_time": "10:40:13", "remaining_time": "4:17:08"} +{"current_steps": 3905, "total_steps": 5472, "loss": 0.0452, "accuracy": 1.0, "learning_rate": 1.1487639315026379e-07, "epoch": 2.8529680365296803, "percentage": 71.36, "elapsed_time": "10:40:21", "remaining_time": "4:16:57"} +{"current_steps": 3906, "total_steps": 5472, "loss": 0.0425, "accuracy": 1.0, "learning_rate": 1.1474222227490815e-07, "epoch": 2.853698630136986, "percentage": 71.38, "elapsed_time": "10:40:32", "remaining_time": "4:16:48"} +{"current_steps": 3907, "total_steps": 5472, "loss": 0.0369, "accuracy": 1.0, "learning_rate": 1.1460810645824459e-07, "epoch": 2.854429223744292, "percentage": 71.4, "elapsed_time": "10:40:41", "remaining_time": "4:16:38"} +{"current_steps": 3908, "total_steps": 5472, "loss": 0.0485, "accuracy": 1.0, "learning_rate": 1.1447404575486678e-07, "epoch": 2.8551598173515984, "percentage": 71.42, "elapsed_time": "10:40:53", "remaining_time": "4:16:29"} +{"current_steps": 3909, "total_steps": 5472, "loss": 0.0935, "accuracy": 1.0, "learning_rate": 1.1434004021934632e-07, "epoch": 2.855890410958904, "percentage": 71.44, "elapsed_time": "10:41:04", "remaining_time": "4:16:19"} +{"current_steps": 3910, "total_steps": 5472, "loss": 0.0362, "accuracy": 1.0, "learning_rate": 1.1420608990623204e-07, "epoch": 2.85662100456621, "percentage": 71.45, "elapsed_time": "10:41:13", "remaining_time": "4:16:09"} +{"current_steps": 3911, "total_steps": 5472, "loss": 0.0319, "accuracy": 1.0, "learning_rate": 1.1407219487005032e-07, "epoch": 2.857351598173516, "percentage": 71.47, "elapsed_time": "10:41:22", "remaining_time": "4:15:59"} +{"current_steps": 3912, "total_steps": 5472, "loss": 0.1323, "accuracy": 1.0, "learning_rate": 1.1393835516530531e-07, "epoch": 2.858082191780822, "percentage": 71.49, "elapsed_time": "10:41:31", "remaining_time": "4:15:49"} +{"current_steps": 3913, "total_steps": 5472, "loss": 0.0307, "accuracy": 1.0, "learning_rate": 1.138045708464784e-07, "epoch": 2.8588127853881278, "percentage": 71.51, "elapsed_time": "10:41:43", "remaining_time": "4:15:40"} +{"current_steps": 3914, "total_steps": 5472, "loss": 0.0326, "accuracy": 1.0, "learning_rate": 1.1367084196802834e-07, "epoch": 2.8595433789954336, "percentage": 71.53, "elapsed_time": "10:41:54", "remaining_time": "4:15:30"} +{"current_steps": 3915, "total_steps": 5472, "loss": 0.0461, "accuracy": 1.0, "learning_rate": 1.1353716858439169e-07, "epoch": 2.86027397260274, "percentage": 71.55, "elapsed_time": "10:42:03", "remaining_time": "4:15:20"} +{"current_steps": 3916, "total_steps": 5472, "loss": 0.0586, "accuracy": 0.875, "learning_rate": 1.1340355074998201e-07, "epoch": 2.8610045662100454, "percentage": 71.56, "elapsed_time": "10:42:11", "remaining_time": "4:15:10"} +{"current_steps": 3917, "total_steps": 5472, "loss": 0.0424, "accuracy": 1.0, "learning_rate": 1.1326998851919065e-07, "epoch": 2.8617351598173517, "percentage": 71.58, "elapsed_time": "10:42:21", "remaining_time": "4:15:00"} +{"current_steps": 3918, "total_steps": 5472, "loss": 0.0236, "accuracy": 1.0, "learning_rate": 1.1313648194638578e-07, "epoch": 2.8624657534246576, "percentage": 71.6, "elapsed_time": "10:42:30", "remaining_time": "4:14:50"} +{"current_steps": 3919, "total_steps": 5472, "loss": 0.0243, "accuracy": 1.0, "learning_rate": 1.1300303108591352e-07, "epoch": 2.8631963470319635, "percentage": 71.62, "elapsed_time": "10:42:39", "remaining_time": "4:14:40"} +{"current_steps": 3920, "total_steps": 5472, "loss": 0.0463, "accuracy": 1.0, "learning_rate": 1.128696359920968e-07, "epoch": 2.8639269406392693, "percentage": 71.64, "elapsed_time": "10:42:49", "remaining_time": "4:14:30"} +{"current_steps": 3921, "total_steps": 5472, "loss": 0.0423, "accuracy": 1.0, "learning_rate": 1.1273629671923635e-07, "epoch": 2.864657534246575, "percentage": 71.66, "elapsed_time": "10:42:58", "remaining_time": "4:14:20"} +{"current_steps": 3922, "total_steps": 5472, "loss": 0.0518, "accuracy": 1.0, "learning_rate": 1.126030133216097e-07, "epoch": 2.8653881278538815, "percentage": 71.67, "elapsed_time": "10:43:07", "remaining_time": "4:14:09"} +{"current_steps": 3923, "total_steps": 5472, "loss": 0.0442, "accuracy": 1.0, "learning_rate": 1.1246978585347183e-07, "epoch": 2.866118721461187, "percentage": 71.69, "elapsed_time": "10:43:16", "remaining_time": "4:13:59"} +{"current_steps": 3924, "total_steps": 5472, "loss": 0.0206, "accuracy": 1.0, "learning_rate": 1.1233661436905514e-07, "epoch": 2.8668493150684933, "percentage": 71.71, "elapsed_time": "10:43:27", "remaining_time": "4:13:50"} +{"current_steps": 3925, "total_steps": 5472, "loss": 0.0573, "accuracy": 1.0, "learning_rate": 1.1220349892256884e-07, "epoch": 2.867579908675799, "percentage": 71.73, "elapsed_time": "10:43:37", "remaining_time": "4:13:40"} +{"current_steps": 3926, "total_steps": 5472, "loss": 0.0627, "accuracy": 1.0, "learning_rate": 1.1207043956819979e-07, "epoch": 2.868310502283105, "percentage": 71.75, "elapsed_time": "10:43:46", "remaining_time": "4:13:30"} +{"current_steps": 3927, "total_steps": 5472, "loss": 0.0419, "accuracy": 1.0, "learning_rate": 1.1193743636011164e-07, "epoch": 2.869041095890411, "percentage": 71.77, "elapsed_time": "10:43:55", "remaining_time": "4:13:20"} +{"current_steps": 3928, "total_steps": 5472, "loss": 0.0347, "accuracy": 1.0, "learning_rate": 1.1180448935244527e-07, "epoch": 2.8697716894977168, "percentage": 71.78, "elapsed_time": "10:44:04", "remaining_time": "4:13:10"} +{"current_steps": 3929, "total_steps": 5472, "loss": 0.1029, "accuracy": 1.0, "learning_rate": 1.1167159859931891e-07, "epoch": 2.870502283105023, "percentage": 71.8, "elapsed_time": "10:44:13", "remaining_time": "4:12:59"} +{"current_steps": 3930, "total_steps": 5472, "loss": 0.0665, "accuracy": 1.0, "learning_rate": 1.115387641548276e-07, "epoch": 2.8712328767123285, "percentage": 71.82, "elapsed_time": "10:44:22", "remaining_time": "4:12:49"} +{"current_steps": 3931, "total_steps": 5472, "loss": 0.1283, "accuracy": 0.875, "learning_rate": 1.1140598607304364e-07, "epoch": 2.871963470319635, "percentage": 71.84, "elapsed_time": "10:44:32", "remaining_time": "4:12:40"} +{"current_steps": 3932, "total_steps": 5472, "loss": 0.051, "accuracy": 1.0, "learning_rate": 1.1127326440801618e-07, "epoch": 2.8726940639269407, "percentage": 71.86, "elapsed_time": "10:44:43", "remaining_time": "4:12:30"} +{"current_steps": 3933, "total_steps": 5472, "loss": 0.0236, "accuracy": 1.0, "learning_rate": 1.1114059921377166e-07, "epoch": 2.8734246575342466, "percentage": 71.88, "elapsed_time": "10:44:54", "remaining_time": "4:12:21"} +{"current_steps": 3934, "total_steps": 5472, "loss": 0.0351, "accuracy": 1.0, "learning_rate": 1.1100799054431351e-07, "epoch": 2.8741552511415525, "percentage": 71.89, "elapsed_time": "10:45:04", "remaining_time": "4:12:11"} +{"current_steps": 3935, "total_steps": 5472, "loss": 0.0398, "accuracy": 1.0, "learning_rate": 1.1087543845362199e-07, "epoch": 2.8748858447488583, "percentage": 71.91, "elapsed_time": "10:45:15", "remaining_time": "4:12:02"} +{"current_steps": 3936, "total_steps": 5472, "loss": 0.081, "accuracy": 0.875, "learning_rate": 1.1074294299565437e-07, "epoch": 2.8756164383561647, "percentage": 71.93, "elapsed_time": "10:45:24", "remaining_time": "4:11:52"} +{"current_steps": 3937, "total_steps": 5472, "loss": 0.0482, "accuracy": 1.0, "learning_rate": 1.1061050422434484e-07, "epoch": 2.87634703196347, "percentage": 71.95, "elapsed_time": "10:45:33", "remaining_time": "4:11:41"} +{"current_steps": 3938, "total_steps": 5472, "loss": 0.0375, "accuracy": 1.0, "learning_rate": 1.1047812219360476e-07, "epoch": 2.8770776255707764, "percentage": 71.97, "elapsed_time": "10:45:43", "remaining_time": "4:11:32"} +{"current_steps": 3939, "total_steps": 5472, "loss": 0.0584, "accuracy": 1.0, "learning_rate": 1.1034579695732205e-07, "epoch": 2.8778082191780823, "percentage": 71.98, "elapsed_time": "10:45:55", "remaining_time": "4:11:22"} +{"current_steps": 3940, "total_steps": 5472, "loss": 0.0264, "accuracy": 1.0, "learning_rate": 1.1021352856936164e-07, "epoch": 2.878538812785388, "percentage": 72.0, "elapsed_time": "10:46:04", "remaining_time": "4:11:12"} +{"current_steps": 3941, "total_steps": 5472, "loss": 0.0485, "accuracy": 1.0, "learning_rate": 1.1008131708356552e-07, "epoch": 2.879269406392694, "percentage": 72.02, "elapsed_time": "10:46:13", "remaining_time": "4:11:02"} +{"current_steps": 3942, "total_steps": 5472, "loss": 0.0396, "accuracy": 1.0, "learning_rate": 1.0994916255375214e-07, "epoch": 2.88, "percentage": 72.04, "elapsed_time": "10:46:23", "remaining_time": "4:10:52"} +{"current_steps": 3943, "total_steps": 5472, "loss": 0.0463, "accuracy": 1.0, "learning_rate": 1.0981706503371716e-07, "epoch": 2.880730593607306, "percentage": 72.06, "elapsed_time": "10:46:32", "remaining_time": "4:10:42"} +{"current_steps": 3944, "total_steps": 5472, "loss": 0.0421, "accuracy": 1.0, "learning_rate": 1.0968502457723277e-07, "epoch": 2.8814611872146116, "percentage": 72.08, "elapsed_time": "10:46:42", "remaining_time": "4:10:33"} +{"current_steps": 3945, "total_steps": 5472, "loss": 0.0765, "accuracy": 1.0, "learning_rate": 1.0955304123804787e-07, "epoch": 2.882191780821918, "percentage": 72.09, "elapsed_time": "10:46:53", "remaining_time": "4:10:23"} +{"current_steps": 3946, "total_steps": 5472, "loss": 0.0467, "accuracy": 1.0, "learning_rate": 1.0942111506988847e-07, "epoch": 2.882922374429224, "percentage": 72.11, "elapsed_time": "10:47:02", "remaining_time": "4:10:13"} +{"current_steps": 3947, "total_steps": 5472, "loss": 0.0254, "accuracy": 1.0, "learning_rate": 1.0928924612645687e-07, "epoch": 2.8836529680365297, "percentage": 72.13, "elapsed_time": "10:47:12", "remaining_time": "4:10:03"} +{"current_steps": 3948, "total_steps": 5472, "loss": 0.0389, "accuracy": 1.0, "learning_rate": 1.0915743446143258e-07, "epoch": 2.8843835616438356, "percentage": 72.15, "elapsed_time": "10:47:21", "remaining_time": "4:09:53"} +{"current_steps": 3949, "total_steps": 5472, "loss": 0.0516, "accuracy": 1.0, "learning_rate": 1.0902568012847113e-07, "epoch": 2.8851141552511415, "percentage": 72.17, "elapsed_time": "10:47:31", "remaining_time": "4:09:43"} +{"current_steps": 3950, "total_steps": 5472, "loss": 0.0522, "accuracy": 1.0, "learning_rate": 1.0889398318120524e-07, "epoch": 2.8858447488584473, "percentage": 72.19, "elapsed_time": "10:47:40", "remaining_time": "4:09:33"} +{"current_steps": 3951, "total_steps": 5472, "loss": 0.0644, "accuracy": 1.0, "learning_rate": 1.0876234367324425e-07, "epoch": 2.886575342465753, "percentage": 72.2, "elapsed_time": "10:47:49", "remaining_time": "4:09:23"} +{"current_steps": 3952, "total_steps": 5472, "loss": 0.0772, "accuracy": 0.875, "learning_rate": 1.0863076165817383e-07, "epoch": 2.8873059360730595, "percentage": 72.22, "elapsed_time": "10:47:59", "remaining_time": "4:09:13"} +{"current_steps": 3953, "total_steps": 5472, "loss": 0.045, "accuracy": 1.0, "learning_rate": 1.0849923718955648e-07, "epoch": 2.8880365296803654, "percentage": 72.24, "elapsed_time": "10:48:09", "remaining_time": "4:09:03"} +{"current_steps": 3954, "total_steps": 5472, "loss": 0.0489, "accuracy": 1.0, "learning_rate": 1.0836777032093102e-07, "epoch": 2.8887671232876713, "percentage": 72.26, "elapsed_time": "10:48:18", "remaining_time": "4:08:53"} +{"current_steps": 3955, "total_steps": 5472, "loss": 0.0578, "accuracy": 1.0, "learning_rate": 1.0823636110581321e-07, "epoch": 2.889497716894977, "percentage": 72.28, "elapsed_time": "10:48:27", "remaining_time": "4:08:43"} +{"current_steps": 3956, "total_steps": 5472, "loss": 0.0273, "accuracy": 1.0, "learning_rate": 1.0810500959769498e-07, "epoch": 2.890228310502283, "percentage": 72.3, "elapsed_time": "10:48:37", "remaining_time": "4:08:33"} +{"current_steps": 3957, "total_steps": 5472, "loss": 0.0491, "accuracy": 1.0, "learning_rate": 1.0797371585004503e-07, "epoch": 2.890958904109589, "percentage": 72.31, "elapsed_time": "10:48:47", "remaining_time": "4:08:24"} +{"current_steps": 3958, "total_steps": 5472, "loss": 0.0303, "accuracy": 1.0, "learning_rate": 1.0784247991630841e-07, "epoch": 2.8916894977168948, "percentage": 72.33, "elapsed_time": "10:48:56", "remaining_time": "4:08:14"} +{"current_steps": 3959, "total_steps": 5472, "loss": 0.0404, "accuracy": 1.0, "learning_rate": 1.0771130184990652e-07, "epoch": 2.892420091324201, "percentage": 72.35, "elapsed_time": "10:49:07", "remaining_time": "4:08:04"} +{"current_steps": 3960, "total_steps": 5472, "loss": 0.0312, "accuracy": 1.0, "learning_rate": 1.0758018170423755e-07, "epoch": 2.893150684931507, "percentage": 72.37, "elapsed_time": "10:49:18", "remaining_time": "4:07:55"} +{"current_steps": 3961, "total_steps": 5472, "loss": 0.0652, "accuracy": 0.875, "learning_rate": 1.0744911953267583e-07, "epoch": 2.893881278538813, "percentage": 72.39, "elapsed_time": "10:49:27", "remaining_time": "4:07:45"} +{"current_steps": 3962, "total_steps": 5472, "loss": 0.029, "accuracy": 1.0, "learning_rate": 1.0731811538857203e-07, "epoch": 2.8946118721461187, "percentage": 72.4, "elapsed_time": "10:49:37", "remaining_time": "4:07:34"} +{"current_steps": 3963, "total_steps": 5472, "loss": 0.0485, "accuracy": 1.0, "learning_rate": 1.0718716932525357e-07, "epoch": 2.8953424657534246, "percentage": 72.42, "elapsed_time": "10:49:46", "remaining_time": "4:07:25"} +{"current_steps": 3964, "total_steps": 5472, "loss": 0.0506, "accuracy": 1.0, "learning_rate": 1.070562813960238e-07, "epoch": 2.8960730593607305, "percentage": 72.44, "elapsed_time": "10:49:56", "remaining_time": "4:07:15"} +{"current_steps": 3965, "total_steps": 5472, "loss": 0.0445, "accuracy": 1.0, "learning_rate": 1.0692545165416284e-07, "epoch": 2.8968036529680363, "percentage": 72.46, "elapsed_time": "10:50:05", "remaining_time": "4:07:05"} +{"current_steps": 3966, "total_steps": 5472, "loss": 0.0295, "accuracy": 1.0, "learning_rate": 1.0679468015292656e-07, "epoch": 2.8975342465753426, "percentage": 72.48, "elapsed_time": "10:50:16", "remaining_time": "4:06:55"} +{"current_steps": 3967, "total_steps": 5472, "loss": 0.0581, "accuracy": 1.0, "learning_rate": 1.0666396694554761e-07, "epoch": 2.8982648401826485, "percentage": 72.5, "elapsed_time": "10:50:25", "remaining_time": "4:06:45"} +{"current_steps": 3968, "total_steps": 5472, "loss": 0.0743, "accuracy": 0.875, "learning_rate": 1.0653331208523483e-07, "epoch": 2.8989954337899544, "percentage": 72.51, "elapsed_time": "10:50:34", "remaining_time": "4:06:35"} +{"current_steps": 3969, "total_steps": 5472, "loss": 0.0508, "accuracy": 1.0, "learning_rate": 1.0640271562517309e-07, "epoch": 2.8997260273972603, "percentage": 72.53, "elapsed_time": "10:50:43", "remaining_time": "4:06:25"} +{"current_steps": 3970, "total_steps": 5472, "loss": 0.0546, "accuracy": 1.0, "learning_rate": 1.0627217761852383e-07, "epoch": 2.900456621004566, "percentage": 72.55, "elapsed_time": "10:50:52", "remaining_time": "4:06:14"} +{"current_steps": 3971, "total_steps": 5472, "loss": 0.0556, "accuracy": 1.0, "learning_rate": 1.0614169811842417e-07, "epoch": 2.901187214611872, "percentage": 72.57, "elapsed_time": "10:51:00", "remaining_time": "4:06:04"} +{"current_steps": 3972, "total_steps": 5472, "loss": 0.0392, "accuracy": 1.0, "learning_rate": 1.0601127717798797e-07, "epoch": 2.901917808219178, "percentage": 72.59, "elapsed_time": "10:51:09", "remaining_time": "4:05:54"} +{"current_steps": 3973, "total_steps": 5472, "loss": 0.0318, "accuracy": 1.0, "learning_rate": 1.0588091485030488e-07, "epoch": 2.902648401826484, "percentage": 72.61, "elapsed_time": "10:51:18", "remaining_time": "4:05:44"} +{"current_steps": 3974, "total_steps": 5472, "loss": 0.1194, "accuracy": 1.0, "learning_rate": 1.0575061118844098e-07, "epoch": 2.90337899543379, "percentage": 72.62, "elapsed_time": "10:51:28", "remaining_time": "4:05:34"} +{"current_steps": 3975, "total_steps": 5472, "loss": 0.0906, "accuracy": 1.0, "learning_rate": 1.0562036624543822e-07, "epoch": 2.904109589041096, "percentage": 72.64, "elapsed_time": "10:51:37", "remaining_time": "4:05:24"} +{"current_steps": 3976, "total_steps": 5472, "loss": 0.0249, "accuracy": 1.0, "learning_rate": 1.0549018007431465e-07, "epoch": 2.904840182648402, "percentage": 72.66, "elapsed_time": "10:51:47", "remaining_time": "4:05:14"} +{"current_steps": 3977, "total_steps": 5472, "loss": 0.0398, "accuracy": 1.0, "learning_rate": 1.053600527280647e-07, "epoch": 2.9055707762557077, "percentage": 72.68, "elapsed_time": "10:52:00", "remaining_time": "4:05:05"} +{"current_steps": 3978, "total_steps": 5472, "loss": 0.0912, "accuracy": 1.0, "learning_rate": 1.0522998425965854e-07, "epoch": 2.9063013698630136, "percentage": 72.7, "elapsed_time": "10:52:09", "remaining_time": "4:04:55"} +{"current_steps": 3979, "total_steps": 5472, "loss": 0.0323, "accuracy": 1.0, "learning_rate": 1.0509997472204238e-07, "epoch": 2.9070319634703194, "percentage": 72.72, "elapsed_time": "10:52:21", "remaining_time": "4:04:46"} +{"current_steps": 3980, "total_steps": 5472, "loss": 0.0253, "accuracy": 1.0, "learning_rate": 1.0497002416813869e-07, "epoch": 2.9077625570776258, "percentage": 72.73, "elapsed_time": "10:52:32", "remaining_time": "4:04:37"} +{"current_steps": 3981, "total_steps": 5472, "loss": 0.0503, "accuracy": 1.0, "learning_rate": 1.0484013265084566e-07, "epoch": 2.9084931506849316, "percentage": 72.75, "elapsed_time": "10:52:43", "remaining_time": "4:04:27"} +{"current_steps": 3982, "total_steps": 5472, "loss": 0.1061, "accuracy": 1.0, "learning_rate": 1.0471030022303768e-07, "epoch": 2.9092237442922375, "percentage": 72.77, "elapsed_time": "10:52:52", "remaining_time": "4:04:17"} +{"current_steps": 3983, "total_steps": 5472, "loss": 0.0264, "accuracy": 1.0, "learning_rate": 1.0458052693756492e-07, "epoch": 2.9099543378995434, "percentage": 72.79, "elapsed_time": "10:53:01", "remaining_time": "4:04:07"} +{"current_steps": 3984, "total_steps": 5472, "loss": 0.0713, "accuracy": 1.0, "learning_rate": 1.0445081284725354e-07, "epoch": 2.9106849315068493, "percentage": 72.81, "elapsed_time": "10:53:11", "remaining_time": "4:03:57"} +{"current_steps": 3985, "total_steps": 5472, "loss": 0.0626, "accuracy": 1.0, "learning_rate": 1.0432115800490546e-07, "epoch": 2.911415525114155, "percentage": 72.83, "elapsed_time": "10:53:21", "remaining_time": "4:03:47"} +{"current_steps": 3986, "total_steps": 5472, "loss": 0.0587, "accuracy": 1.0, "learning_rate": 1.0419156246329875e-07, "epoch": 2.912146118721461, "percentage": 72.84, "elapsed_time": "10:53:31", "remaining_time": "4:03:38"} +{"current_steps": 3987, "total_steps": 5472, "loss": 0.0444, "accuracy": 1.0, "learning_rate": 1.0406202627518734e-07, "epoch": 2.9128767123287673, "percentage": 72.86, "elapsed_time": "10:53:42", "remaining_time": "4:03:28"} +{"current_steps": 3988, "total_steps": 5472, "loss": 0.0393, "accuracy": 1.0, "learning_rate": 1.0393254949330055e-07, "epoch": 2.913607305936073, "percentage": 72.88, "elapsed_time": "10:53:52", "remaining_time": "4:03:18"} +{"current_steps": 3989, "total_steps": 5472, "loss": 0.0499, "accuracy": 1.0, "learning_rate": 1.0380313217034407e-07, "epoch": 2.914337899543379, "percentage": 72.9, "elapsed_time": "10:54:03", "remaining_time": "4:03:09"} +{"current_steps": 3990, "total_steps": 5472, "loss": 0.0777, "accuracy": 1.0, "learning_rate": 1.0367377435899893e-07, "epoch": 2.915068493150685, "percentage": 72.92, "elapsed_time": "10:54:13", "remaining_time": "4:02:59"} +{"current_steps": 3991, "total_steps": 5472, "loss": 0.0257, "accuracy": 1.0, "learning_rate": 1.0354447611192243e-07, "epoch": 2.915799086757991, "percentage": 72.93, "elapsed_time": "10:54:23", "remaining_time": "4:02:50"} +{"current_steps": 3992, "total_steps": 5472, "loss": 0.0504, "accuracy": 1.0, "learning_rate": 1.0341523748174719e-07, "epoch": 2.9165296803652967, "percentage": 72.95, "elapsed_time": "10:54:33", "remaining_time": "4:02:40"} +{"current_steps": 3993, "total_steps": 5472, "loss": 0.0714, "accuracy": 1.0, "learning_rate": 1.0328605852108163e-07, "epoch": 2.9172602739726026, "percentage": 72.97, "elapsed_time": "10:54:43", "remaining_time": "4:02:30"} +{"current_steps": 3994, "total_steps": 5472, "loss": 0.0369, "accuracy": 1.0, "learning_rate": 1.0315693928251018e-07, "epoch": 2.917990867579909, "percentage": 72.99, "elapsed_time": "10:54:53", "remaining_time": "4:02:20"} +{"current_steps": 3995, "total_steps": 5472, "loss": 0.0493, "accuracy": 1.0, "learning_rate": 1.0302787981859254e-07, "epoch": 2.9187214611872148, "percentage": 73.01, "elapsed_time": "10:55:02", "remaining_time": "4:02:10"} +{"current_steps": 3996, "total_steps": 5472, "loss": 0.0593, "accuracy": 1.0, "learning_rate": 1.0289888018186446e-07, "epoch": 2.9194520547945206, "percentage": 73.03, "elapsed_time": "10:55:12", "remaining_time": "4:02:00"} +{"current_steps": 3997, "total_steps": 5472, "loss": 0.0532, "accuracy": 1.0, "learning_rate": 1.0276994042483711e-07, "epoch": 2.9201826484018265, "percentage": 73.04, "elapsed_time": "10:55:22", "remaining_time": "4:01:51"} +{"current_steps": 3998, "total_steps": 5472, "loss": 0.0445, "accuracy": 1.0, "learning_rate": 1.0264106059999722e-07, "epoch": 2.9209132420091324, "percentage": 73.06, "elapsed_time": "10:55:31", "remaining_time": "4:01:41"} +{"current_steps": 3999, "total_steps": 5472, "loss": 0.0285, "accuracy": 1.0, "learning_rate": 1.0251224075980744e-07, "epoch": 2.9216438356164383, "percentage": 73.08, "elapsed_time": "10:55:43", "remaining_time": "4:01:31"} +{"current_steps": 4000, "total_steps": 5472, "loss": 0.0726, "accuracy": 1.0, "learning_rate": 1.0238348095670568e-07, "epoch": 2.922374429223744, "percentage": 73.1, "elapsed_time": "10:55:53", "remaining_time": "4:01:21"} +{"current_steps": 4001, "total_steps": 5472, "loss": 0.0339, "accuracy": 1.0, "learning_rate": 1.0225478124310555e-07, "epoch": 2.9231050228310504, "percentage": 73.12, "elapsed_time": "10:56:02", "remaining_time": "4:01:11"} +{"current_steps": 4002, "total_steps": 5472, "loss": 0.0375, "accuracy": 1.0, "learning_rate": 1.0212614167139613e-07, "epoch": 2.9238356164383563, "percentage": 73.14, "elapsed_time": "10:56:11", "remaining_time": "4:01:01"} +{"current_steps": 4003, "total_steps": 5472, "loss": 0.0407, "accuracy": 1.0, "learning_rate": 1.0199756229394211e-07, "epoch": 2.924566210045662, "percentage": 73.15, "elapsed_time": "10:56:20", "remaining_time": "4:00:51"} +{"current_steps": 4004, "total_steps": 5472, "loss": 0.0307, "accuracy": 1.0, "learning_rate": 1.0186904316308384e-07, "epoch": 2.925296803652968, "percentage": 73.17, "elapsed_time": "10:56:31", "remaining_time": "4:00:42"} +{"current_steps": 4005, "total_steps": 5472, "loss": 0.0757, "accuracy": 1.0, "learning_rate": 1.0174058433113658e-07, "epoch": 2.926027397260274, "percentage": 73.19, "elapsed_time": "10:56:40", "remaining_time": "4:00:32"} +{"current_steps": 4006, "total_steps": 5472, "loss": 0.077, "accuracy": 1.0, "learning_rate": 1.0161218585039172e-07, "epoch": 2.92675799086758, "percentage": 73.21, "elapsed_time": "10:56:49", "remaining_time": "4:00:21"} +{"current_steps": 4007, "total_steps": 5472, "loss": 0.0796, "accuracy": 1.0, "learning_rate": 1.0148384777311553e-07, "epoch": 2.9274885844748857, "percentage": 73.23, "elapsed_time": "10:56:58", "remaining_time": "4:00:11"} +{"current_steps": 4008, "total_steps": 5472, "loss": 0.0809, "accuracy": 0.875, "learning_rate": 1.0135557015155017e-07, "epoch": 2.928219178082192, "percentage": 73.25, "elapsed_time": "10:57:07", "remaining_time": "4:00:01"} +{"current_steps": 4009, "total_steps": 5472, "loss": 0.0445, "accuracy": 1.0, "learning_rate": 1.0122735303791283e-07, "epoch": 2.928949771689498, "percentage": 73.26, "elapsed_time": "10:57:16", "remaining_time": "3:59:51"} +{"current_steps": 4010, "total_steps": 5472, "loss": 0.0319, "accuracy": 1.0, "learning_rate": 1.010991964843961e-07, "epoch": 2.9296803652968038, "percentage": 73.28, "elapsed_time": "10:57:26", "remaining_time": "3:59:41"} +{"current_steps": 4011, "total_steps": 5472, "loss": 0.0819, "accuracy": 1.0, "learning_rate": 1.0097110054316823e-07, "epoch": 2.9304109589041096, "percentage": 73.3, "elapsed_time": "10:57:37", "remaining_time": "3:59:32"} +{"current_steps": 4012, "total_steps": 5472, "loss": 0.0584, "accuracy": 1.0, "learning_rate": 1.0084306526637238e-07, "epoch": 2.9311415525114155, "percentage": 73.32, "elapsed_time": "10:57:47", "remaining_time": "3:59:22"} +{"current_steps": 4013, "total_steps": 5472, "loss": 0.11, "accuracy": 0.875, "learning_rate": 1.0071509070612738e-07, "epoch": 2.9318721461187214, "percentage": 73.34, "elapsed_time": "10:57:56", "remaining_time": "3:59:12"} +{"current_steps": 4014, "total_steps": 5472, "loss": 0.0438, "accuracy": 1.0, "learning_rate": 1.0058717691452712e-07, "epoch": 2.9326027397260273, "percentage": 73.36, "elapsed_time": "10:58:06", "remaining_time": "3:59:02"} +{"current_steps": 4015, "total_steps": 5472, "loss": 0.0623, "accuracy": 1.0, "learning_rate": 1.0045932394364067e-07, "epoch": 2.9333333333333336, "percentage": 73.37, "elapsed_time": "10:58:16", "remaining_time": "3:58:53"} +{"current_steps": 4016, "total_steps": 5472, "loss": 0.0497, "accuracy": 1.0, "learning_rate": 1.0033153184551274e-07, "epoch": 2.934063926940639, "percentage": 73.39, "elapsed_time": "10:58:27", "remaining_time": "3:58:43"} +{"current_steps": 4017, "total_steps": 5472, "loss": 0.0472, "accuracy": 1.0, "learning_rate": 1.0020380067216285e-07, "epoch": 2.9347945205479453, "percentage": 73.41, "elapsed_time": "10:58:37", "remaining_time": "3:58:33"} +{"current_steps": 4018, "total_steps": 5472, "loss": 0.0928, "accuracy": 1.0, "learning_rate": 1.0007613047558594e-07, "epoch": 2.935525114155251, "percentage": 73.43, "elapsed_time": "10:58:49", "remaining_time": "3:58:24"} +{"current_steps": 4019, "total_steps": 5472, "loss": 0.0363, "accuracy": 1.0, "learning_rate": 9.994852130775191e-08, "epoch": 2.936255707762557, "percentage": 73.45, "elapsed_time": "10:58:58", "remaining_time": "3:58:14"} +{"current_steps": 4020, "total_steps": 5472, "loss": 0.0677, "accuracy": 1.0, "learning_rate": 9.982097322060612e-08, "epoch": 2.936986301369863, "percentage": 73.46, "elapsed_time": "10:59:10", "remaining_time": "3:58:05"} +{"current_steps": 4021, "total_steps": 5472, "loss": 0.0425, "accuracy": 1.0, "learning_rate": 9.969348626606894e-08, "epoch": 2.937716894977169, "percentage": 73.48, "elapsed_time": "10:59:21", "remaining_time": "3:57:55"} +{"current_steps": 4022, "total_steps": 5472, "loss": 0.0334, "accuracy": 1.0, "learning_rate": 9.956606049603581e-08, "epoch": 2.938447488584475, "percentage": 73.5, "elapsed_time": "10:59:31", "remaining_time": "3:57:46"} +{"current_steps": 4023, "total_steps": 5472, "loss": 0.042, "accuracy": 1.0, "learning_rate": 9.943869596237722e-08, "epoch": 2.9391780821917806, "percentage": 73.52, "elapsed_time": "10:59:42", "remaining_time": "3:57:36"} +{"current_steps": 4024, "total_steps": 5472, "loss": 0.0532, "accuracy": 1.0, "learning_rate": 9.931139271693879e-08, "epoch": 2.939908675799087, "percentage": 73.54, "elapsed_time": "10:59:52", "remaining_time": "3:57:27"} +{"current_steps": 4025, "total_steps": 5472, "loss": 0.0808, "accuracy": 1.0, "learning_rate": 9.91841508115413e-08, "epoch": 2.9406392694063928, "percentage": 73.56, "elapsed_time": "11:00:01", "remaining_time": "3:57:16"} +{"current_steps": 4026, "total_steps": 5472, "loss": 0.0582, "accuracy": 1.0, "learning_rate": 9.905697029798044e-08, "epoch": 2.9413698630136986, "percentage": 73.57, "elapsed_time": "11:00:10", "remaining_time": "3:57:06"} +{"current_steps": 4027, "total_steps": 5472, "loss": 0.0475, "accuracy": 1.0, "learning_rate": 9.89298512280268e-08, "epoch": 2.9421004566210045, "percentage": 73.59, "elapsed_time": "11:00:20", "remaining_time": "3:56:57"} +{"current_steps": 4028, "total_steps": 5472, "loss": 0.034, "accuracy": 1.0, "learning_rate": 9.880279365342625e-08, "epoch": 2.9428310502283104, "percentage": 73.61, "elapsed_time": "11:00:30", "remaining_time": "3:56:47"} +{"current_steps": 4029, "total_steps": 5472, "loss": 0.0628, "accuracy": 1.0, "learning_rate": 9.867579762589936e-08, "epoch": 2.9435616438356167, "percentage": 73.63, "elapsed_time": "11:00:38", "remaining_time": "3:56:36"} +{"current_steps": 4030, "total_steps": 5472, "loss": 0.0699, "accuracy": 1.0, "learning_rate": 9.854886319714187e-08, "epoch": 2.944292237442922, "percentage": 73.65, "elapsed_time": "11:00:50", "remaining_time": "3:56:27"} +{"current_steps": 4031, "total_steps": 5472, "loss": 0.0992, "accuracy": 1.0, "learning_rate": 9.842199041882426e-08, "epoch": 2.9450228310502284, "percentage": 73.67, "elapsed_time": "11:00:59", "remaining_time": "3:56:17"} +{"current_steps": 4032, "total_steps": 5472, "loss": 0.0507, "accuracy": 1.0, "learning_rate": 9.829517934259191e-08, "epoch": 2.9457534246575343, "percentage": 73.68, "elapsed_time": "11:01:09", "remaining_time": "3:56:07"} +{"current_steps": 4033, "total_steps": 5472, "loss": 0.0327, "accuracy": 1.0, "learning_rate": 9.81684300200653e-08, "epoch": 2.94648401826484, "percentage": 73.7, "elapsed_time": "11:01:18", "remaining_time": "3:55:57"} +{"current_steps": 4034, "total_steps": 5472, "loss": 0.0299, "accuracy": 1.0, "learning_rate": 9.804174250283947e-08, "epoch": 2.947214611872146, "percentage": 73.72, "elapsed_time": "11:01:27", "remaining_time": "3:55:47"} +{"current_steps": 4035, "total_steps": 5472, "loss": 0.0429, "accuracy": 1.0, "learning_rate": 9.791511684248474e-08, "epoch": 2.947945205479452, "percentage": 73.74, "elapsed_time": "11:01:37", "remaining_time": "3:55:37"} +{"current_steps": 4036, "total_steps": 5472, "loss": 0.0459, "accuracy": 1.0, "learning_rate": 9.77885530905456e-08, "epoch": 2.9486757990867583, "percentage": 73.76, "elapsed_time": "11:01:46", "remaining_time": "3:55:27"} +{"current_steps": 4037, "total_steps": 5472, "loss": 0.0377, "accuracy": 1.0, "learning_rate": 9.766205129854197e-08, "epoch": 2.9494063926940637, "percentage": 73.78, "elapsed_time": "11:01:58", "remaining_time": "3:55:18"} +{"current_steps": 4038, "total_steps": 5472, "loss": 0.052, "accuracy": 0.875, "learning_rate": 9.753561151796812e-08, "epoch": 2.95013698630137, "percentage": 73.79, "elapsed_time": "11:02:07", "remaining_time": "3:55:08"} +{"current_steps": 4039, "total_steps": 5472, "loss": 0.0742, "accuracy": 1.0, "learning_rate": 9.740923380029342e-08, "epoch": 2.950867579908676, "percentage": 73.81, "elapsed_time": "11:02:18", "remaining_time": "3:54:58"} +{"current_steps": 4040, "total_steps": 5472, "loss": 0.043, "accuracy": 1.0, "learning_rate": 9.728291819696169e-08, "epoch": 2.9515981735159817, "percentage": 73.83, "elapsed_time": "11:02:28", "remaining_time": "3:54:49"} +{"current_steps": 4041, "total_steps": 5472, "loss": 0.0273, "accuracy": 1.0, "learning_rate": 9.715666475939155e-08, "epoch": 2.9523287671232876, "percentage": 73.85, "elapsed_time": "11:02:38", "remaining_time": "3:54:39"} +{"current_steps": 4042, "total_steps": 5472, "loss": 0.0156, "accuracy": 1.0, "learning_rate": 9.703047353897645e-08, "epoch": 2.9530593607305935, "percentage": 73.87, "elapsed_time": "11:02:49", "remaining_time": "3:54:29"} +{"current_steps": 4043, "total_steps": 5472, "loss": 0.0294, "accuracy": 1.0, "learning_rate": 9.690434458708424e-08, "epoch": 2.9537899543379, "percentage": 73.89, "elapsed_time": "11:02:57", "remaining_time": "3:54:19"} +{"current_steps": 4044, "total_steps": 5472, "loss": 0.0952, "accuracy": 1.0, "learning_rate": 9.677827795505783e-08, "epoch": 2.9545205479452052, "percentage": 73.9, "elapsed_time": "11:03:05", "remaining_time": "3:54:09"} +{"current_steps": 4045, "total_steps": 5472, "loss": 0.0407, "accuracy": 1.0, "learning_rate": 9.665227369421433e-08, "epoch": 2.9552511415525116, "percentage": 73.92, "elapsed_time": "11:03:14", "remaining_time": "3:53:58"} +{"current_steps": 4046, "total_steps": 5472, "loss": 0.1259, "accuracy": 1.0, "learning_rate": 9.652633185584566e-08, "epoch": 2.9559817351598174, "percentage": 73.94, "elapsed_time": "11:03:23", "remaining_time": "3:53:48"} +{"current_steps": 4047, "total_steps": 5472, "loss": 0.0714, "accuracy": 1.0, "learning_rate": 9.640045249121842e-08, "epoch": 2.9567123287671233, "percentage": 73.96, "elapsed_time": "11:03:32", "remaining_time": "3:53:38"} +{"current_steps": 4048, "total_steps": 5472, "loss": 0.0561, "accuracy": 1.0, "learning_rate": 9.627463565157362e-08, "epoch": 2.957442922374429, "percentage": 73.98, "elapsed_time": "11:03:41", "remaining_time": "3:53:28"} +{"current_steps": 4049, "total_steps": 5472, "loss": 0.0816, "accuracy": 1.0, "learning_rate": 9.614888138812679e-08, "epoch": 2.958173515981735, "percentage": 73.99, "elapsed_time": "11:03:52", "remaining_time": "3:53:18"} +{"current_steps": 4050, "total_steps": 5472, "loss": 0.0572, "accuracy": 1.0, "learning_rate": 9.602318975206827e-08, "epoch": 2.958904109589041, "percentage": 74.01, "elapsed_time": "11:04:01", "remaining_time": "3:53:08"} +{"current_steps": 4051, "total_steps": 5472, "loss": 0.0598, "accuracy": 1.0, "learning_rate": 9.589756079456252e-08, "epoch": 2.959634703196347, "percentage": 74.03, "elapsed_time": "11:04:09", "remaining_time": "3:52:58"} +{"current_steps": 4052, "total_steps": 5472, "loss": 0.0573, "accuracy": 1.0, "learning_rate": 9.577199456674892e-08, "epoch": 2.960365296803653, "percentage": 74.05, "elapsed_time": "11:04:20", "remaining_time": "3:52:48"} +{"current_steps": 4053, "total_steps": 5472, "loss": 0.0322, "accuracy": 1.0, "learning_rate": 9.564649111974074e-08, "epoch": 2.961095890410959, "percentage": 74.07, "elapsed_time": "11:04:31", "remaining_time": "3:52:39"} +{"current_steps": 4054, "total_steps": 5472, "loss": 0.0566, "accuracy": 1.0, "learning_rate": 9.55210505046263e-08, "epoch": 2.961826484018265, "percentage": 74.09, "elapsed_time": "11:04:40", "remaining_time": "3:52:29"} +{"current_steps": 4055, "total_steps": 5472, "loss": 0.1175, "accuracy": 0.75, "learning_rate": 9.539567277246787e-08, "epoch": 2.9625570776255707, "percentage": 74.1, "elapsed_time": "11:04:49", "remaining_time": "3:52:19"} +{"current_steps": 4056, "total_steps": 5472, "loss": 0.0612, "accuracy": 0.875, "learning_rate": 9.527035797430244e-08, "epoch": 2.9632876712328766, "percentage": 74.12, "elapsed_time": "11:05:00", "remaining_time": "3:52:09"} +{"current_steps": 4057, "total_steps": 5472, "loss": 0.035, "accuracy": 1.0, "learning_rate": 9.514510616114141e-08, "epoch": 2.9640182648401825, "percentage": 74.14, "elapsed_time": "11:05:10", "remaining_time": "3:51:59"} +{"current_steps": 4058, "total_steps": 5472, "loss": 0.0426, "accuracy": 1.0, "learning_rate": 9.501991738397008e-08, "epoch": 2.9647488584474884, "percentage": 74.16, "elapsed_time": "11:05:20", "remaining_time": "3:51:50"} +{"current_steps": 4059, "total_steps": 5472, "loss": 0.042, "accuracy": 1.0, "learning_rate": 9.489479169374861e-08, "epoch": 2.9654794520547947, "percentage": 74.18, "elapsed_time": "11:05:29", "remaining_time": "3:51:40"} +{"current_steps": 4060, "total_steps": 5472, "loss": 0.0506, "accuracy": 1.0, "learning_rate": 9.476972914141118e-08, "epoch": 2.9662100456621006, "percentage": 74.2, "elapsed_time": "11:05:38", "remaining_time": "3:51:29"} +{"current_steps": 4061, "total_steps": 5472, "loss": 0.0291, "accuracy": 1.0, "learning_rate": 9.464472977786647e-08, "epoch": 2.9669406392694064, "percentage": 74.21, "elapsed_time": "11:05:48", "remaining_time": "3:51:20"} +{"current_steps": 4062, "total_steps": 5472, "loss": 0.0307, "accuracy": 1.0, "learning_rate": 9.451979365399725e-08, "epoch": 2.9676712328767123, "percentage": 74.23, "elapsed_time": "11:05:58", "remaining_time": "3:51:10"} +{"current_steps": 4063, "total_steps": 5472, "loss": 0.0489, "accuracy": 1.0, "learning_rate": 9.439492082066058e-08, "epoch": 2.968401826484018, "percentage": 74.25, "elapsed_time": "11:06:08", "remaining_time": "3:51:00"} +{"current_steps": 4064, "total_steps": 5472, "loss": 0.0935, "accuracy": 0.875, "learning_rate": 9.427011132868797e-08, "epoch": 2.969132420091324, "percentage": 74.27, "elapsed_time": "11:06:17", "remaining_time": "3:50:50"} +{"current_steps": 4065, "total_steps": 5472, "loss": 0.0597, "accuracy": 1.0, "learning_rate": 9.414536522888489e-08, "epoch": 2.96986301369863, "percentage": 74.29, "elapsed_time": "11:06:27", "remaining_time": "3:50:40"} +{"current_steps": 4066, "total_steps": 5472, "loss": 0.0467, "accuracy": 1.0, "learning_rate": 9.4020682572031e-08, "epoch": 2.9705936073059362, "percentage": 74.31, "elapsed_time": "11:06:37", "remaining_time": "3:50:30"} +{"current_steps": 4067, "total_steps": 5472, "loss": 0.0552, "accuracy": 1.0, "learning_rate": 9.38960634088804e-08, "epoch": 2.971324200913242, "percentage": 74.32, "elapsed_time": "11:06:46", "remaining_time": "3:50:20"} +{"current_steps": 4068, "total_steps": 5472, "loss": 0.0788, "accuracy": 1.0, "learning_rate": 9.377150779016102e-08, "epoch": 2.972054794520548, "percentage": 74.34, "elapsed_time": "11:06:54", "remaining_time": "3:50:10"} +{"current_steps": 4069, "total_steps": 5472, "loss": 0.0486, "accuracy": 1.0, "learning_rate": 9.364701576657524e-08, "epoch": 2.972785388127854, "percentage": 74.36, "elapsed_time": "11:07:04", "remaining_time": "3:50:00"} +{"current_steps": 4070, "total_steps": 5472, "loss": 0.081, "accuracy": 1.0, "learning_rate": 9.352258738879931e-08, "epoch": 2.9735159817351597, "percentage": 74.38, "elapsed_time": "11:07:14", "remaining_time": "3:49:50"} +{"current_steps": 4071, "total_steps": 5472, "loss": 0.0494, "accuracy": 1.0, "learning_rate": 9.339822270748366e-08, "epoch": 2.9742465753424656, "percentage": 74.4, "elapsed_time": "11:07:22", "remaining_time": "3:49:40"} +{"current_steps": 4072, "total_steps": 5472, "loss": 0.0949, "accuracy": 1.0, "learning_rate": 9.32739217732527e-08, "epoch": 2.9749771689497715, "percentage": 74.42, "elapsed_time": "11:07:31", "remaining_time": "3:49:30"} +{"current_steps": 4073, "total_steps": 5472, "loss": 0.0299, "accuracy": 1.0, "learning_rate": 9.314968463670503e-08, "epoch": 2.975707762557078, "percentage": 74.43, "elapsed_time": "11:07:40", "remaining_time": "3:49:20"} +{"current_steps": 4074, "total_steps": 5472, "loss": 0.0127, "accuracy": 1.0, "learning_rate": 9.302551134841344e-08, "epoch": 2.9764383561643837, "percentage": 74.45, "elapsed_time": "11:07:49", "remaining_time": "3:49:10"} +{"current_steps": 4075, "total_steps": 5472, "loss": 0.0802, "accuracy": 0.875, "learning_rate": 9.290140195892415e-08, "epoch": 2.9771689497716896, "percentage": 74.47, "elapsed_time": "11:07:59", "remaining_time": "3:48:59"} +{"current_steps": 4076, "total_steps": 5472, "loss": 0.1007, "accuracy": 0.875, "learning_rate": 9.277735651875801e-08, "epoch": 2.9778995433789954, "percentage": 74.49, "elapsed_time": "11:08:08", "remaining_time": "3:48:50"} +{"current_steps": 4077, "total_steps": 5472, "loss": 0.071, "accuracy": 1.0, "learning_rate": 9.265337507840934e-08, "epoch": 2.9786301369863013, "percentage": 74.51, "elapsed_time": "11:08:17", "remaining_time": "3:48:39"} +{"current_steps": 4078, "total_steps": 5472, "loss": 0.0361, "accuracy": 1.0, "learning_rate": 9.252945768834688e-08, "epoch": 2.979360730593607, "percentage": 74.52, "elapsed_time": "11:08:27", "remaining_time": "3:48:30"} +{"current_steps": 4079, "total_steps": 5472, "loss": 0.0654, "accuracy": 1.0, "learning_rate": 9.24056043990129e-08, "epoch": 2.980091324200913, "percentage": 74.54, "elapsed_time": "11:08:36", "remaining_time": "3:48:20"} +{"current_steps": 4080, "total_steps": 5472, "loss": 0.0453, "accuracy": 1.0, "learning_rate": 9.228181526082368e-08, "epoch": 2.9808219178082194, "percentage": 74.56, "elapsed_time": "11:08:45", "remaining_time": "3:48:09"} +{"current_steps": 4081, "total_steps": 5472, "loss": 0.0275, "accuracy": 1.0, "learning_rate": 9.215809032416957e-08, "epoch": 2.9815525114155252, "percentage": 74.58, "elapsed_time": "11:08:54", "remaining_time": "3:47:59"} +{"current_steps": 4082, "total_steps": 5472, "loss": 0.0264, "accuracy": 1.0, "learning_rate": 9.203442963941449e-08, "epoch": 2.982283105022831, "percentage": 74.6, "elapsed_time": "11:09:05", "remaining_time": "3:47:50"} +{"current_steps": 4083, "total_steps": 5472, "loss": 0.0253, "accuracy": 1.0, "learning_rate": 9.191083325689655e-08, "epoch": 2.983013698630137, "percentage": 74.62, "elapsed_time": "11:09:13", "remaining_time": "3:47:40"} +{"current_steps": 4084, "total_steps": 5472, "loss": 0.0467, "accuracy": 1.0, "learning_rate": 9.17873012269274e-08, "epoch": 2.983744292237443, "percentage": 74.63, "elapsed_time": "11:09:23", "remaining_time": "3:47:30"} +{"current_steps": 4085, "total_steps": 5472, "loss": 0.0761, "accuracy": 1.0, "learning_rate": 9.166383359979248e-08, "epoch": 2.9844748858447487, "percentage": 74.65, "elapsed_time": "11:09:33", "remaining_time": "3:47:20"} +{"current_steps": 4086, "total_steps": 5472, "loss": 0.0314, "accuracy": 1.0, "learning_rate": 9.154043042575135e-08, "epoch": 2.9852054794520546, "percentage": 74.67, "elapsed_time": "11:09:42", "remaining_time": "3:47:10"} +{"current_steps": 4087, "total_steps": 5472, "loss": 0.0336, "accuracy": 1.0, "learning_rate": 9.141709175503698e-08, "epoch": 2.985936073059361, "percentage": 74.69, "elapsed_time": "11:09:51", "remaining_time": "3:47:00"} +{"current_steps": 4088, "total_steps": 5472, "loss": 0.0383, "accuracy": 1.0, "learning_rate": 9.129381763785621e-08, "epoch": 2.986666666666667, "percentage": 74.71, "elapsed_time": "11:10:01", "remaining_time": "3:46:50"} +{"current_steps": 4089, "total_steps": 5472, "loss": 0.0451, "accuracy": 1.0, "learning_rate": 9.117060812438956e-08, "epoch": 2.9873972602739727, "percentage": 74.73, "elapsed_time": "11:10:09", "remaining_time": "3:46:40"} +{"current_steps": 4090, "total_steps": 5472, "loss": 0.0323, "accuracy": 1.0, "learning_rate": 9.104746326479143e-08, "epoch": 2.9881278538812786, "percentage": 74.74, "elapsed_time": "11:10:19", "remaining_time": "3:46:30"} +{"current_steps": 4091, "total_steps": 5472, "loss": 0.0769, "accuracy": 1.0, "learning_rate": 9.092438310918968e-08, "epoch": 2.9888584474885844, "percentage": 74.76, "elapsed_time": "11:10:29", "remaining_time": "3:46:20"} +{"current_steps": 4092, "total_steps": 5472, "loss": 0.0524, "accuracy": 1.0, "learning_rate": 9.080136770768588e-08, "epoch": 2.9895890410958903, "percentage": 74.78, "elapsed_time": "11:10:40", "remaining_time": "3:46:10"} +{"current_steps": 4093, "total_steps": 5472, "loss": 0.0412, "accuracy": 1.0, "learning_rate": 9.06784171103554e-08, "epoch": 2.990319634703196, "percentage": 74.8, "elapsed_time": "11:10:50", "remaining_time": "3:46:01"} +{"current_steps": 4094, "total_steps": 5472, "loss": 0.0407, "accuracy": 1.0, "learning_rate": 9.055553136724698e-08, "epoch": 2.9910502283105025, "percentage": 74.82, "elapsed_time": "11:10:59", "remaining_time": "3:45:51"} +{"current_steps": 4095, "total_steps": 5472, "loss": 0.0296, "accuracy": 1.0, "learning_rate": 9.043271052838322e-08, "epoch": 2.9917808219178084, "percentage": 74.84, "elapsed_time": "11:11:10", "remaining_time": "3:45:41"} +{"current_steps": 4096, "total_steps": 5472, "loss": 0.0339, "accuracy": 1.0, "learning_rate": 9.030995464376013e-08, "epoch": 2.9925114155251142, "percentage": 74.85, "elapsed_time": "11:11:19", "remaining_time": "3:45:31"} +{"current_steps": 4097, "total_steps": 5472, "loss": 0.0237, "accuracy": 1.0, "learning_rate": 9.01872637633472e-08, "epoch": 2.99324200913242, "percentage": 74.87, "elapsed_time": "11:11:31", "remaining_time": "3:45:22"} +{"current_steps": 4098, "total_steps": 5472, "loss": 0.0719, "accuracy": 1.0, "learning_rate": 9.006463793708777e-08, "epoch": 2.993972602739726, "percentage": 74.89, "elapsed_time": "11:11:39", "remaining_time": "3:45:11"} +{"current_steps": 4099, "total_steps": 5472, "loss": 0.0422, "accuracy": 1.0, "learning_rate": 8.994207721489832e-08, "epoch": 2.994703196347032, "percentage": 74.91, "elapsed_time": "11:11:50", "remaining_time": "3:45:02"} +{"current_steps": 4100, "total_steps": 5472, "loss": 0.0265, "accuracy": 1.0, "learning_rate": 8.981958164666922e-08, "epoch": 2.9954337899543377, "percentage": 74.93, "elapsed_time": "11:12:00", "remaining_time": "3:44:52"} +{"current_steps": 4101, "total_steps": 5472, "loss": 0.0609, "accuracy": 1.0, "learning_rate": 8.969715128226399e-08, "epoch": 2.996164383561644, "percentage": 74.95, "elapsed_time": "11:12:10", "remaining_time": "3:44:42"} +{"current_steps": 4102, "total_steps": 5472, "loss": 0.0598, "accuracy": 1.0, "learning_rate": 8.957478617151967e-08, "epoch": 2.99689497716895, "percentage": 74.96, "elapsed_time": "11:12:20", "remaining_time": "3:44:32"} +{"current_steps": 4103, "total_steps": 5472, "loss": 0.0697, "accuracy": 1.0, "learning_rate": 8.945248636424696e-08, "epoch": 2.997625570776256, "percentage": 74.98, "elapsed_time": "11:12:29", "remaining_time": "3:44:23"} +{"current_steps": 4104, "total_steps": 5472, "loss": 0.0587, "accuracy": 0.875, "learning_rate": 8.933025191022975e-08, "epoch": 2.9983561643835617, "percentage": 75.0, "elapsed_time": "11:12:39", "remaining_time": "3:44:13"} +{"current_steps": 4105, "total_steps": 5472, "loss": 0.059, "accuracy": 1.0, "learning_rate": 8.920808285922537e-08, "epoch": 2.9990867579908675, "percentage": 75.02, "elapsed_time": "11:12:51", "remaining_time": "3:44:03"} +{"current_steps": 4106, "total_steps": 5472, "loss": 0.0501, "accuracy": 1.0, "learning_rate": 8.908597926096448e-08, "epoch": 2.9998173515981734, "percentage": 75.04, "elapsed_time": "11:13:00", "remaining_time": "3:43:54"} +{"current_steps": 4106, "total_steps": 5472, "eval_loss": 0.38906311988830566, "epoch": 2.9998173515981734, "percentage": 75.04, "elapsed_time": "11:13:17", "remaining_time": "3:43:59"} +{"current_steps": 4107, "total_steps": 5472, "loss": 0.0322, "accuracy": 1.0, "learning_rate": 8.896394116515132e-08, "epoch": 3.0005479452054793, "percentage": 75.05, "elapsed_time": "11:13:46", "remaining_time": "3:43:55"} +{"current_steps": 4108, "total_steps": 5472, "loss": 0.0296, "accuracy": 1.0, "learning_rate": 8.884196862146318e-08, "epoch": 3.001278538812785, "percentage": 75.07, "elapsed_time": "11:13:55", "remaining_time": "3:43:45"} +{"current_steps": 4109, "total_steps": 5472, "loss": 0.0492, "accuracy": 1.0, "learning_rate": 8.872006167955096e-08, "epoch": 3.0020091324200915, "percentage": 75.09, "elapsed_time": "11:14:04", "remaining_time": "3:43:35"} +{"current_steps": 4110, "total_steps": 5472, "loss": 0.0402, "accuracy": 1.0, "learning_rate": 8.859822038903855e-08, "epoch": 3.0027397260273974, "percentage": 75.11, "elapsed_time": "11:14:13", "remaining_time": "3:43:25"} +{"current_steps": 4111, "total_steps": 5472, "loss": 0.0875, "accuracy": 1.0, "learning_rate": 8.847644479952327e-08, "epoch": 3.0034703196347032, "percentage": 75.13, "elapsed_time": "11:14:22", "remaining_time": "3:43:15"} +{"current_steps": 4112, "total_steps": 5472, "loss": 0.024, "accuracy": 1.0, "learning_rate": 8.83547349605758e-08, "epoch": 3.004200913242009, "percentage": 75.15, "elapsed_time": "11:14:34", "remaining_time": "3:43:06"} +{"current_steps": 4113, "total_steps": 5472, "loss": 0.0375, "accuracy": 1.0, "learning_rate": 8.823309092173987e-08, "epoch": 3.004931506849315, "percentage": 75.16, "elapsed_time": "11:14:43", "remaining_time": "3:42:56"} +{"current_steps": 4114, "total_steps": 5472, "loss": 0.02, "accuracy": 1.0, "learning_rate": 8.811151273253239e-08, "epoch": 3.005662100456621, "percentage": 75.18, "elapsed_time": "11:14:53", "remaining_time": "3:42:46"} +{"current_steps": 4115, "total_steps": 5472, "loss": 0.0205, "accuracy": 1.0, "learning_rate": 8.799000044244379e-08, "epoch": 3.0063926940639267, "percentage": 75.2, "elapsed_time": "11:15:03", "remaining_time": "3:42:36"} +{"current_steps": 4116, "total_steps": 5472, "loss": 0.0251, "accuracy": 1.0, "learning_rate": 8.786855410093724e-08, "epoch": 3.007123287671233, "percentage": 75.22, "elapsed_time": "11:15:14", "remaining_time": "3:42:27"} +{"current_steps": 4117, "total_steps": 5472, "loss": 0.0384, "accuracy": 1.0, "learning_rate": 8.774717375744948e-08, "epoch": 3.007853881278539, "percentage": 75.24, "elapsed_time": "11:15:24", "remaining_time": "3:42:17"} +{"current_steps": 4118, "total_steps": 5472, "loss": 0.0528, "accuracy": 1.0, "learning_rate": 8.762585946139007e-08, "epoch": 3.008584474885845, "percentage": 75.26, "elapsed_time": "11:15:33", "remaining_time": "3:42:07"} +{"current_steps": 4119, "total_steps": 5472, "loss": 0.0117, "accuracy": 1.0, "learning_rate": 8.750461126214176e-08, "epoch": 3.0093150684931507, "percentage": 75.27, "elapsed_time": "11:15:43", "remaining_time": "3:41:57"} +{"current_steps": 4120, "total_steps": 5472, "loss": 0.0204, "accuracy": 1.0, "learning_rate": 8.738342920906056e-08, "epoch": 3.0100456621004565, "percentage": 75.29, "elapsed_time": "11:15:52", "remaining_time": "3:41:47"} +{"current_steps": 4121, "total_steps": 5472, "loss": 0.0206, "accuracy": 1.0, "learning_rate": 8.72623133514753e-08, "epoch": 3.0107762557077624, "percentage": 75.31, "elapsed_time": "11:16:03", "remaining_time": "3:41:37"} +{"current_steps": 4122, "total_steps": 5472, "loss": 0.0308, "accuracy": 1.0, "learning_rate": 8.714126373868821e-08, "epoch": 3.0115068493150683, "percentage": 75.33, "elapsed_time": "11:16:12", "remaining_time": "3:41:27"} +{"current_steps": 4123, "total_steps": 5472, "loss": 0.0166, "accuracy": 1.0, "learning_rate": 8.702028041997403e-08, "epoch": 3.0122374429223746, "percentage": 75.35, "elapsed_time": "11:16:22", "remaining_time": "3:41:18"} +{"current_steps": 4124, "total_steps": 5472, "loss": 0.0144, "accuracy": 1.0, "learning_rate": 8.689936344458104e-08, "epoch": 3.0129680365296805, "percentage": 75.37, "elapsed_time": "11:16:31", "remaining_time": "3:41:08"} +{"current_steps": 4125, "total_steps": 5472, "loss": 0.0251, "accuracy": 1.0, "learning_rate": 8.677851286173016e-08, "epoch": 3.0136986301369864, "percentage": 75.38, "elapsed_time": "11:16:41", "remaining_time": "3:40:58"} +{"current_steps": 4126, "total_steps": 5472, "loss": 0.0117, "accuracy": 1.0, "learning_rate": 8.665772872061558e-08, "epoch": 3.0144292237442922, "percentage": 75.4, "elapsed_time": "11:16:51", "remaining_time": "3:40:48"} +{"current_steps": 4127, "total_steps": 5472, "loss": 0.0258, "accuracy": 1.0, "learning_rate": 8.653701107040418e-08, "epoch": 3.015159817351598, "percentage": 75.42, "elapsed_time": "11:17:01", "remaining_time": "3:40:38"} +{"current_steps": 4128, "total_steps": 5472, "loss": 0.0191, "accuracy": 1.0, "learning_rate": 8.641635996023581e-08, "epoch": 3.015890410958904, "percentage": 75.44, "elapsed_time": "11:17:11", "remaining_time": "3:40:28"} +{"current_steps": 4129, "total_steps": 5472, "loss": 0.0489, "accuracy": 1.0, "learning_rate": 8.629577543922345e-08, "epoch": 3.01662100456621, "percentage": 75.46, "elapsed_time": "11:17:19", "remaining_time": "3:40:18"} +{"current_steps": 4130, "total_steps": 5472, "loss": 0.0448, "accuracy": 1.0, "learning_rate": 8.617525755645266e-08, "epoch": 3.017351598173516, "percentage": 75.48, "elapsed_time": "11:17:30", "remaining_time": "3:40:08"} +{"current_steps": 4131, "total_steps": 5472, "loss": 0.0132, "accuracy": 1.0, "learning_rate": 8.605480636098225e-08, "epoch": 3.018082191780822, "percentage": 75.49, "elapsed_time": "11:17:39", "remaining_time": "3:39:58"} +{"current_steps": 4132, "total_steps": 5472, "loss": 0.0178, "accuracy": 1.0, "learning_rate": 8.593442190184352e-08, "epoch": 3.018812785388128, "percentage": 75.51, "elapsed_time": "11:17:50", "remaining_time": "3:39:49"} +{"current_steps": 4133, "total_steps": 5472, "loss": 0.0333, "accuracy": 1.0, "learning_rate": 8.581410422804072e-08, "epoch": 3.019543378995434, "percentage": 75.53, "elapsed_time": "11:17:59", "remaining_time": "3:39:39"} +{"current_steps": 4134, "total_steps": 5472, "loss": 0.0154, "accuracy": 1.0, "learning_rate": 8.569385338855112e-08, "epoch": 3.0202739726027397, "percentage": 75.55, "elapsed_time": "11:18:08", "remaining_time": "3:39:29"} +{"current_steps": 4135, "total_steps": 5472, "loss": 0.0128, "accuracy": 1.0, "learning_rate": 8.557366943232449e-08, "epoch": 3.0210045662100455, "percentage": 75.57, "elapsed_time": "11:18:20", "remaining_time": "3:39:19"} +{"current_steps": 4136, "total_steps": 5472, "loss": 0.0111, "accuracy": 1.0, "learning_rate": 8.545355240828344e-08, "epoch": 3.0217351598173514, "percentage": 75.58, "elapsed_time": "11:18:29", "remaining_time": "3:39:09"} +{"current_steps": 4137, "total_steps": 5472, "loss": 0.0218, "accuracy": 1.0, "learning_rate": 8.533350236532358e-08, "epoch": 3.0224657534246577, "percentage": 75.6, "elapsed_time": "11:18:39", "remaining_time": "3:38:59"} +{"current_steps": 4138, "total_steps": 5472, "loss": 0.0613, "accuracy": 1.0, "learning_rate": 8.521351935231289e-08, "epoch": 3.0231963470319636, "percentage": 75.62, "elapsed_time": "11:18:49", "remaining_time": "3:38:50"} +{"current_steps": 4139, "total_steps": 5472, "loss": 0.0478, "accuracy": 1.0, "learning_rate": 8.509360341809244e-08, "epoch": 3.0239269406392695, "percentage": 75.64, "elapsed_time": "11:18:59", "remaining_time": "3:38:40"} +{"current_steps": 4140, "total_steps": 5472, "loss": 0.0435, "accuracy": 1.0, "learning_rate": 8.497375461147552e-08, "epoch": 3.0246575342465754, "percentage": 75.66, "elapsed_time": "11:19:08", "remaining_time": "3:38:30"} +{"current_steps": 4141, "total_steps": 5472, "loss": 0.0224, "accuracy": 1.0, "learning_rate": 8.48539729812486e-08, "epoch": 3.0253881278538812, "percentage": 75.68, "elapsed_time": "11:19:17", "remaining_time": "3:38:20"} +{"current_steps": 4142, "total_steps": 5472, "loss": 0.0203, "accuracy": 1.0, "learning_rate": 8.473425857617045e-08, "epoch": 3.026118721461187, "percentage": 75.69, "elapsed_time": "11:19:26", "remaining_time": "3:38:10"} +{"current_steps": 4143, "total_steps": 5472, "loss": 0.0269, "accuracy": 1.0, "learning_rate": 8.461461144497261e-08, "epoch": 3.026849315068493, "percentage": 75.71, "elapsed_time": "11:19:37", "remaining_time": "3:38:00"} +{"current_steps": 4144, "total_steps": 5472, "loss": 0.0197, "accuracy": 1.0, "learning_rate": 8.449503163635943e-08, "epoch": 3.0275799086757993, "percentage": 75.73, "elapsed_time": "11:19:48", "remaining_time": "3:37:51"} +{"current_steps": 4145, "total_steps": 5472, "loss": 0.0169, "accuracy": 1.0, "learning_rate": 8.437551919900735e-08, "epoch": 3.028310502283105, "percentage": 75.75, "elapsed_time": "11:19:56", "remaining_time": "3:37:40"} +{"current_steps": 4146, "total_steps": 5472, "loss": 0.0251, "accuracy": 1.0, "learning_rate": 8.425607418156588e-08, "epoch": 3.029041095890411, "percentage": 75.77, "elapsed_time": "11:20:05", "remaining_time": "3:37:30"} +{"current_steps": 4147, "total_steps": 5472, "loss": 0.0256, "accuracy": 1.0, "learning_rate": 8.413669663265677e-08, "epoch": 3.029771689497717, "percentage": 75.79, "elapsed_time": "11:20:15", "remaining_time": "3:37:20"} +{"current_steps": 4148, "total_steps": 5472, "loss": 0.014, "accuracy": 1.0, "learning_rate": 8.401738660087455e-08, "epoch": 3.030502283105023, "percentage": 75.8, "elapsed_time": "11:20:27", "remaining_time": "3:37:11"} +{"current_steps": 4149, "total_steps": 5472, "loss": 0.0212, "accuracy": 1.0, "learning_rate": 8.38981441347861e-08, "epoch": 3.0312328767123287, "percentage": 75.82, "elapsed_time": "11:20:37", "remaining_time": "3:37:01"} +{"current_steps": 4150, "total_steps": 5472, "loss": 0.0526, "accuracy": 1.0, "learning_rate": 8.377896928293074e-08, "epoch": 3.0319634703196345, "percentage": 75.84, "elapsed_time": "11:20:48", "remaining_time": "3:36:52"} +{"current_steps": 4151, "total_steps": 5472, "loss": 0.0361, "accuracy": 1.0, "learning_rate": 8.365986209382056e-08, "epoch": 3.032694063926941, "percentage": 75.86, "elapsed_time": "11:20:58", "remaining_time": "3:36:42"} +{"current_steps": 4152, "total_steps": 5472, "loss": 0.0199, "accuracy": 1.0, "learning_rate": 8.354082261593982e-08, "epoch": 3.0334246575342467, "percentage": 75.88, "elapsed_time": "11:21:07", "remaining_time": "3:36:32"} +{"current_steps": 4153, "total_steps": 5472, "loss": 0.025, "accuracy": 1.0, "learning_rate": 8.342185089774517e-08, "epoch": 3.0341552511415526, "percentage": 75.9, "elapsed_time": "11:21:16", "remaining_time": "3:36:22"} +{"current_steps": 4154, "total_steps": 5472, "loss": 0.0325, "accuracy": 1.0, "learning_rate": 8.330294698766607e-08, "epoch": 3.0348858447488585, "percentage": 75.91, "elapsed_time": "11:21:26", "remaining_time": "3:36:12"} +{"current_steps": 4155, "total_steps": 5472, "loss": 0.0133, "accuracy": 1.0, "learning_rate": 8.318411093410391e-08, "epoch": 3.0356164383561643, "percentage": 75.93, "elapsed_time": "11:21:36", "remaining_time": "3:36:02"} +{"current_steps": 4156, "total_steps": 5472, "loss": 0.016, "accuracy": 1.0, "learning_rate": 8.306534278543287e-08, "epoch": 3.0363470319634702, "percentage": 75.95, "elapsed_time": "11:21:46", "remaining_time": "3:35:53"} +{"current_steps": 4157, "total_steps": 5472, "loss": 0.0605, "accuracy": 1.0, "learning_rate": 8.29466425899992e-08, "epoch": 3.037077625570776, "percentage": 75.97, "elapsed_time": "11:21:56", "remaining_time": "3:35:43"} +{"current_steps": 4158, "total_steps": 5472, "loss": 0.0175, "accuracy": 1.0, "learning_rate": 8.282801039612155e-08, "epoch": 3.037808219178082, "percentage": 75.99, "elapsed_time": "11:22:05", "remaining_time": "3:35:33"} +{"current_steps": 4159, "total_steps": 5472, "loss": 0.0215, "accuracy": 1.0, "learning_rate": 8.27094462520909e-08, "epoch": 3.0385388127853883, "percentage": 76.01, "elapsed_time": "11:22:15", "remaining_time": "3:35:23"} +{"current_steps": 4160, "total_steps": 5472, "loss": 0.0167, "accuracy": 1.0, "learning_rate": 8.259095020617066e-08, "epoch": 3.039269406392694, "percentage": 76.02, "elapsed_time": "11:22:24", "remaining_time": "3:35:13"} +{"current_steps": 4161, "total_steps": 5472, "loss": 0.0157, "accuracy": 1.0, "learning_rate": 8.247252230659635e-08, "epoch": 3.04, "percentage": 76.04, "elapsed_time": "11:22:32", "remaining_time": "3:35:02"} +{"current_steps": 4162, "total_steps": 5472, "loss": 0.0363, "accuracy": 1.0, "learning_rate": 8.23541626015757e-08, "epoch": 3.040730593607306, "percentage": 76.06, "elapsed_time": "11:22:44", "remaining_time": "3:34:53"} +{"current_steps": 4163, "total_steps": 5472, "loss": 0.0399, "accuracy": 1.0, "learning_rate": 8.223587113928901e-08, "epoch": 3.041461187214612, "percentage": 76.08, "elapsed_time": "11:22:52", "remaining_time": "3:34:43"} +{"current_steps": 4164, "total_steps": 5472, "loss": 0.0194, "accuracy": 1.0, "learning_rate": 8.211764796788839e-08, "epoch": 3.0421917808219177, "percentage": 76.1, "elapsed_time": "11:23:01", "remaining_time": "3:34:33"} +{"current_steps": 4165, "total_steps": 5472, "loss": 0.0405, "accuracy": 1.0, "learning_rate": 8.19994931354985e-08, "epoch": 3.0429223744292235, "percentage": 76.11, "elapsed_time": "11:23:11", "remaining_time": "3:34:23"} +{"current_steps": 4166, "total_steps": 5472, "loss": 0.0507, "accuracy": 0.875, "learning_rate": 8.188140669021592e-08, "epoch": 3.04365296803653, "percentage": 76.13, "elapsed_time": "11:23:19", "remaining_time": "3:34:13"} +{"current_steps": 4167, "total_steps": 5472, "loss": 0.0216, "accuracy": 1.0, "learning_rate": 8.176338868010945e-08, "epoch": 3.0443835616438357, "percentage": 76.15, "elapsed_time": "11:23:29", "remaining_time": "3:34:03"} +{"current_steps": 4168, "total_steps": 5472, "loss": 0.0148, "accuracy": 1.0, "learning_rate": 8.164543915322026e-08, "epoch": 3.0451141552511416, "percentage": 76.17, "elapsed_time": "11:23:38", "remaining_time": "3:33:53"} +{"current_steps": 4169, "total_steps": 5472, "loss": 0.037, "accuracy": 1.0, "learning_rate": 8.152755815756122e-08, "epoch": 3.0458447488584475, "percentage": 76.19, "elapsed_time": "11:23:48", "remaining_time": "3:33:43"} +{"current_steps": 4170, "total_steps": 5472, "loss": 0.0428, "accuracy": 1.0, "learning_rate": 8.140974574111786e-08, "epoch": 3.0465753424657533, "percentage": 76.21, "elapsed_time": "11:23:56", "remaining_time": "3:33:32"} +{"current_steps": 4171, "total_steps": 5472, "loss": 0.0456, "accuracy": 0.875, "learning_rate": 8.12920019518471e-08, "epoch": 3.047305936073059, "percentage": 76.22, "elapsed_time": "11:24:06", "remaining_time": "3:33:22"} +{"current_steps": 4172, "total_steps": 5472, "loss": 0.0278, "accuracy": 1.0, "learning_rate": 8.117432683767853e-08, "epoch": 3.048036529680365, "percentage": 76.24, "elapsed_time": "11:24:15", "remaining_time": "3:33:12"} +{"current_steps": 4173, "total_steps": 5472, "loss": 0.0217, "accuracy": 1.0, "learning_rate": 8.105672044651358e-08, "epoch": 3.0487671232876714, "percentage": 76.26, "elapsed_time": "11:24:25", "remaining_time": "3:33:03"} +{"current_steps": 4174, "total_steps": 5472, "loss": 0.0308, "accuracy": 1.0, "learning_rate": 8.093918282622562e-08, "epoch": 3.0494977168949773, "percentage": 76.28, "elapsed_time": "11:24:34", "remaining_time": "3:32:53"} +{"current_steps": 4175, "total_steps": 5472, "loss": 0.0298, "accuracy": 1.0, "learning_rate": 8.08217140246601e-08, "epoch": 3.050228310502283, "percentage": 76.3, "elapsed_time": "11:24:45", "remaining_time": "3:32:43"} +{"current_steps": 4176, "total_steps": 5472, "loss": 0.0433, "accuracy": 1.0, "learning_rate": 8.070431408963432e-08, "epoch": 3.050958904109589, "percentage": 76.32, "elapsed_time": "11:24:55", "remaining_time": "3:32:33"} +{"current_steps": 4177, "total_steps": 5472, "loss": 0.012, "accuracy": 1.0, "learning_rate": 8.05869830689379e-08, "epoch": 3.051689497716895, "percentage": 76.33, "elapsed_time": "11:25:04", "remaining_time": "3:32:23"} +{"current_steps": 4178, "total_steps": 5472, "loss": 0.0285, "accuracy": 1.0, "learning_rate": 8.046972101033205e-08, "epoch": 3.052420091324201, "percentage": 76.35, "elapsed_time": "11:25:13", "remaining_time": "3:32:13"} +{"current_steps": 4179, "total_steps": 5472, "loss": 0.0178, "accuracy": 1.0, "learning_rate": 8.035252796154998e-08, "epoch": 3.0531506849315067, "percentage": 76.37, "elapsed_time": "11:25:23", "remaining_time": "3:32:03"} +{"current_steps": 4180, "total_steps": 5472, "loss": 0.0486, "accuracy": 1.0, "learning_rate": 8.023540397029702e-08, "epoch": 3.053881278538813, "percentage": 76.39, "elapsed_time": "11:25:33", "remaining_time": "3:31:53"} +{"current_steps": 4181, "total_steps": 5472, "loss": 0.0317, "accuracy": 1.0, "learning_rate": 8.011834908425005e-08, "epoch": 3.054611872146119, "percentage": 76.41, "elapsed_time": "11:25:43", "remaining_time": "3:31:44"} +{"current_steps": 4182, "total_steps": 5472, "loss": 0.0445, "accuracy": 1.0, "learning_rate": 8.00013633510582e-08, "epoch": 3.0553424657534247, "percentage": 76.43, "elapsed_time": "11:25:52", "remaining_time": "3:31:34"} +{"current_steps": 4183, "total_steps": 5472, "loss": 0.0516, "accuracy": 1.0, "learning_rate": 7.988444681834213e-08, "epoch": 3.0560730593607306, "percentage": 76.44, "elapsed_time": "11:26:01", "remaining_time": "3:31:23"} +{"current_steps": 4184, "total_steps": 5472, "loss": 0.0225, "accuracy": 1.0, "learning_rate": 7.976759953369443e-08, "epoch": 3.0568036529680365, "percentage": 76.46, "elapsed_time": "11:26:11", "remaining_time": "3:31:14"} +{"current_steps": 4185, "total_steps": 5472, "loss": 0.0321, "accuracy": 1.0, "learning_rate": 7.965082154467964e-08, "epoch": 3.0575342465753423, "percentage": 76.48, "elapsed_time": "11:26:20", "remaining_time": "3:31:04"} +{"current_steps": 4186, "total_steps": 5472, "loss": 0.0193, "accuracy": 1.0, "learning_rate": 7.953411289883385e-08, "epoch": 3.058264840182648, "percentage": 76.5, "elapsed_time": "11:26:30", "remaining_time": "3:30:54"} +{"current_steps": 4187, "total_steps": 5472, "loss": 0.0325, "accuracy": 1.0, "learning_rate": 7.94174736436653e-08, "epoch": 3.0589954337899545, "percentage": 76.52, "elapsed_time": "11:26:39", "remaining_time": "3:30:44"} +{"current_steps": 4188, "total_steps": 5472, "loss": 0.0162, "accuracy": 1.0, "learning_rate": 7.930090382665338e-08, "epoch": 3.0597260273972604, "percentage": 76.54, "elapsed_time": "11:26:49", "remaining_time": "3:30:34"} +{"current_steps": 4189, "total_steps": 5472, "loss": 0.0221, "accuracy": 1.0, "learning_rate": 7.918440349524974e-08, "epoch": 3.0604566210045663, "percentage": 76.55, "elapsed_time": "11:26:59", "remaining_time": "3:30:24"} +{"current_steps": 4190, "total_steps": 5472, "loss": 0.0116, "accuracy": 1.0, "learning_rate": 7.906797269687768e-08, "epoch": 3.061187214611872, "percentage": 76.57, "elapsed_time": "11:27:08", "remaining_time": "3:30:14"} +{"current_steps": 4191, "total_steps": 5472, "loss": 0.0266, "accuracy": 1.0, "learning_rate": 7.895161147893195e-08, "epoch": 3.061917808219178, "percentage": 76.59, "elapsed_time": "11:27:17", "remaining_time": "3:30:04"} +{"current_steps": 4192, "total_steps": 5472, "loss": 0.0456, "accuracy": 1.0, "learning_rate": 7.88353198887792e-08, "epoch": 3.062648401826484, "percentage": 76.61, "elapsed_time": "11:27:27", "remaining_time": "3:29:54"} +{"current_steps": 4193, "total_steps": 5472, "loss": 0.0231, "accuracy": 1.0, "learning_rate": 7.87190979737575e-08, "epoch": 3.0633789954337898, "percentage": 76.63, "elapsed_time": "11:27:35", "remaining_time": "3:29:44"} +{"current_steps": 4194, "total_steps": 5472, "loss": 0.0144, "accuracy": 1.0, "learning_rate": 7.860294578117691e-08, "epoch": 3.064109589041096, "percentage": 76.64, "elapsed_time": "11:27:44", "remaining_time": "3:29:34"} +{"current_steps": 4195, "total_steps": 5472, "loss": 0.0312, "accuracy": 1.0, "learning_rate": 7.848686335831872e-08, "epoch": 3.064840182648402, "percentage": 76.66, "elapsed_time": "11:27:54", "remaining_time": "3:29:24"} +{"current_steps": 4196, "total_steps": 5472, "loss": 0.0334, "accuracy": 1.0, "learning_rate": 7.837085075243621e-08, "epoch": 3.065570776255708, "percentage": 76.68, "elapsed_time": "11:28:03", "remaining_time": "3:29:14"} +{"current_steps": 4197, "total_steps": 5472, "loss": 0.0371, "accuracy": 1.0, "learning_rate": 7.825490801075391e-08, "epoch": 3.0663013698630137, "percentage": 76.7, "elapsed_time": "11:28:15", "remaining_time": "3:29:04"} +{"current_steps": 4198, "total_steps": 5472, "loss": 0.0394, "accuracy": 1.0, "learning_rate": 7.8139035180468e-08, "epoch": 3.0670319634703196, "percentage": 76.72, "elapsed_time": "11:28:23", "remaining_time": "3:28:54"} +{"current_steps": 4199, "total_steps": 5472, "loss": 0.0246, "accuracy": 1.0, "learning_rate": 7.802323230874639e-08, "epoch": 3.0677625570776255, "percentage": 76.74, "elapsed_time": "11:28:32", "remaining_time": "3:28:44"} +{"current_steps": 4200, "total_steps": 5472, "loss": 0.0299, "accuracy": 1.0, "learning_rate": 7.790749944272826e-08, "epoch": 3.0684931506849313, "percentage": 76.75, "elapsed_time": "11:28:41", "remaining_time": "3:28:34"} +{"current_steps": 4201, "total_steps": 5472, "loss": 0.035, "accuracy": 1.0, "learning_rate": 7.779183662952435e-08, "epoch": 3.0692237442922377, "percentage": 76.77, "elapsed_time": "11:28:52", "remaining_time": "3:28:25"} +{"current_steps": 4202, "total_steps": 5472, "loss": 0.0167, "accuracy": 1.0, "learning_rate": 7.767624391621704e-08, "epoch": 3.0699543378995435, "percentage": 76.79, "elapsed_time": "11:29:01", "remaining_time": "3:28:15"} +{"current_steps": 4203, "total_steps": 5472, "loss": 0.0467, "accuracy": 0.875, "learning_rate": 7.756072134985997e-08, "epoch": 3.0706849315068494, "percentage": 76.81, "elapsed_time": "11:29:10", "remaining_time": "3:28:04"} +{"current_steps": 4204, "total_steps": 5472, "loss": 0.0264, "accuracy": 1.0, "learning_rate": 7.744526897747844e-08, "epoch": 3.0714155251141553, "percentage": 76.83, "elapsed_time": "11:29:21", "remaining_time": "3:27:55"} +{"current_steps": 4205, "total_steps": 5472, "loss": 0.0278, "accuracy": 1.0, "learning_rate": 7.7329886846069e-08, "epoch": 3.072146118721461, "percentage": 76.85, "elapsed_time": "11:29:29", "remaining_time": "3:27:45"} +{"current_steps": 4206, "total_steps": 5472, "loss": 0.0364, "accuracy": 1.0, "learning_rate": 7.721457500259956e-08, "epoch": 3.072876712328767, "percentage": 76.86, "elapsed_time": "11:29:38", "remaining_time": "3:27:34"} +{"current_steps": 4207, "total_steps": 5472, "loss": 0.0348, "accuracy": 1.0, "learning_rate": 7.709933349400968e-08, "epoch": 3.073607305936073, "percentage": 76.88, "elapsed_time": "11:29:47", "remaining_time": "3:27:24"} +{"current_steps": 4208, "total_steps": 5472, "loss": 0.0433, "accuracy": 0.875, "learning_rate": 7.698416236721e-08, "epoch": 3.074337899543379, "percentage": 76.9, "elapsed_time": "11:29:57", "remaining_time": "3:27:15"} +{"current_steps": 4209, "total_steps": 5472, "loss": 0.0589, "accuracy": 1.0, "learning_rate": 7.686906166908286e-08, "epoch": 3.075068493150685, "percentage": 76.92, "elapsed_time": "11:30:06", "remaining_time": "3:27:04"} +{"current_steps": 4210, "total_steps": 5472, "loss": 0.042, "accuracy": 1.0, "learning_rate": 7.675403144648137e-08, "epoch": 3.075799086757991, "percentage": 76.94, "elapsed_time": "11:30:18", "remaining_time": "3:26:55"} +{"current_steps": 4211, "total_steps": 5472, "loss": 0.0404, "accuracy": 1.0, "learning_rate": 7.663907174623061e-08, "epoch": 3.076529680365297, "percentage": 76.96, "elapsed_time": "11:30:28", "remaining_time": "3:26:45"} +{"current_steps": 4212, "total_steps": 5472, "loss": 0.0191, "accuracy": 1.0, "learning_rate": 7.652418261512639e-08, "epoch": 3.0772602739726027, "percentage": 76.97, "elapsed_time": "11:30:37", "remaining_time": "3:26:35"} +{"current_steps": 4213, "total_steps": 5472, "loss": 0.0399, "accuracy": 1.0, "learning_rate": 7.640936409993626e-08, "epoch": 3.0779908675799086, "percentage": 76.99, "elapsed_time": "11:30:46", "remaining_time": "3:26:25"} +{"current_steps": 4214, "total_steps": 5472, "loss": 0.0399, "accuracy": 1.0, "learning_rate": 7.629461624739872e-08, "epoch": 3.0787214611872145, "percentage": 77.01, "elapsed_time": "11:30:55", "remaining_time": "3:26:15"} +{"current_steps": 4215, "total_steps": 5472, "loss": 0.0401, "accuracy": 1.0, "learning_rate": 7.617993910422349e-08, "epoch": 3.0794520547945208, "percentage": 77.03, "elapsed_time": "11:31:05", "remaining_time": "3:26:05"} +{"current_steps": 4216, "total_steps": 5472, "loss": 0.0281, "accuracy": 1.0, "learning_rate": 7.606533271709175e-08, "epoch": 3.0801826484018267, "percentage": 77.05, "elapsed_time": "11:31:15", "remaining_time": "3:25:56"} +{"current_steps": 4217, "total_steps": 5472, "loss": 0.0591, "accuracy": 1.0, "learning_rate": 7.595079713265565e-08, "epoch": 3.0809132420091325, "percentage": 77.07, "elapsed_time": "11:31:24", "remaining_time": "3:25:45"} +{"current_steps": 4218, "total_steps": 5472, "loss": 0.0206, "accuracy": 1.0, "learning_rate": 7.583633239753867e-08, "epoch": 3.0816438356164384, "percentage": 77.08, "elapsed_time": "11:31:32", "remaining_time": "3:25:35"} +{"current_steps": 4219, "total_steps": 5472, "loss": 0.043, "accuracy": 1.0, "learning_rate": 7.57219385583354e-08, "epoch": 3.0823744292237443, "percentage": 77.1, "elapsed_time": "11:31:42", "remaining_time": "3:25:25"} +{"current_steps": 4220, "total_steps": 5472, "loss": 0.0404, "accuracy": 1.0, "learning_rate": 7.560761566161139e-08, "epoch": 3.08310502283105, "percentage": 77.12, "elapsed_time": "11:31:53", "remaining_time": "3:25:16"} +{"current_steps": 4221, "total_steps": 5472, "loss": 0.0327, "accuracy": 1.0, "learning_rate": 7.549336375390369e-08, "epoch": 3.083835616438356, "percentage": 77.14, "elapsed_time": "11:32:02", "remaining_time": "3:25:06"} +{"current_steps": 4222, "total_steps": 5472, "loss": 0.0229, "accuracy": 1.0, "learning_rate": 7.537918288172013e-08, "epoch": 3.084566210045662, "percentage": 77.16, "elapsed_time": "11:32:11", "remaining_time": "3:24:56"} +{"current_steps": 4223, "total_steps": 5472, "loss": 0.0276, "accuracy": 1.0, "learning_rate": 7.526507309153976e-08, "epoch": 3.085296803652968, "percentage": 77.17, "elapsed_time": "11:32:21", "remaining_time": "3:24:46"} +{"current_steps": 4224, "total_steps": 5472, "loss": 0.0274, "accuracy": 1.0, "learning_rate": 7.515103442981258e-08, "epoch": 3.086027397260274, "percentage": 77.19, "elapsed_time": "11:32:31", "remaining_time": "3:24:36"} +{"current_steps": 4225, "total_steps": 5472, "loss": 0.0101, "accuracy": 1.0, "learning_rate": 7.50370669429598e-08, "epoch": 3.08675799086758, "percentage": 77.21, "elapsed_time": "11:32:40", "remaining_time": "3:24:26"} +{"current_steps": 4226, "total_steps": 5472, "loss": 0.0237, "accuracy": 1.0, "learning_rate": 7.492317067737375e-08, "epoch": 3.087488584474886, "percentage": 77.23, "elapsed_time": "11:32:51", "remaining_time": "3:24:17"} +{"current_steps": 4227, "total_steps": 5472, "loss": 0.009, "accuracy": 1.0, "learning_rate": 7.480934567941724e-08, "epoch": 3.0882191780821917, "percentage": 77.25, "elapsed_time": "11:33:00", "remaining_time": "3:24:06"} +{"current_steps": 4228, "total_steps": 5472, "loss": 0.0336, "accuracy": 1.0, "learning_rate": 7.469559199542475e-08, "epoch": 3.0889497716894976, "percentage": 77.27, "elapsed_time": "11:33:10", "remaining_time": "3:23:57"} +{"current_steps": 4229, "total_steps": 5472, "loss": 0.0677, "accuracy": 1.0, "learning_rate": 7.458190967170119e-08, "epoch": 3.0896803652968035, "percentage": 77.28, "elapsed_time": "11:33:19", "remaining_time": "3:23:46"} +{"current_steps": 4230, "total_steps": 5472, "loss": 0.0296, "accuracy": 1.0, "learning_rate": 7.446829875452279e-08, "epoch": 3.0904109589041098, "percentage": 77.3, "elapsed_time": "11:33:29", "remaining_time": "3:23:37"} +{"current_steps": 4231, "total_steps": 5472, "loss": 0.0346, "accuracy": 1.0, "learning_rate": 7.435475929013654e-08, "epoch": 3.0911415525114156, "percentage": 77.32, "elapsed_time": "11:33:39", "remaining_time": "3:23:27"} +{"current_steps": 4232, "total_steps": 5472, "loss": 0.0311, "accuracy": 1.0, "learning_rate": 7.424129132476026e-08, "epoch": 3.0918721461187215, "percentage": 77.34, "elapsed_time": "11:33:51", "remaining_time": "3:23:18"} +{"current_steps": 4233, "total_steps": 5472, "loss": 0.0156, "accuracy": 1.0, "learning_rate": 7.412789490458293e-08, "epoch": 3.0926027397260274, "percentage": 77.36, "elapsed_time": "11:34:00", "remaining_time": "3:23:08"} +{"current_steps": 4234, "total_steps": 5472, "loss": 0.0083, "accuracy": 1.0, "learning_rate": 7.401457007576411e-08, "epoch": 3.0933333333333333, "percentage": 77.38, "elapsed_time": "11:34:09", "remaining_time": "3:22:58"} +{"current_steps": 4235, "total_steps": 5472, "loss": 0.0122, "accuracy": 1.0, "learning_rate": 7.390131688443448e-08, "epoch": 3.094063926940639, "percentage": 77.39, "elapsed_time": "11:34:20", "remaining_time": "3:22:48"} +{"current_steps": 4236, "total_steps": 5472, "loss": 0.052, "accuracy": 1.0, "learning_rate": 7.378813537669543e-08, "epoch": 3.094794520547945, "percentage": 77.41, "elapsed_time": "11:34:30", "remaining_time": "3:22:38"} +{"current_steps": 4237, "total_steps": 5472, "loss": 0.0262, "accuracy": 1.0, "learning_rate": 7.367502559861902e-08, "epoch": 3.0955251141552513, "percentage": 77.43, "elapsed_time": "11:34:39", "remaining_time": "3:22:28"} +{"current_steps": 4238, "total_steps": 5472, "loss": 0.0225, "accuracy": 1.0, "learning_rate": 7.356198759624846e-08, "epoch": 3.096255707762557, "percentage": 77.45, "elapsed_time": "11:34:49", "remaining_time": "3:22:18"} +{"current_steps": 4239, "total_steps": 5472, "loss": 0.0505, "accuracy": 1.0, "learning_rate": 7.344902141559748e-08, "epoch": 3.096986301369863, "percentage": 77.47, "elapsed_time": "11:34:58", "remaining_time": "3:22:08"} +{"current_steps": 4240, "total_steps": 5472, "loss": 0.0151, "accuracy": 1.0, "learning_rate": 7.333612710265061e-08, "epoch": 3.097716894977169, "percentage": 77.49, "elapsed_time": "11:35:07", "remaining_time": "3:21:58"} +{"current_steps": 4241, "total_steps": 5472, "loss": 0.0274, "accuracy": 1.0, "learning_rate": 7.322330470336313e-08, "epoch": 3.098447488584475, "percentage": 77.5, "elapsed_time": "11:35:16", "remaining_time": "3:21:48"} +{"current_steps": 4242, "total_steps": 5472, "loss": 0.0348, "accuracy": 1.0, "learning_rate": 7.311055426366114e-08, "epoch": 3.0991780821917807, "percentage": 77.52, "elapsed_time": "11:35:28", "remaining_time": "3:21:39"} +{"current_steps": 4243, "total_steps": 5472, "loss": 0.0185, "accuracy": 1.0, "learning_rate": 7.299787582944145e-08, "epoch": 3.0999086757990866, "percentage": 77.54, "elapsed_time": "11:35:38", "remaining_time": "3:21:29"} +{"current_steps": 4244, "total_steps": 5472, "loss": 0.0513, "accuracy": 1.0, "learning_rate": 7.288526944657142e-08, "epoch": 3.100639269406393, "percentage": 77.56, "elapsed_time": "11:35:47", "remaining_time": "3:21:19"} +{"current_steps": 4245, "total_steps": 5472, "loss": 0.0342, "accuracy": 1.0, "learning_rate": 7.277273516088916e-08, "epoch": 3.1013698630136988, "percentage": 77.58, "elapsed_time": "11:35:58", "remaining_time": "3:21:10"} +{"current_steps": 4246, "total_steps": 5472, "loss": 0.0226, "accuracy": 1.0, "learning_rate": 7.266027301820335e-08, "epoch": 3.1021004566210046, "percentage": 77.6, "elapsed_time": "11:36:07", "remaining_time": "3:21:00"} +{"current_steps": 4247, "total_steps": 5472, "loss": 0.012, "accuracy": 1.0, "learning_rate": 7.254788306429354e-08, "epoch": 3.1028310502283105, "percentage": 77.61, "elapsed_time": "11:36:18", "remaining_time": "3:20:50"} +{"current_steps": 4248, "total_steps": 5472, "loss": 0.0259, "accuracy": 1.0, "learning_rate": 7.243556534490966e-08, "epoch": 3.1035616438356164, "percentage": 77.63, "elapsed_time": "11:36:26", "remaining_time": "3:20:40"} +{"current_steps": 4249, "total_steps": 5472, "loss": 0.0256, "accuracy": 1.0, "learning_rate": 7.23233199057722e-08, "epoch": 3.1042922374429223, "percentage": 77.65, "elapsed_time": "11:36:36", "remaining_time": "3:20:30"} +{"current_steps": 4250, "total_steps": 5472, "loss": 0.0346, "accuracy": 1.0, "learning_rate": 7.221114679257251e-08, "epoch": 3.105022831050228, "percentage": 77.67, "elapsed_time": "11:36:45", "remaining_time": "3:20:20"} +{"current_steps": 4251, "total_steps": 5472, "loss": 0.012, "accuracy": 1.0, "learning_rate": 7.209904605097216e-08, "epoch": 3.1057534246575345, "percentage": 77.69, "elapsed_time": "11:36:54", "remaining_time": "3:20:10"} +{"current_steps": 4252, "total_steps": 5472, "loss": 0.012, "accuracy": 1.0, "learning_rate": 7.198701772660362e-08, "epoch": 3.1064840182648403, "percentage": 77.7, "elapsed_time": "11:37:04", "remaining_time": "3:20:00"} +{"current_steps": 4253, "total_steps": 5472, "loss": 0.019, "accuracy": 1.0, "learning_rate": 7.187506186506958e-08, "epoch": 3.107214611872146, "percentage": 77.72, "elapsed_time": "11:37:12", "remaining_time": "3:19:50"} +{"current_steps": 4254, "total_steps": 5472, "loss": 0.0306, "accuracy": 1.0, "learning_rate": 7.176317851194327e-08, "epoch": 3.107945205479452, "percentage": 77.74, "elapsed_time": "11:37:22", "remaining_time": "3:19:40"} +{"current_steps": 4255, "total_steps": 5472, "loss": 0.0263, "accuracy": 1.0, "learning_rate": 7.165136771276861e-08, "epoch": 3.108675799086758, "percentage": 77.76, "elapsed_time": "11:37:31", "remaining_time": "3:19:30"} +{"current_steps": 4256, "total_steps": 5472, "loss": 0.0338, "accuracy": 1.0, "learning_rate": 7.153962951305972e-08, "epoch": 3.109406392694064, "percentage": 77.78, "elapsed_time": "11:37:42", "remaining_time": "3:19:20"} +{"current_steps": 4257, "total_steps": 5472, "loss": 0.0589, "accuracy": 1.0, "learning_rate": 7.142796395830153e-08, "epoch": 3.1101369863013697, "percentage": 77.8, "elapsed_time": "11:37:52", "remaining_time": "3:19:10"} +{"current_steps": 4258, "total_steps": 5472, "loss": 0.0169, "accuracy": 1.0, "learning_rate": 7.131637109394883e-08, "epoch": 3.1108675799086756, "percentage": 77.81, "elapsed_time": "11:38:01", "remaining_time": "3:19:00"} +{"current_steps": 4259, "total_steps": 5472, "loss": 0.02, "accuracy": 1.0, "learning_rate": 7.120485096542733e-08, "epoch": 3.111598173515982, "percentage": 77.83, "elapsed_time": "11:38:13", "remaining_time": "3:18:51"} +{"current_steps": 4260, "total_steps": 5472, "loss": 0.0332, "accuracy": 1.0, "learning_rate": 7.109340361813305e-08, "epoch": 3.1123287671232878, "percentage": 77.85, "elapsed_time": "11:38:23", "remaining_time": "3:18:41"} +{"current_steps": 4261, "total_steps": 5472, "loss": 0.03, "accuracy": 1.0, "learning_rate": 7.09820290974322e-08, "epoch": 3.1130593607305936, "percentage": 77.87, "elapsed_time": "11:38:32", "remaining_time": "3:18:31"} +{"current_steps": 4262, "total_steps": 5472, "loss": 0.0303, "accuracy": 1.0, "learning_rate": 7.087072744866143e-08, "epoch": 3.1137899543378995, "percentage": 77.89, "elapsed_time": "11:38:41", "remaining_time": "3:18:21"} +{"current_steps": 4263, "total_steps": 5472, "loss": 0.0491, "accuracy": 1.0, "learning_rate": 7.075949871712766e-08, "epoch": 3.1145205479452054, "percentage": 77.91, "elapsed_time": "11:38:52", "remaining_time": "3:18:12"} +{"current_steps": 4264, "total_steps": 5472, "loss": 0.0103, "accuracy": 1.0, "learning_rate": 7.064834294810834e-08, "epoch": 3.1152511415525113, "percentage": 77.92, "elapsed_time": "11:39:04", "remaining_time": "3:18:02"} +{"current_steps": 4265, "total_steps": 5472, "loss": 0.0282, "accuracy": 1.0, "learning_rate": 7.053726018685106e-08, "epoch": 3.115981735159817, "percentage": 77.94, "elapsed_time": "11:39:13", "remaining_time": "3:17:53"} +{"current_steps": 4266, "total_steps": 5472, "loss": 0.031, "accuracy": 1.0, "learning_rate": 7.042625047857357e-08, "epoch": 3.1167123287671235, "percentage": 77.96, "elapsed_time": "11:39:22", "remaining_time": "3:17:42"} +{"current_steps": 4267, "total_steps": 5472, "loss": 0.0129, "accuracy": 1.0, "learning_rate": 7.03153138684642e-08, "epoch": 3.1174429223744293, "percentage": 77.98, "elapsed_time": "11:39:32", "remaining_time": "3:17:32"} +{"current_steps": 4268, "total_steps": 5472, "loss": 0.0273, "accuracy": 1.0, "learning_rate": 7.020445040168121e-08, "epoch": 3.118173515981735, "percentage": 78.0, "elapsed_time": "11:39:42", "remaining_time": "3:17:23"} +{"current_steps": 4269, "total_steps": 5472, "loss": 0.0226, "accuracy": 1.0, "learning_rate": 7.009366012335336e-08, "epoch": 3.118904109589041, "percentage": 78.02, "elapsed_time": "11:39:51", "remaining_time": "3:17:13"} +{"current_steps": 4270, "total_steps": 5472, "loss": 0.0256, "accuracy": 1.0, "learning_rate": 6.998294307857941e-08, "epoch": 3.119634703196347, "percentage": 78.03, "elapsed_time": "11:40:01", "remaining_time": "3:17:03"} +{"current_steps": 4271, "total_steps": 5472, "loss": 0.0242, "accuracy": 1.0, "learning_rate": 6.987229931242833e-08, "epoch": 3.120365296803653, "percentage": 78.05, "elapsed_time": "11:40:10", "remaining_time": "3:16:53"} +{"current_steps": 4272, "total_steps": 5472, "loss": 0.024, "accuracy": 1.0, "learning_rate": 6.976172886993942e-08, "epoch": 3.1210958904109587, "percentage": 78.07, "elapsed_time": "11:40:19", "remaining_time": "3:16:43"} +{"current_steps": 4273, "total_steps": 5472, "loss": 0.0373, "accuracy": 1.0, "learning_rate": 6.96512317961219e-08, "epoch": 3.121826484018265, "percentage": 78.09, "elapsed_time": "11:40:28", "remaining_time": "3:16:33"} +{"current_steps": 4274, "total_steps": 5472, "loss": 0.0198, "accuracy": 1.0, "learning_rate": 6.954080813595548e-08, "epoch": 3.122557077625571, "percentage": 78.11, "elapsed_time": "11:40:37", "remaining_time": "3:16:22"} +{"current_steps": 4275, "total_steps": 5472, "loss": 0.035, "accuracy": 1.0, "learning_rate": 6.943045793438942e-08, "epoch": 3.1232876712328768, "percentage": 78.12, "elapsed_time": "11:40:45", "remaining_time": "3:16:12"} +{"current_steps": 4276, "total_steps": 5472, "loss": 0.0249, "accuracy": 1.0, "learning_rate": 6.932018123634367e-08, "epoch": 3.1240182648401826, "percentage": 78.14, "elapsed_time": "11:40:58", "remaining_time": "3:16:03"} +{"current_steps": 4277, "total_steps": 5472, "loss": 0.0399, "accuracy": 1.0, "learning_rate": 6.920997808670786e-08, "epoch": 3.1247488584474885, "percentage": 78.16, "elapsed_time": "11:41:07", "remaining_time": "3:15:53"} +{"current_steps": 4278, "total_steps": 5472, "loss": 0.0195, "accuracy": 1.0, "learning_rate": 6.909984853034192e-08, "epoch": 3.1254794520547944, "percentage": 78.18, "elapsed_time": "11:41:18", "remaining_time": "3:15:44"} +{"current_steps": 4279, "total_steps": 5472, "loss": 0.0251, "accuracy": 1.0, "learning_rate": 6.898979261207572e-08, "epoch": 3.1262100456621003, "percentage": 78.2, "elapsed_time": "11:41:27", "remaining_time": "3:15:34"} +{"current_steps": 4280, "total_steps": 5472, "loss": 0.0255, "accuracy": 1.0, "learning_rate": 6.887981037670904e-08, "epoch": 3.1269406392694066, "percentage": 78.22, "elapsed_time": "11:41:37", "remaining_time": "3:15:24"} +{"current_steps": 4281, "total_steps": 5472, "loss": 0.0295, "accuracy": 1.0, "learning_rate": 6.876990186901197e-08, "epoch": 3.1276712328767124, "percentage": 78.23, "elapsed_time": "11:41:46", "remaining_time": "3:15:14"} +{"current_steps": 4282, "total_steps": 5472, "loss": 0.0291, "accuracy": 1.0, "learning_rate": 6.866006713372419e-08, "epoch": 3.1284018264840183, "percentage": 78.25, "elapsed_time": "11:41:55", "remaining_time": "3:15:04"} +{"current_steps": 4283, "total_steps": 5472, "loss": 0.026, "accuracy": 1.0, "learning_rate": 6.855030621555576e-08, "epoch": 3.129132420091324, "percentage": 78.27, "elapsed_time": "11:42:05", "remaining_time": "3:14:54"} +{"current_steps": 4284, "total_steps": 5472, "loss": 0.0396, "accuracy": 1.0, "learning_rate": 6.844061915918644e-08, "epoch": 3.12986301369863, "percentage": 78.29, "elapsed_time": "11:42:14", "remaining_time": "3:14:44"} +{"current_steps": 4285, "total_steps": 5472, "loss": 0.018, "accuracy": 1.0, "learning_rate": 6.833100600926589e-08, "epoch": 3.130593607305936, "percentage": 78.31, "elapsed_time": "11:42:23", "remaining_time": "3:14:34"} +{"current_steps": 4286, "total_steps": 5472, "loss": 0.0097, "accuracy": 1.0, "learning_rate": 6.822146681041388e-08, "epoch": 3.131324200913242, "percentage": 78.33, "elapsed_time": "11:42:32", "remaining_time": "3:14:24"} +{"current_steps": 4287, "total_steps": 5472, "loss": 0.0338, "accuracy": 1.0, "learning_rate": 6.811200160721995e-08, "epoch": 3.132054794520548, "percentage": 78.34, "elapsed_time": "11:42:41", "remaining_time": "3:14:14"} +{"current_steps": 4288, "total_steps": 5472, "loss": 0.0195, "accuracy": 1.0, "learning_rate": 6.800261044424344e-08, "epoch": 3.132785388127854, "percentage": 78.36, "elapsed_time": "11:42:51", "remaining_time": "3:14:04"} +{"current_steps": 4289, "total_steps": 5472, "loss": 0.0107, "accuracy": 1.0, "learning_rate": 6.789329336601382e-08, "epoch": 3.13351598173516, "percentage": 78.38, "elapsed_time": "11:43:02", "remaining_time": "3:13:54"} +{"current_steps": 4290, "total_steps": 5472, "loss": 0.0299, "accuracy": 1.0, "learning_rate": 6.778405041703006e-08, "epoch": 3.1342465753424658, "percentage": 78.4, "elapsed_time": "11:43:11", "remaining_time": "3:13:44"} +{"current_steps": 4291, "total_steps": 5472, "loss": 0.0108, "accuracy": 1.0, "learning_rate": 6.76748816417613e-08, "epoch": 3.1349771689497716, "percentage": 78.42, "elapsed_time": "11:43:22", "remaining_time": "3:13:35"} +{"current_steps": 4292, "total_steps": 5472, "loss": 0.0229, "accuracy": 1.0, "learning_rate": 6.756578708464622e-08, "epoch": 3.1357077625570775, "percentage": 78.44, "elapsed_time": "11:43:31", "remaining_time": "3:13:25"} +{"current_steps": 4293, "total_steps": 5472, "loss": 0.0567, "accuracy": 1.0, "learning_rate": 6.745676679009341e-08, "epoch": 3.1364383561643834, "percentage": 78.45, "elapsed_time": "11:43:40", "remaining_time": "3:13:15"} +{"current_steps": 4294, "total_steps": 5472, "loss": 0.0256, "accuracy": 1.0, "learning_rate": 6.73478208024811e-08, "epoch": 3.1371689497716897, "percentage": 78.47, "elapsed_time": "11:43:50", "remaining_time": "3:13:05"} +{"current_steps": 4295, "total_steps": 5472, "loss": 0.0248, "accuracy": 1.0, "learning_rate": 6.723894916615749e-08, "epoch": 3.1378995433789956, "percentage": 78.49, "elapsed_time": "11:43:59", "remaining_time": "3:12:55"} +{"current_steps": 4296, "total_steps": 5472, "loss": 0.0199, "accuracy": 1.0, "learning_rate": 6.71301519254405e-08, "epoch": 3.1386301369863014, "percentage": 78.51, "elapsed_time": "11:44:10", "remaining_time": "3:12:45"} +{"current_steps": 4297, "total_steps": 5472, "loss": 0.0252, "accuracy": 1.0, "learning_rate": 6.702142912461739e-08, "epoch": 3.1393607305936073, "percentage": 78.53, "elapsed_time": "11:44:18", "remaining_time": "3:12:35"} +{"current_steps": 4298, "total_steps": 5472, "loss": 0.0147, "accuracy": 1.0, "learning_rate": 6.691278080794563e-08, "epoch": 3.140091324200913, "percentage": 78.55, "elapsed_time": "11:44:28", "remaining_time": "3:12:25"} +{"current_steps": 4299, "total_steps": 5472, "loss": 0.0206, "accuracy": 1.0, "learning_rate": 6.680420701965198e-08, "epoch": 3.140821917808219, "percentage": 78.56, "elapsed_time": "11:44:37", "remaining_time": "3:12:15"} +{"current_steps": 4300, "total_steps": 5472, "loss": 0.0171, "accuracy": 1.0, "learning_rate": 6.669570780393316e-08, "epoch": 3.141552511415525, "percentage": 78.58, "elapsed_time": "11:44:46", "remaining_time": "3:12:05"} +{"current_steps": 4301, "total_steps": 5472, "loss": 0.0224, "accuracy": 1.0, "learning_rate": 6.658728320495532e-08, "epoch": 3.1422831050228313, "percentage": 78.6, "elapsed_time": "11:44:55", "remaining_time": "3:11:55"} +{"current_steps": 4302, "total_steps": 5472, "loss": 0.0147, "accuracy": 1.0, "learning_rate": 6.647893326685425e-08, "epoch": 3.143013698630137, "percentage": 78.62, "elapsed_time": "11:45:05", "remaining_time": "3:11:45"} +{"current_steps": 4303, "total_steps": 5472, "loss": 0.0188, "accuracy": 1.0, "learning_rate": 6.63706580337355e-08, "epoch": 3.143744292237443, "percentage": 78.64, "elapsed_time": "11:45:15", "remaining_time": "3:11:35"} +{"current_steps": 4304, "total_steps": 5472, "loss": 0.0165, "accuracy": 1.0, "learning_rate": 6.626245754967403e-08, "epoch": 3.144474885844749, "percentage": 78.65, "elapsed_time": "11:45:25", "remaining_time": "3:11:26"} +{"current_steps": 4305, "total_steps": 5472, "loss": 0.0211, "accuracy": 1.0, "learning_rate": 6.615433185871455e-08, "epoch": 3.1452054794520548, "percentage": 78.67, "elapsed_time": "11:45:35", "remaining_time": "3:11:16"} +{"current_steps": 4306, "total_steps": 5472, "loss": 0.0276, "accuracy": 1.0, "learning_rate": 6.604628100487123e-08, "epoch": 3.1459360730593606, "percentage": 78.69, "elapsed_time": "11:45:44", "remaining_time": "3:11:06"} +{"current_steps": 4307, "total_steps": 5472, "loss": 0.0174, "accuracy": 1.0, "learning_rate": 6.59383050321276e-08, "epoch": 3.1466666666666665, "percentage": 78.71, "elapsed_time": "11:45:55", "remaining_time": "3:10:56"} +{"current_steps": 4308, "total_steps": 5472, "loss": 0.037, "accuracy": 1.0, "learning_rate": 6.583040398443714e-08, "epoch": 3.147397260273973, "percentage": 78.73, "elapsed_time": "11:46:05", "remaining_time": "3:10:46"} +{"current_steps": 4309, "total_steps": 5472, "loss": 0.0274, "accuracy": 1.0, "learning_rate": 6.572257790572247e-08, "epoch": 3.1481278538812787, "percentage": 78.75, "elapsed_time": "11:46:14", "remaining_time": "3:10:36"} +{"current_steps": 4310, "total_steps": 5472, "loss": 0.0263, "accuracy": 1.0, "learning_rate": 6.561482683987577e-08, "epoch": 3.1488584474885846, "percentage": 78.76, "elapsed_time": "11:46:22", "remaining_time": "3:10:26"} +{"current_steps": 4311, "total_steps": 5472, "loss": 0.0256, "accuracy": 1.0, "learning_rate": 6.550715083075867e-08, "epoch": 3.1495890410958904, "percentage": 78.78, "elapsed_time": "11:46:32", "remaining_time": "3:10:16"} +{"current_steps": 4312, "total_steps": 5472, "loss": 0.0211, "accuracy": 1.0, "learning_rate": 6.539954992220234e-08, "epoch": 3.1503196347031963, "percentage": 78.8, "elapsed_time": "11:46:43", "remaining_time": "3:10:07"} +{"current_steps": 4313, "total_steps": 5472, "loss": 0.0287, "accuracy": 1.0, "learning_rate": 6.529202415800752e-08, "epoch": 3.151050228310502, "percentage": 78.82, "elapsed_time": "11:46:52", "remaining_time": "3:09:57"} +{"current_steps": 4314, "total_steps": 5472, "loss": 0.0195, "accuracy": 1.0, "learning_rate": 6.518457358194385e-08, "epoch": 3.151780821917808, "percentage": 78.84, "elapsed_time": "11:47:02", "remaining_time": "3:09:47"} +{"current_steps": 4315, "total_steps": 5472, "loss": 0.027, "accuracy": 1.0, "learning_rate": 6.507719823775094e-08, "epoch": 3.1525114155251144, "percentage": 78.86, "elapsed_time": "11:47:14", "remaining_time": "3:09:38"} +{"current_steps": 4316, "total_steps": 5472, "loss": 0.0371, "accuracy": 1.0, "learning_rate": 6.49698981691373e-08, "epoch": 3.1532420091324203, "percentage": 78.87, "elapsed_time": "11:47:27", "remaining_time": "3:09:29"} +{"current_steps": 4317, "total_steps": 5472, "loss": 0.0356, "accuracy": 1.0, "learning_rate": 6.486267341978124e-08, "epoch": 3.153972602739726, "percentage": 78.89, "elapsed_time": "11:47:35", "remaining_time": "3:09:18"} +{"current_steps": 4318, "total_steps": 5472, "loss": 0.0295, "accuracy": 1.0, "learning_rate": 6.475552403333009e-08, "epoch": 3.154703196347032, "percentage": 78.91, "elapsed_time": "11:47:46", "remaining_time": "3:09:09"} +{"current_steps": 4319, "total_steps": 5472, "loss": 0.0437, "accuracy": 1.0, "learning_rate": 6.464845005340056e-08, "epoch": 3.155433789954338, "percentage": 78.93, "elapsed_time": "11:47:57", "remaining_time": "3:08:59"} +{"current_steps": 4320, "total_steps": 5472, "loss": 0.018, "accuracy": 1.0, "learning_rate": 6.454145152357878e-08, "epoch": 3.1561643835616437, "percentage": 78.95, "elapsed_time": "11:48:07", "remaining_time": "3:08:50"} +{"current_steps": 4321, "total_steps": 5472, "loss": 0.0282, "accuracy": 1.0, "learning_rate": 6.443452848742004e-08, "epoch": 3.1568949771689496, "percentage": 78.97, "elapsed_time": "11:48:18", "remaining_time": "3:08:40"} +{"current_steps": 4322, "total_steps": 5472, "loss": 0.0213, "accuracy": 1.0, "learning_rate": 6.432768098844901e-08, "epoch": 3.157625570776256, "percentage": 78.98, "elapsed_time": "11:48:26", "remaining_time": "3:08:30"} +{"current_steps": 4323, "total_steps": 5472, "loss": 0.0336, "accuracy": 1.0, "learning_rate": 6.422090907015956e-08, "epoch": 3.158356164383562, "percentage": 79.0, "elapsed_time": "11:48:37", "remaining_time": "3:08:20"} +{"current_steps": 4324, "total_steps": 5472, "loss": 0.0265, "accuracy": 1.0, "learning_rate": 6.411421277601468e-08, "epoch": 3.1590867579908677, "percentage": 79.02, "elapsed_time": "11:48:47", "remaining_time": "3:08:10"} +{"current_steps": 4325, "total_steps": 5472, "loss": 0.0451, "accuracy": 1.0, "learning_rate": 6.400759214944682e-08, "epoch": 3.1598173515981736, "percentage": 79.04, "elapsed_time": "11:48:56", "remaining_time": "3:08:00"} +{"current_steps": 4326, "total_steps": 5472, "loss": 0.0384, "accuracy": 1.0, "learning_rate": 6.390104723385744e-08, "epoch": 3.1605479452054794, "percentage": 79.06, "elapsed_time": "11:49:06", "remaining_time": "3:07:50"} +{"current_steps": 4327, "total_steps": 5472, "loss": 0.019, "accuracy": 1.0, "learning_rate": 6.379457807261723e-08, "epoch": 3.1612785388127853, "percentage": 79.08, "elapsed_time": "11:49:15", "remaining_time": "3:07:40"} +{"current_steps": 4328, "total_steps": 5472, "loss": 0.0283, "accuracy": 1.0, "learning_rate": 6.368818470906598e-08, "epoch": 3.162009132420091, "percentage": 79.09, "elapsed_time": "11:49:24", "remaining_time": "3:07:30"} +{"current_steps": 4329, "total_steps": 5472, "loss": 0.0138, "accuracy": 1.0, "learning_rate": 6.358186718651282e-08, "epoch": 3.162739726027397, "percentage": 79.11, "elapsed_time": "11:49:34", "remaining_time": "3:07:21"} +{"current_steps": 4330, "total_steps": 5472, "loss": 0.0251, "accuracy": 1.0, "learning_rate": 6.347562554823574e-08, "epoch": 3.1634703196347034, "percentage": 79.13, "elapsed_time": "11:49:43", "remaining_time": "3:07:11"} +{"current_steps": 4331, "total_steps": 5472, "loss": 0.0276, "accuracy": 1.0, "learning_rate": 6.336945983748212e-08, "epoch": 3.1642009132420092, "percentage": 79.15, "elapsed_time": "11:49:52", "remaining_time": "3:07:00"} +{"current_steps": 4332, "total_steps": 5472, "loss": 0.0269, "accuracy": 1.0, "learning_rate": 6.326337009746826e-08, "epoch": 3.164931506849315, "percentage": 79.17, "elapsed_time": "11:50:01", "remaining_time": "3:06:50"} +{"current_steps": 4333, "total_steps": 5472, "loss": 0.0192, "accuracy": 1.0, "learning_rate": 6.315735637137945e-08, "epoch": 3.165662100456621, "percentage": 79.18, "elapsed_time": "11:50:12", "remaining_time": "3:06:41"} +{"current_steps": 4334, "total_steps": 5472, "loss": 0.0548, "accuracy": 1.0, "learning_rate": 6.305141870237033e-08, "epoch": 3.166392694063927, "percentage": 79.2, "elapsed_time": "11:50:21", "remaining_time": "3:06:31"} +{"current_steps": 4335, "total_steps": 5472, "loss": 0.073, "accuracy": 0.875, "learning_rate": 6.29455571335643e-08, "epoch": 3.1671232876712327, "percentage": 79.22, "elapsed_time": "11:50:31", "remaining_time": "3:06:21"} +{"current_steps": 4336, "total_steps": 5472, "loss": 0.0277, "accuracy": 1.0, "learning_rate": 6.283977170805385e-08, "epoch": 3.1678538812785386, "percentage": 79.24, "elapsed_time": "11:50:40", "remaining_time": "3:06:11"} +{"current_steps": 4337, "total_steps": 5472, "loss": 0.0368, "accuracy": 1.0, "learning_rate": 6.273406246890064e-08, "epoch": 3.168584474885845, "percentage": 79.26, "elapsed_time": "11:50:50", "remaining_time": "3:06:01"} +{"current_steps": 4338, "total_steps": 5472, "loss": 0.0141, "accuracy": 1.0, "learning_rate": 6.262842945913505e-08, "epoch": 3.169315068493151, "percentage": 79.28, "elapsed_time": "11:50:58", "remaining_time": "3:05:51"} +{"current_steps": 4339, "total_steps": 5472, "loss": 0.0306, "accuracy": 1.0, "learning_rate": 6.25228727217568e-08, "epoch": 3.1700456621004567, "percentage": 79.29, "elapsed_time": "11:51:07", "remaining_time": "3:05:41"} +{"current_steps": 4340, "total_steps": 5472, "loss": 0.0359, "accuracy": 0.875, "learning_rate": 6.2417392299734e-08, "epoch": 3.1707762557077626, "percentage": 79.31, "elapsed_time": "11:51:16", "remaining_time": "3:05:31"} +{"current_steps": 4341, "total_steps": 5472, "loss": 0.0393, "accuracy": 1.0, "learning_rate": 6.23119882360042e-08, "epoch": 3.1715068493150684, "percentage": 79.33, "elapsed_time": "11:51:25", "remaining_time": "3:05:21"} +{"current_steps": 4342, "total_steps": 5472, "loss": 0.023, "accuracy": 1.0, "learning_rate": 6.220666057347376e-08, "epoch": 3.1722374429223743, "percentage": 79.35, "elapsed_time": "11:51:36", "remaining_time": "3:05:11"} +{"current_steps": 4343, "total_steps": 5472, "loss": 0.0182, "accuracy": 1.0, "learning_rate": 6.210140935501774e-08, "epoch": 3.17296803652968, "percentage": 79.37, "elapsed_time": "11:51:45", "remaining_time": "3:05:01"} +{"current_steps": 4344, "total_steps": 5472, "loss": 0.0249, "accuracy": 1.0, "learning_rate": 6.199623462348041e-08, "epoch": 3.1736986301369865, "percentage": 79.39, "elapsed_time": "11:51:57", "remaining_time": "3:04:52"} +{"current_steps": 4345, "total_steps": 5472, "loss": 0.0386, "accuracy": 1.0, "learning_rate": 6.189113642167443e-08, "epoch": 3.1744292237442924, "percentage": 79.4, "elapsed_time": "11:52:07", "remaining_time": "3:04:42"} +{"current_steps": 4346, "total_steps": 5472, "loss": 0.0185, "accuracy": 1.0, "learning_rate": 6.178611479238182e-08, "epoch": 3.1751598173515982, "percentage": 79.42, "elapsed_time": "11:52:17", "remaining_time": "3:04:32"} +{"current_steps": 4347, "total_steps": 5472, "loss": 0.0364, "accuracy": 1.0, "learning_rate": 6.168116977835305e-08, "epoch": 3.175890410958904, "percentage": 79.44, "elapsed_time": "11:52:28", "remaining_time": "3:04:23"} +{"current_steps": 4348, "total_steps": 5472, "loss": 0.0214, "accuracy": 1.0, "learning_rate": 6.157630142230765e-08, "epoch": 3.17662100456621, "percentage": 79.46, "elapsed_time": "11:52:37", "remaining_time": "3:04:13"} +{"current_steps": 4349, "total_steps": 5472, "loss": 0.0293, "accuracy": 1.0, "learning_rate": 6.147150976693386e-08, "epoch": 3.177351598173516, "percentage": 79.48, "elapsed_time": "11:52:45", "remaining_time": "3:04:03"} +{"current_steps": 4350, "total_steps": 5472, "loss": 0.0289, "accuracy": 1.0, "learning_rate": 6.136679485488852e-08, "epoch": 3.1780821917808217, "percentage": 79.5, "elapsed_time": "11:52:56", "remaining_time": "3:03:53"} +{"current_steps": 4351, "total_steps": 5472, "loss": 0.0201, "accuracy": 1.0, "learning_rate": 6.126215672879758e-08, "epoch": 3.178812785388128, "percentage": 79.51, "elapsed_time": "11:53:05", "remaining_time": "3:03:43"} +{"current_steps": 4352, "total_steps": 5472, "loss": 0.0664, "accuracy": 1.0, "learning_rate": 6.115759543125551e-08, "epoch": 3.179543378995434, "percentage": 79.53, "elapsed_time": "11:53:14", "remaining_time": "3:03:33"} +{"current_steps": 4353, "total_steps": 5472, "loss": 0.0258, "accuracy": 1.0, "learning_rate": 6.10531110048254e-08, "epoch": 3.18027397260274, "percentage": 79.55, "elapsed_time": "11:53:26", "remaining_time": "3:03:23"} +{"current_steps": 4354, "total_steps": 5472, "loss": 0.0108, "accuracy": 1.0, "learning_rate": 6.094870349203937e-08, "epoch": 3.1810045662100457, "percentage": 79.57, "elapsed_time": "11:53:36", "remaining_time": "3:03:14"} +{"current_steps": 4355, "total_steps": 5472, "loss": 0.0419, "accuracy": 1.0, "learning_rate": 6.084437293539794e-08, "epoch": 3.1817351598173516, "percentage": 79.59, "elapsed_time": "11:53:45", "remaining_time": "3:03:04"} +{"current_steps": 4356, "total_steps": 5472, "loss": 0.0278, "accuracy": 1.0, "learning_rate": 6.074011937737047e-08, "epoch": 3.1824657534246574, "percentage": 79.61, "elapsed_time": "11:53:54", "remaining_time": "3:02:54"} +{"current_steps": 4357, "total_steps": 5472, "loss": 0.019, "accuracy": 1.0, "learning_rate": 6.063594286039495e-08, "epoch": 3.1831963470319633, "percentage": 79.62, "elapsed_time": "11:54:03", "remaining_time": "3:02:44"} +{"current_steps": 4358, "total_steps": 5472, "loss": 0.0279, "accuracy": 1.0, "learning_rate": 6.053184342687786e-08, "epoch": 3.183926940639269, "percentage": 79.64, "elapsed_time": "11:54:13", "remaining_time": "3:02:34"} +{"current_steps": 4359, "total_steps": 5472, "loss": 0.0607, "accuracy": 0.875, "learning_rate": 6.042782111919458e-08, "epoch": 3.1846575342465755, "percentage": 79.66, "elapsed_time": "11:54:23", "remaining_time": "3:02:24"} +{"current_steps": 4360, "total_steps": 5472, "loss": 0.0132, "accuracy": 1.0, "learning_rate": 6.03238759796888e-08, "epoch": 3.1853881278538814, "percentage": 79.68, "elapsed_time": "11:54:33", "remaining_time": "3:02:14"} +{"current_steps": 4361, "total_steps": 5472, "loss": 0.0276, "accuracy": 1.0, "learning_rate": 6.022000805067312e-08, "epoch": 3.1861187214611872, "percentage": 79.7, "elapsed_time": "11:54:43", "remaining_time": "3:02:04"} +{"current_steps": 4362, "total_steps": 5472, "loss": 0.0231, "accuracy": 1.0, "learning_rate": 6.011621737442827e-08, "epoch": 3.186849315068493, "percentage": 79.71, "elapsed_time": "11:54:51", "remaining_time": "3:01:54"} +{"current_steps": 4363, "total_steps": 5472, "loss": 0.0446, "accuracy": 1.0, "learning_rate": 6.001250399320401e-08, "epoch": 3.187579908675799, "percentage": 79.73, "elapsed_time": "11:55:01", "remaining_time": "3:01:44"} +{"current_steps": 4364, "total_steps": 5472, "loss": 0.042, "accuracy": 1.0, "learning_rate": 5.990886794921827e-08, "epoch": 3.188310502283105, "percentage": 79.75, "elapsed_time": "11:55:12", "remaining_time": "3:01:35"} +{"current_steps": 4365, "total_steps": 5472, "loss": 0.0372, "accuracy": 1.0, "learning_rate": 5.980530928465774e-08, "epoch": 3.1890410958904107, "percentage": 79.77, "elapsed_time": "11:55:21", "remaining_time": "3:01:25"} +{"current_steps": 4366, "total_steps": 5472, "loss": 0.0335, "accuracy": 1.0, "learning_rate": 5.97018280416775e-08, "epoch": 3.189771689497717, "percentage": 79.79, "elapsed_time": "11:55:30", "remaining_time": "3:01:15"} +{"current_steps": 4367, "total_steps": 5472, "loss": 0.0273, "accuracy": 1.0, "learning_rate": 5.959842426240105e-08, "epoch": 3.190502283105023, "percentage": 79.81, "elapsed_time": "11:55:39", "remaining_time": "3:01:05"} +{"current_steps": 4368, "total_steps": 5472, "loss": 0.0247, "accuracy": 1.0, "learning_rate": 5.949509798892058e-08, "epoch": 3.191232876712329, "percentage": 79.82, "elapsed_time": "11:55:50", "remaining_time": "3:00:55"} +{"current_steps": 4369, "total_steps": 5472, "loss": 0.0393, "accuracy": 1.0, "learning_rate": 5.9391849263296434e-08, "epoch": 3.1919634703196347, "percentage": 79.84, "elapsed_time": "11:55:59", "remaining_time": "3:00:45"} +{"current_steps": 4370, "total_steps": 5472, "loss": 0.0431, "accuracy": 1.0, "learning_rate": 5.9288678127557695e-08, "epoch": 3.1926940639269406, "percentage": 79.86, "elapsed_time": "11:56:08", "remaining_time": "3:00:35"} +{"current_steps": 4371, "total_steps": 5472, "loss": 0.0402, "accuracy": 1.0, "learning_rate": 5.918558462370163e-08, "epoch": 3.1934246575342464, "percentage": 79.88, "elapsed_time": "11:56:17", "remaining_time": "3:00:25"} +{"current_steps": 4372, "total_steps": 5472, "loss": 0.0302, "accuracy": 1.0, "learning_rate": 5.908256879369389e-08, "epoch": 3.1941552511415523, "percentage": 79.9, "elapsed_time": "11:56:27", "remaining_time": "3:00:15"} +{"current_steps": 4373, "total_steps": 5472, "loss": 0.0219, "accuracy": 1.0, "learning_rate": 5.897963067946879e-08, "epoch": 3.1948858447488586, "percentage": 79.92, "elapsed_time": "11:56:38", "remaining_time": "3:00:06"} +{"current_steps": 4374, "total_steps": 5472, "loss": 0.0165, "accuracy": 1.0, "learning_rate": 5.8876770322928735e-08, "epoch": 3.1956164383561645, "percentage": 79.93, "elapsed_time": "11:56:48", "remaining_time": "2:59:56"} +{"current_steps": 4375, "total_steps": 5472, "loss": 0.0393, "accuracy": 1.0, "learning_rate": 5.87739877659445e-08, "epoch": 3.1963470319634704, "percentage": 79.95, "elapsed_time": "11:56:57", "remaining_time": "2:59:46"} +{"current_steps": 4376, "total_steps": 5472, "loss": 0.0345, "accuracy": 1.0, "learning_rate": 5.867128305035537e-08, "epoch": 3.1970776255707762, "percentage": 79.97, "elapsed_time": "11:57:07", "remaining_time": "2:59:36"} +{"current_steps": 4377, "total_steps": 5472, "loss": 0.0421, "accuracy": 1.0, "learning_rate": 5.856865621796869e-08, "epoch": 3.197808219178082, "percentage": 79.99, "elapsed_time": "11:57:16", "remaining_time": "2:59:26"} +{"current_steps": 4378, "total_steps": 5472, "loss": 0.0289, "accuracy": 1.0, "learning_rate": 5.846610731056043e-08, "epoch": 3.198538812785388, "percentage": 80.01, "elapsed_time": "11:57:26", "remaining_time": "2:59:16"} +{"current_steps": 4379, "total_steps": 5472, "loss": 0.0273, "accuracy": 1.0, "learning_rate": 5.8363636369874514e-08, "epoch": 3.199269406392694, "percentage": 80.03, "elapsed_time": "11:57:37", "remaining_time": "2:59:07"} +{"current_steps": 4380, "total_steps": 5472, "loss": 0.0158, "accuracy": 1.0, "learning_rate": 5.8261243437623314e-08, "epoch": 3.2, "percentage": 80.04, "elapsed_time": "11:57:46", "remaining_time": "2:58:57"} +{"current_steps": 4381, "total_steps": 5472, "loss": 0.0441, "accuracy": 1.0, "learning_rate": 5.815892855548729e-08, "epoch": 3.200730593607306, "percentage": 80.06, "elapsed_time": "11:57:54", "remaining_time": "2:58:46"} +{"current_steps": 4382, "total_steps": 5472, "loss": 0.0295, "accuracy": 1.0, "learning_rate": 5.8056691765115404e-08, "epoch": 3.201461187214612, "percentage": 80.08, "elapsed_time": "11:58:03", "remaining_time": "2:58:36"} +{"current_steps": 4383, "total_steps": 5472, "loss": 0.0172, "accuracy": 1.0, "learning_rate": 5.795453310812456e-08, "epoch": 3.202191780821918, "percentage": 80.1, "elapsed_time": "11:58:12", "remaining_time": "2:58:26"} +{"current_steps": 4384, "total_steps": 5472, "loss": 0.0141, "accuracy": 1.0, "learning_rate": 5.7852452626099947e-08, "epoch": 3.2029223744292237, "percentage": 80.12, "elapsed_time": "11:58:22", "remaining_time": "2:58:17"} +{"current_steps": 4385, "total_steps": 5472, "loss": 0.0274, "accuracy": 1.0, "learning_rate": 5.775045036059503e-08, "epoch": 3.2036529680365295, "percentage": 80.14, "elapsed_time": "11:58:32", "remaining_time": "2:58:07"} +{"current_steps": 4386, "total_steps": 5472, "loss": 0.0182, "accuracy": 1.0, "learning_rate": 5.764852635313125e-08, "epoch": 3.2043835616438354, "percentage": 80.15, "elapsed_time": "11:58:42", "remaining_time": "2:57:57"} +{"current_steps": 4387, "total_steps": 5472, "loss": 0.0354, "accuracy": 1.0, "learning_rate": 5.7546680645198406e-08, "epoch": 3.2051141552511417, "percentage": 80.17, "elapsed_time": "11:58:51", "remaining_time": "2:57:47"} +{"current_steps": 4388, "total_steps": 5472, "loss": 0.0337, "accuracy": 1.0, "learning_rate": 5.744491327825424e-08, "epoch": 3.2058447488584476, "percentage": 80.19, "elapsed_time": "11:59:00", "remaining_time": "2:57:37"} +{"current_steps": 4389, "total_steps": 5472, "loss": 0.0209, "accuracy": 1.0, "learning_rate": 5.734322429372462e-08, "epoch": 3.2065753424657535, "percentage": 80.21, "elapsed_time": "11:59:11", "remaining_time": "2:57:27"} +{"current_steps": 4390, "total_steps": 5472, "loss": 0.0215, "accuracy": 1.0, "learning_rate": 5.724161373300371e-08, "epoch": 3.2073059360730594, "percentage": 80.23, "elapsed_time": "11:59:20", "remaining_time": "2:57:17"} +{"current_steps": 4391, "total_steps": 5472, "loss": 0.0275, "accuracy": 1.0, "learning_rate": 5.71400816374534e-08, "epoch": 3.2080365296803652, "percentage": 80.24, "elapsed_time": "11:59:29", "remaining_time": "2:57:07"} +{"current_steps": 4392, "total_steps": 5472, "loss": 0.0273, "accuracy": 1.0, "learning_rate": 5.703862804840406e-08, "epoch": 3.208767123287671, "percentage": 80.26, "elapsed_time": "11:59:39", "remaining_time": "2:56:57"} +{"current_steps": 4393, "total_steps": 5472, "loss": 0.0227, "accuracy": 1.0, "learning_rate": 5.693725300715377e-08, "epoch": 3.209497716894977, "percentage": 80.28, "elapsed_time": "11:59:49", "remaining_time": "2:56:48"} +{"current_steps": 4394, "total_steps": 5472, "loss": 0.0207, "accuracy": 1.0, "learning_rate": 5.6835956554968674e-08, "epoch": 3.2102283105022833, "percentage": 80.3, "elapsed_time": "11:59:58", "remaining_time": "2:56:38"} +{"current_steps": 4395, "total_steps": 5472, "loss": 0.0295, "accuracy": 1.0, "learning_rate": 5.6734738733083154e-08, "epoch": 3.210958904109589, "percentage": 80.32, "elapsed_time": "12:00:07", "remaining_time": "2:56:28"} +{"current_steps": 4396, "total_steps": 5472, "loss": 0.0212, "accuracy": 1.0, "learning_rate": 5.6633599582699366e-08, "epoch": 3.211689497716895, "percentage": 80.34, "elapsed_time": "12:00:18", "remaining_time": "2:56:18"} +{"current_steps": 4397, "total_steps": 5472, "loss": 0.0305, "accuracy": 1.0, "learning_rate": 5.653253914498751e-08, "epoch": 3.212420091324201, "percentage": 80.35, "elapsed_time": "12:00:29", "remaining_time": "2:56:08"} +{"current_steps": 4398, "total_steps": 5472, "loss": 0.0205, "accuracy": 1.0, "learning_rate": 5.643155746108566e-08, "epoch": 3.213150684931507, "percentage": 80.37, "elapsed_time": "12:00:38", "remaining_time": "2:55:58"} +{"current_steps": 4399, "total_steps": 5472, "loss": 0.0214, "accuracy": 1.0, "learning_rate": 5.633065457210007e-08, "epoch": 3.2138812785388127, "percentage": 80.39, "elapsed_time": "12:00:46", "remaining_time": "2:55:48"} +{"current_steps": 4400, "total_steps": 5472, "loss": 0.0507, "accuracy": 0.875, "learning_rate": 5.622983051910465e-08, "epoch": 3.2146118721461185, "percentage": 80.41, "elapsed_time": "12:00:55", "remaining_time": "2:55:38"} +{"current_steps": 4401, "total_steps": 5472, "loss": 0.0476, "accuracy": 1.0, "learning_rate": 5.6129085343141315e-08, "epoch": 3.215342465753425, "percentage": 80.43, "elapsed_time": "12:01:04", "remaining_time": "2:55:28"} +{"current_steps": 4402, "total_steps": 5472, "loss": 0.0323, "accuracy": 1.0, "learning_rate": 5.602841908522002e-08, "epoch": 3.2160730593607307, "percentage": 80.45, "elapsed_time": "12:01:13", "remaining_time": "2:55:18"} +{"current_steps": 4403, "total_steps": 5472, "loss": 0.0195, "accuracy": 1.0, "learning_rate": 5.59278317863183e-08, "epoch": 3.2168036529680366, "percentage": 80.46, "elapsed_time": "12:01:22", "remaining_time": "2:55:08"} +{"current_steps": 4404, "total_steps": 5472, "loss": 0.0472, "accuracy": 1.0, "learning_rate": 5.582732348738184e-08, "epoch": 3.2175342465753425, "percentage": 80.48, "elapsed_time": "12:01:31", "remaining_time": "2:54:58"} +{"current_steps": 4405, "total_steps": 5472, "loss": 0.0121, "accuracy": 1.0, "learning_rate": 5.5726894229324e-08, "epoch": 3.2182648401826484, "percentage": 80.5, "elapsed_time": "12:01:42", "remaining_time": "2:54:48"} +{"current_steps": 4406, "total_steps": 5472, "loss": 0.0187, "accuracy": 1.0, "learning_rate": 5.562654405302594e-08, "epoch": 3.2189954337899542, "percentage": 80.52, "elapsed_time": "12:01:53", "remaining_time": "2:54:39"} +{"current_steps": 4407, "total_steps": 5472, "loss": 0.0338, "accuracy": 1.0, "learning_rate": 5.552627299933682e-08, "epoch": 3.21972602739726, "percentage": 80.54, "elapsed_time": "12:02:03", "remaining_time": "2:54:29"} +{"current_steps": 4408, "total_steps": 5472, "loss": 0.0325, "accuracy": 1.0, "learning_rate": 5.542608110907332e-08, "epoch": 3.2204566210045664, "percentage": 80.56, "elapsed_time": "12:02:12", "remaining_time": "2:54:19"} +{"current_steps": 4409, "total_steps": 5472, "loss": 0.0235, "accuracy": 1.0, "learning_rate": 5.5325968423020256e-08, "epoch": 3.2211872146118723, "percentage": 80.57, "elapsed_time": "12:02:20", "remaining_time": "2:54:09"} +{"current_steps": 4410, "total_steps": 5472, "loss": 0.0149, "accuracy": 1.0, "learning_rate": 5.522593498192971e-08, "epoch": 3.221917808219178, "percentage": 80.59, "elapsed_time": "12:02:30", "remaining_time": "2:53:59"} +{"current_steps": 4411, "total_steps": 5472, "loss": 0.0333, "accuracy": 1.0, "learning_rate": 5.5125980826521926e-08, "epoch": 3.222648401826484, "percentage": 80.61, "elapsed_time": "12:02:39", "remaining_time": "2:53:49"} +{"current_steps": 4412, "total_steps": 5472, "loss": 0.0171, "accuracy": 1.0, "learning_rate": 5.5026105997484775e-08, "epoch": 3.22337899543379, "percentage": 80.63, "elapsed_time": "12:02:49", "remaining_time": "2:53:39"} +{"current_steps": 4413, "total_steps": 5472, "loss": 0.0212, "accuracy": 1.0, "learning_rate": 5.492631053547375e-08, "epoch": 3.224109589041096, "percentage": 80.65, "elapsed_time": "12:02:59", "remaining_time": "2:53:30"} +{"current_steps": 4414, "total_steps": 5472, "loss": 0.0262, "accuracy": 1.0, "learning_rate": 5.482659448111207e-08, "epoch": 3.2248401826484017, "percentage": 80.67, "elapsed_time": "12:03:09", "remaining_time": "2:53:20"} +{"current_steps": 4415, "total_steps": 5472, "loss": 0.0397, "accuracy": 1.0, "learning_rate": 5.47269578749906e-08, "epoch": 3.225570776255708, "percentage": 80.68, "elapsed_time": "12:03:19", "remaining_time": "2:53:10"} +{"current_steps": 4416, "total_steps": 5472, "loss": 0.0325, "accuracy": 1.0, "learning_rate": 5.462740075766797e-08, "epoch": 3.226301369863014, "percentage": 80.7, "elapsed_time": "12:03:27", "remaining_time": "2:53:00"} +{"current_steps": 4417, "total_steps": 5472, "loss": 0.0196, "accuracy": 1.0, "learning_rate": 5.4527923169670337e-08, "epoch": 3.2270319634703197, "percentage": 80.72, "elapsed_time": "12:03:37", "remaining_time": "2:52:50"} +{"current_steps": 4418, "total_steps": 5472, "loss": 0.0339, "accuracy": 1.0, "learning_rate": 5.44285251514916e-08, "epoch": 3.2277625570776256, "percentage": 80.74, "elapsed_time": "12:03:46", "remaining_time": "2:52:40"} +{"current_steps": 4419, "total_steps": 5472, "loss": 0.037, "accuracy": 1.0, "learning_rate": 5.4329206743593174e-08, "epoch": 3.2284931506849315, "percentage": 80.76, "elapsed_time": "12:03:55", "remaining_time": "2:52:30"} +{"current_steps": 4420, "total_steps": 5472, "loss": 0.0172, "accuracy": 1.0, "learning_rate": 5.4229967986404e-08, "epoch": 3.2292237442922374, "percentage": 80.77, "elapsed_time": "12:04:05", "remaining_time": "2:52:20"} +{"current_steps": 4421, "total_steps": 5472, "loss": 0.0171, "accuracy": 1.0, "learning_rate": 5.413080892032085e-08, "epoch": 3.2299543378995432, "percentage": 80.79, "elapsed_time": "12:04:15", "remaining_time": "2:52:10"} +{"current_steps": 4422, "total_steps": 5472, "loss": 0.0165, "accuracy": 1.0, "learning_rate": 5.4031729585707845e-08, "epoch": 3.2306849315068495, "percentage": 80.81, "elapsed_time": "12:04:25", "remaining_time": "2:52:00"} +{"current_steps": 4423, "total_steps": 5472, "loss": 0.0212, "accuracy": 1.0, "learning_rate": 5.393273002289658e-08, "epoch": 3.2314155251141554, "percentage": 80.83, "elapsed_time": "12:04:35", "remaining_time": "2:51:50"} +{"current_steps": 4424, "total_steps": 5472, "loss": 0.0387, "accuracy": 1.0, "learning_rate": 5.383381027218648e-08, "epoch": 3.2321461187214613, "percentage": 80.85, "elapsed_time": "12:04:45", "remaining_time": "2:51:41"} +{"current_steps": 4425, "total_steps": 5472, "loss": 0.0291, "accuracy": 1.0, "learning_rate": 5.373497037384417e-08, "epoch": 3.232876712328767, "percentage": 80.87, "elapsed_time": "12:04:56", "remaining_time": "2:51:31"} +{"current_steps": 4426, "total_steps": 5472, "loss": 0.0248, "accuracy": 1.0, "learning_rate": 5.363621036810406e-08, "epoch": 3.233607305936073, "percentage": 80.88, "elapsed_time": "12:05:06", "remaining_time": "2:51:21"} +{"current_steps": 4427, "total_steps": 5472, "loss": 0.0395, "accuracy": 1.0, "learning_rate": 5.3537530295167664e-08, "epoch": 3.234337899543379, "percentage": 80.9, "elapsed_time": "12:05:15", "remaining_time": "2:51:11"} +{"current_steps": 4428, "total_steps": 5472, "loss": 0.0148, "accuracy": 1.0, "learning_rate": 5.343893019520429e-08, "epoch": 3.235068493150685, "percentage": 80.92, "elapsed_time": "12:05:27", "remaining_time": "2:51:02"} +{"current_steps": 4429, "total_steps": 5472, "loss": 0.0324, "accuracy": 1.0, "learning_rate": 5.334041010835064e-08, "epoch": 3.2357990867579907, "percentage": 80.94, "elapsed_time": "12:05:38", "remaining_time": "2:50:52"} +{"current_steps": 4430, "total_steps": 5472, "loss": 0.0276, "accuracy": 1.0, "learning_rate": 5.324197007471063e-08, "epoch": 3.236529680365297, "percentage": 80.96, "elapsed_time": "12:05:47", "remaining_time": "2:50:42"} +{"current_steps": 4431, "total_steps": 5472, "loss": 0.0214, "accuracy": 1.0, "learning_rate": 5.314361013435597e-08, "epoch": 3.237260273972603, "percentage": 80.98, "elapsed_time": "12:05:57", "remaining_time": "2:50:33"} +{"current_steps": 4432, "total_steps": 5472, "loss": 0.0156, "accuracy": 1.0, "learning_rate": 5.304533032732528e-08, "epoch": 3.2379908675799087, "percentage": 80.99, "elapsed_time": "12:06:07", "remaining_time": "2:50:23"} +{"current_steps": 4433, "total_steps": 5472, "loss": 0.0246, "accuracy": 1.0, "learning_rate": 5.294713069362497e-08, "epoch": 3.2387214611872146, "percentage": 81.01, "elapsed_time": "12:06:18", "remaining_time": "2:50:13"} +{"current_steps": 4434, "total_steps": 5472, "loss": 0.0223, "accuracy": 1.0, "learning_rate": 5.2849011273228575e-08, "epoch": 3.2394520547945205, "percentage": 81.03, "elapsed_time": "12:06:28", "remaining_time": "2:50:04"} +{"current_steps": 4435, "total_steps": 5472, "loss": 0.0595, "accuracy": 1.0, "learning_rate": 5.2750972106077177e-08, "epoch": 3.2401826484018263, "percentage": 81.05, "elapsed_time": "12:06:38", "remaining_time": "2:49:54"} +{"current_steps": 4436, "total_steps": 5472, "loss": 0.0545, "accuracy": 1.0, "learning_rate": 5.265301323207905e-08, "epoch": 3.2409132420091322, "percentage": 81.07, "elapsed_time": "12:06:47", "remaining_time": "2:49:44"} +{"current_steps": 4437, "total_steps": 5472, "loss": 0.0301, "accuracy": 1.0, "learning_rate": 5.255513469110967e-08, "epoch": 3.2416438356164385, "percentage": 81.09, "elapsed_time": "12:06:56", "remaining_time": "2:49:34"} +{"current_steps": 4438, "total_steps": 5472, "loss": 0.0446, "accuracy": 1.0, "learning_rate": 5.245733652301215e-08, "epoch": 3.2423744292237444, "percentage": 81.1, "elapsed_time": "12:07:07", "remaining_time": "2:49:24"} +{"current_steps": 4439, "total_steps": 5472, "loss": 0.0399, "accuracy": 1.0, "learning_rate": 5.2359618767596594e-08, "epoch": 3.2431050228310503, "percentage": 81.12, "elapsed_time": "12:07:16", "remaining_time": "2:49:14"} +{"current_steps": 4440, "total_steps": 5472, "loss": 0.03, "accuracy": 1.0, "learning_rate": 5.226198146464042e-08, "epoch": 3.243835616438356, "percentage": 81.14, "elapsed_time": "12:07:27", "remaining_time": "2:49:05"} +{"current_steps": 4441, "total_steps": 5472, "loss": 0.0146, "accuracy": 1.0, "learning_rate": 5.2164424653888484e-08, "epoch": 3.244566210045662, "percentage": 81.16, "elapsed_time": "12:07:37", "remaining_time": "2:48:55"} +{"current_steps": 4442, "total_steps": 5472, "loss": 0.0144, "accuracy": 1.0, "learning_rate": 5.206694837505257e-08, "epoch": 3.245296803652968, "percentage": 81.18, "elapsed_time": "12:07:46", "remaining_time": "2:48:45"} +{"current_steps": 4443, "total_steps": 5472, "loss": 0.0257, "accuracy": 1.0, "learning_rate": 5.196955266781203e-08, "epoch": 3.246027397260274, "percentage": 81.2, "elapsed_time": "12:07:57", "remaining_time": "2:48:35"} +{"current_steps": 4444, "total_steps": 5472, "loss": 0.0495, "accuracy": 1.0, "learning_rate": 5.187223757181314e-08, "epoch": 3.24675799086758, "percentage": 81.21, "elapsed_time": "12:08:08", "remaining_time": "2:48:26"} +{"current_steps": 4445, "total_steps": 5472, "loss": 0.0137, "accuracy": 1.0, "learning_rate": 5.177500312666938e-08, "epoch": 3.247488584474886, "percentage": 81.23, "elapsed_time": "12:08:17", "remaining_time": "2:48:16"} +{"current_steps": 4446, "total_steps": 5472, "loss": 0.0169, "accuracy": 1.0, "learning_rate": 5.167784937196165e-08, "epoch": 3.248219178082192, "percentage": 81.25, "elapsed_time": "12:08:27", "remaining_time": "2:48:06"} +{"current_steps": 4447, "total_steps": 5472, "loss": 0.0901, "accuracy": 1.0, "learning_rate": 5.158077634723765e-08, "epoch": 3.2489497716894977, "percentage": 81.27, "elapsed_time": "12:08:36", "remaining_time": "2:47:56"} +{"current_steps": 4448, "total_steps": 5472, "loss": 0.029, "accuracy": 1.0, "learning_rate": 5.148378409201265e-08, "epoch": 3.2496803652968036, "percentage": 81.29, "elapsed_time": "12:08:44", "remaining_time": "2:47:46"} +{"current_steps": 4449, "total_steps": 5472, "loss": 0.0846, "accuracy": 1.0, "learning_rate": 5.138687264576849e-08, "epoch": 3.2504109589041095, "percentage": 81.3, "elapsed_time": "12:08:54", "remaining_time": "2:47:36"} +{"current_steps": 4450, "total_steps": 5472, "loss": 0.0261, "accuracy": 1.0, "learning_rate": 5.1290042047954616e-08, "epoch": 3.2511415525114153, "percentage": 81.32, "elapsed_time": "12:09:03", "remaining_time": "2:47:26"} +{"current_steps": 4451, "total_steps": 5472, "loss": 0.013, "accuracy": 1.0, "learning_rate": 5.1193292337987276e-08, "epoch": 3.251872146118721, "percentage": 81.34, "elapsed_time": "12:09:14", "remaining_time": "2:47:16"} +{"current_steps": 4452, "total_steps": 5472, "loss": 0.0242, "accuracy": 1.0, "learning_rate": 5.109662355524996e-08, "epoch": 3.2526027397260275, "percentage": 81.36, "elapsed_time": "12:09:23", "remaining_time": "2:47:06"} +{"current_steps": 4453, "total_steps": 5472, "loss": 0.0181, "accuracy": 1.0, "learning_rate": 5.100003573909309e-08, "epoch": 3.2533333333333334, "percentage": 81.38, "elapsed_time": "12:09:32", "remaining_time": "2:46:56"} +{"current_steps": 4454, "total_steps": 5472, "loss": 0.0352, "accuracy": 1.0, "learning_rate": 5.090352892883412e-08, "epoch": 3.2540639269406393, "percentage": 81.4, "elapsed_time": "12:09:41", "remaining_time": "2:46:46"} +{"current_steps": 4455, "total_steps": 5472, "loss": 0.0233, "accuracy": 1.0, "learning_rate": 5.080710316375769e-08, "epoch": 3.254794520547945, "percentage": 81.41, "elapsed_time": "12:09:50", "remaining_time": "2:46:36"} +{"current_steps": 4456, "total_steps": 5472, "loss": 0.0168, "accuracy": 1.0, "learning_rate": 5.071075848311523e-08, "epoch": 3.255525114155251, "percentage": 81.43, "elapsed_time": "12:10:01", "remaining_time": "2:46:27"} +{"current_steps": 4457, "total_steps": 5472, "loss": 0.0134, "accuracy": 1.0, "learning_rate": 5.061449492612541e-08, "epoch": 3.256255707762557, "percentage": 81.45, "elapsed_time": "12:10:10", "remaining_time": "2:46:17"} +{"current_steps": 4458, "total_steps": 5472, "loss": 0.0257, "accuracy": 1.0, "learning_rate": 5.051831253197364e-08, "epoch": 3.256986301369863, "percentage": 81.47, "elapsed_time": "12:10:19", "remaining_time": "2:46:06"} +{"current_steps": 4459, "total_steps": 5472, "loss": 0.0141, "accuracy": 1.0, "learning_rate": 5.042221133981239e-08, "epoch": 3.257716894977169, "percentage": 81.49, "elapsed_time": "12:10:28", "remaining_time": "2:45:57"} +{"current_steps": 4460, "total_steps": 5472, "loss": 0.0293, "accuracy": 1.0, "learning_rate": 5.032619138876118e-08, "epoch": 3.258447488584475, "percentage": 81.51, "elapsed_time": "12:10:37", "remaining_time": "2:45:47"} +{"current_steps": 4461, "total_steps": 5472, "loss": 0.0263, "accuracy": 1.0, "learning_rate": 5.023025271790629e-08, "epoch": 3.259178082191781, "percentage": 81.52, "elapsed_time": "12:10:46", "remaining_time": "2:45:37"} +{"current_steps": 4462, "total_steps": 5472, "loss": 0.0258, "accuracy": 1.0, "learning_rate": 5.013439536630099e-08, "epoch": 3.2599086757990867, "percentage": 81.54, "elapsed_time": "12:10:59", "remaining_time": "2:45:27"} +{"current_steps": 4463, "total_steps": 5472, "loss": 0.0296, "accuracy": 1.0, "learning_rate": 5.0038619372965385e-08, "epoch": 3.2606392694063926, "percentage": 81.56, "elapsed_time": "12:11:08", "remaining_time": "2:45:17"} +{"current_steps": 4464, "total_steps": 5472, "loss": 0.0116, "accuracy": 1.0, "learning_rate": 4.994292477688658e-08, "epoch": 3.2613698630136985, "percentage": 81.58, "elapsed_time": "12:11:18", "remaining_time": "2:45:08"} +{"current_steps": 4465, "total_steps": 5472, "loss": 0.0148, "accuracy": 1.0, "learning_rate": 4.984731161701855e-08, "epoch": 3.2621004566210043, "percentage": 81.6, "elapsed_time": "12:11:28", "remaining_time": "2:44:58"} +{"current_steps": 4466, "total_steps": 5472, "loss": 0.0423, "accuracy": 1.0, "learning_rate": 4.9751779932281996e-08, "epoch": 3.2628310502283107, "percentage": 81.62, "elapsed_time": "12:11:39", "remaining_time": "2:44:48"} +{"current_steps": 4467, "total_steps": 5472, "loss": 0.0397, "accuracy": 1.0, "learning_rate": 4.965632976156448e-08, "epoch": 3.2635616438356165, "percentage": 81.63, "elapsed_time": "12:11:48", "remaining_time": "2:44:38"} +{"current_steps": 4468, "total_steps": 5472, "loss": 0.0329, "accuracy": 1.0, "learning_rate": 4.956096114372038e-08, "epoch": 3.2642922374429224, "percentage": 81.65, "elapsed_time": "12:11:57", "remaining_time": "2:44:28"} +{"current_steps": 4469, "total_steps": 5472, "loss": 0.0375, "accuracy": 1.0, "learning_rate": 4.946567411757105e-08, "epoch": 3.2650228310502283, "percentage": 81.67, "elapsed_time": "12:12:07", "remaining_time": "2:44:18"} +{"current_steps": 4470, "total_steps": 5472, "loss": 0.0254, "accuracy": 1.0, "learning_rate": 4.93704687219044e-08, "epoch": 3.265753424657534, "percentage": 81.69, "elapsed_time": "12:12:15", "remaining_time": "2:44:08"} +{"current_steps": 4471, "total_steps": 5472, "loss": 0.0228, "accuracy": 1.0, "learning_rate": 4.9275344995475173e-08, "epoch": 3.26648401826484, "percentage": 81.71, "elapsed_time": "12:12:25", "remaining_time": "2:43:58"} +{"current_steps": 4472, "total_steps": 5472, "loss": 0.0201, "accuracy": 1.0, "learning_rate": 4.918030297700498e-08, "epoch": 3.267214611872146, "percentage": 81.73, "elapsed_time": "12:12:36", "remaining_time": "2:43:49"} +{"current_steps": 4473, "total_steps": 5472, "loss": 0.05, "accuracy": 1.0, "learning_rate": 4.9085342705181996e-08, "epoch": 3.267945205479452, "percentage": 81.74, "elapsed_time": "12:12:45", "remaining_time": "2:43:39"} +{"current_steps": 4474, "total_steps": 5472, "loss": 0.0498, "accuracy": 1.0, "learning_rate": 4.899046421866135e-08, "epoch": 3.268675799086758, "percentage": 81.76, "elapsed_time": "12:12:53", "remaining_time": "2:43:29"} +{"current_steps": 4475, "total_steps": 5472, "loss": 0.0358, "accuracy": 1.0, "learning_rate": 4.889566755606464e-08, "epoch": 3.269406392694064, "percentage": 81.78, "elapsed_time": "12:13:04", "remaining_time": "2:43:19"} +{"current_steps": 4476, "total_steps": 5472, "loss": 0.0267, "accuracy": 1.0, "learning_rate": 4.8800952755980227e-08, "epoch": 3.27013698630137, "percentage": 81.8, "elapsed_time": "12:13:14", "remaining_time": "2:43:09"} +{"current_steps": 4477, "total_steps": 5472, "loss": 0.0205, "accuracy": 1.0, "learning_rate": 4.87063198569633e-08, "epoch": 3.2708675799086757, "percentage": 81.82, "elapsed_time": "12:13:24", "remaining_time": "2:42:59"} +{"current_steps": 4478, "total_steps": 5472, "loss": 0.0244, "accuracy": 1.0, "learning_rate": 4.861176889753543e-08, "epoch": 3.2715981735159816, "percentage": 81.83, "elapsed_time": "12:13:34", "remaining_time": "2:42:50"} +{"current_steps": 4479, "total_steps": 5472, "loss": 0.0475, "accuracy": 1.0, "learning_rate": 4.851729991618525e-08, "epoch": 3.2723287671232875, "percentage": 81.85, "elapsed_time": "12:13:43", "remaining_time": "2:42:40"} +{"current_steps": 4480, "total_steps": 5472, "loss": 0.0333, "accuracy": 1.0, "learning_rate": 4.842291295136747e-08, "epoch": 3.273059360730594, "percentage": 81.87, "elapsed_time": "12:13:52", "remaining_time": "2:42:30"} +{"current_steps": 4481, "total_steps": 5472, "loss": 0.0279, "accuracy": 1.0, "learning_rate": 4.832860804150382e-08, "epoch": 3.2737899543378997, "percentage": 81.89, "elapsed_time": "12:14:02", "remaining_time": "2:42:20"} +{"current_steps": 4482, "total_steps": 5472, "loss": 0.033, "accuracy": 1.0, "learning_rate": 4.8234385224982606e-08, "epoch": 3.2745205479452055, "percentage": 81.91, "elapsed_time": "12:14:11", "remaining_time": "2:42:10"} +{"current_steps": 4483, "total_steps": 5472, "loss": 0.0136, "accuracy": 1.0, "learning_rate": 4.814024454015858e-08, "epoch": 3.2752511415525114, "percentage": 81.93, "elapsed_time": "12:14:20", "remaining_time": "2:42:00"} +{"current_steps": 4484, "total_steps": 5472, "loss": 0.0406, "accuracy": 1.0, "learning_rate": 4.804618602535307e-08, "epoch": 3.2759817351598173, "percentage": 81.94, "elapsed_time": "12:14:30", "remaining_time": "2:41:50"} +{"current_steps": 4485, "total_steps": 5472, "loss": 0.028, "accuracy": 1.0, "learning_rate": 4.795220971885394e-08, "epoch": 3.276712328767123, "percentage": 81.96, "elapsed_time": "12:14:39", "remaining_time": "2:41:40"} +{"current_steps": 4486, "total_steps": 5472, "loss": 0.0227, "accuracy": 1.0, "learning_rate": 4.785831565891579e-08, "epoch": 3.277442922374429, "percentage": 81.98, "elapsed_time": "12:14:50", "remaining_time": "2:41:30"} +{"current_steps": 4487, "total_steps": 5472, "loss": 0.022, "accuracy": 1.0, "learning_rate": 4.776450388375952e-08, "epoch": 3.2781735159817353, "percentage": 82.0, "elapsed_time": "12:14:59", "remaining_time": "2:41:20"} +{"current_steps": 4488, "total_steps": 5472, "loss": 0.0336, "accuracy": 1.0, "learning_rate": 4.767077443157258e-08, "epoch": 3.278904109589041, "percentage": 82.02, "elapsed_time": "12:15:09", "remaining_time": "2:41:10"} +{"current_steps": 4489, "total_steps": 5472, "loss": 0.0111, "accuracy": 1.0, "learning_rate": 4.7577127340509006e-08, "epoch": 3.279634703196347, "percentage": 82.04, "elapsed_time": "12:15:19", "remaining_time": "2:41:01"} +{"current_steps": 4490, "total_steps": 5472, "loss": 0.0245, "accuracy": 1.0, "learning_rate": 4.7483562648689134e-08, "epoch": 3.280365296803653, "percentage": 82.05, "elapsed_time": "12:15:28", "remaining_time": "2:40:51"} +{"current_steps": 4491, "total_steps": 5472, "loss": 0.0199, "accuracy": 1.0, "learning_rate": 4.7390080394200003e-08, "epoch": 3.281095890410959, "percentage": 82.07, "elapsed_time": "12:15:39", "remaining_time": "2:40:41"} +{"current_steps": 4492, "total_steps": 5472, "loss": 0.024, "accuracy": 1.0, "learning_rate": 4.7296680615094925e-08, "epoch": 3.2818264840182647, "percentage": 82.09, "elapsed_time": "12:15:49", "remaining_time": "2:40:31"} +{"current_steps": 4493, "total_steps": 5472, "loss": 0.0246, "accuracy": 1.0, "learning_rate": 4.7203363349393536e-08, "epoch": 3.2825570776255706, "percentage": 82.11, "elapsed_time": "12:15:57", "remaining_time": "2:40:21"} +{"current_steps": 4494, "total_steps": 5472, "loss": 0.0357, "accuracy": 1.0, "learning_rate": 4.711012863508218e-08, "epoch": 3.283287671232877, "percentage": 82.13, "elapsed_time": "12:16:07", "remaining_time": "2:40:11"} +{"current_steps": 4495, "total_steps": 5472, "loss": 0.0255, "accuracy": 1.0, "learning_rate": 4.7016976510113326e-08, "epoch": 3.2840182648401828, "percentage": 82.15, "elapsed_time": "12:16:15", "remaining_time": "2:40:01"} +{"current_steps": 4496, "total_steps": 5472, "loss": 0.0194, "accuracy": 1.0, "learning_rate": 4.692390701240612e-08, "epoch": 3.2847488584474887, "percentage": 82.16, "elapsed_time": "12:16:25", "remaining_time": "2:39:51"} +{"current_steps": 4497, "total_steps": 5472, "loss": 0.0178, "accuracy": 1.0, "learning_rate": 4.683092017984561e-08, "epoch": 3.2854794520547945, "percentage": 82.18, "elapsed_time": "12:16:35", "remaining_time": "2:39:42"} +{"current_steps": 4498, "total_steps": 5472, "loss": 0.0415, "accuracy": 1.0, "learning_rate": 4.673801605028357e-08, "epoch": 3.2862100456621004, "percentage": 82.2, "elapsed_time": "12:16:47", "remaining_time": "2:39:32"} +{"current_steps": 4499, "total_steps": 5472, "loss": 0.0315, "accuracy": 1.0, "learning_rate": 4.664519466153816e-08, "epoch": 3.2869406392694063, "percentage": 82.22, "elapsed_time": "12:16:56", "remaining_time": "2:39:22"} +{"current_steps": 4500, "total_steps": 5472, "loss": 0.0251, "accuracy": 1.0, "learning_rate": 4.655245605139357e-08, "epoch": 3.287671232876712, "percentage": 82.24, "elapsed_time": "12:17:06", "remaining_time": "2:39:13"} +{"current_steps": 4501, "total_steps": 5472, "loss": 0.0326, "accuracy": 1.0, "learning_rate": 4.6459800257600463e-08, "epoch": 3.2884018264840185, "percentage": 82.26, "elapsed_time": "12:17:15", "remaining_time": "2:39:03"} +{"current_steps": 4502, "total_steps": 5472, "loss": 0.0474, "accuracy": 1.0, "learning_rate": 4.636722731787568e-08, "epoch": 3.2891324200913243, "percentage": 82.27, "elapsed_time": "12:17:25", "remaining_time": "2:38:53"} +{"current_steps": 4503, "total_steps": 5472, "loss": 0.0291, "accuracy": 1.0, "learning_rate": 4.627473726990255e-08, "epoch": 3.28986301369863, "percentage": 82.29, "elapsed_time": "12:17:34", "remaining_time": "2:38:43"} +{"current_steps": 4504, "total_steps": 5472, "loss": 0.0456, "accuracy": 1.0, "learning_rate": 4.618233015133041e-08, "epoch": 3.290593607305936, "percentage": 82.31, "elapsed_time": "12:17:43", "remaining_time": "2:38:33"} +{"current_steps": 4505, "total_steps": 5472, "loss": 0.0297, "accuracy": 1.0, "learning_rate": 4.609000599977505e-08, "epoch": 3.291324200913242, "percentage": 82.33, "elapsed_time": "12:17:52", "remaining_time": "2:38:23"} +{"current_steps": 4506, "total_steps": 5472, "loss": 0.0341, "accuracy": 1.0, "learning_rate": 4.5997764852818364e-08, "epoch": 3.292054794520548, "percentage": 82.35, "elapsed_time": "12:18:01", "remaining_time": "2:38:13"} +{"current_steps": 4507, "total_steps": 5472, "loss": 0.0193, "accuracy": 1.0, "learning_rate": 4.590560674800839e-08, "epoch": 3.2927853881278537, "percentage": 82.36, "elapsed_time": "12:18:11", "remaining_time": "2:38:03"} +{"current_steps": 4508, "total_steps": 5472, "loss": 0.0333, "accuracy": 1.0, "learning_rate": 4.581353172285959e-08, "epoch": 3.29351598173516, "percentage": 82.38, "elapsed_time": "12:18:20", "remaining_time": "2:37:53"} +{"current_steps": 4509, "total_steps": 5472, "loss": 0.0235, "accuracy": 1.0, "learning_rate": 4.572153981485244e-08, "epoch": 3.294246575342466, "percentage": 82.4, "elapsed_time": "12:18:30", "remaining_time": "2:37:43"} +{"current_steps": 4510, "total_steps": 5472, "loss": 0.0535, "accuracy": 1.0, "learning_rate": 4.56296310614335e-08, "epoch": 3.2949771689497718, "percentage": 82.42, "elapsed_time": "12:18:41", "remaining_time": "2:37:33"} +{"current_steps": 4511, "total_steps": 5472, "loss": 0.0294, "accuracy": 1.0, "learning_rate": 4.5537805500015766e-08, "epoch": 3.2957077625570776, "percentage": 82.44, "elapsed_time": "12:18:50", "remaining_time": "2:37:23"} +{"current_steps": 4512, "total_steps": 5472, "loss": 0.0574, "accuracy": 1.0, "learning_rate": 4.5446063167978054e-08, "epoch": 3.2964383561643835, "percentage": 82.46, "elapsed_time": "12:18:58", "remaining_time": "2:37:13"} +{"current_steps": 4513, "total_steps": 5472, "loss": 0.0288, "accuracy": 1.0, "learning_rate": 4.535440410266564e-08, "epoch": 3.2971689497716894, "percentage": 82.47, "elapsed_time": "12:19:08", "remaining_time": "2:37:03"} +{"current_steps": 4514, "total_steps": 5472, "loss": 0.0358, "accuracy": 1.0, "learning_rate": 4.526282834138945e-08, "epoch": 3.2978995433789953, "percentage": 82.49, "elapsed_time": "12:19:17", "remaining_time": "2:36:53"} +{"current_steps": 4515, "total_steps": 5472, "loss": 0.0158, "accuracy": 1.0, "learning_rate": 4.5171335921426937e-08, "epoch": 3.2986301369863016, "percentage": 82.51, "elapsed_time": "12:19:26", "remaining_time": "2:36:43"} +{"current_steps": 4516, "total_steps": 5472, "loss": 0.0188, "accuracy": 1.0, "learning_rate": 4.507992688002138e-08, "epoch": 3.2993607305936075, "percentage": 82.53, "elapsed_time": "12:19:35", "remaining_time": "2:36:33"} +{"current_steps": 4517, "total_steps": 5472, "loss": 0.0154, "accuracy": 1.0, "learning_rate": 4.4988601254382194e-08, "epoch": 3.3000913242009133, "percentage": 82.55, "elapsed_time": "12:19:45", "remaining_time": "2:36:24"} +{"current_steps": 4518, "total_steps": 5472, "loss": 0.0188, "accuracy": 1.0, "learning_rate": 4.489735908168502e-08, "epoch": 3.300821917808219, "percentage": 82.57, "elapsed_time": "12:19:55", "remaining_time": "2:36:14"} +{"current_steps": 4519, "total_steps": 5472, "loss": 0.0185, "accuracy": 1.0, "learning_rate": 4.4806200399071045e-08, "epoch": 3.301552511415525, "percentage": 82.58, "elapsed_time": "12:20:03", "remaining_time": "2:36:04"} +{"current_steps": 4520, "total_steps": 5472, "loss": 0.0208, "accuracy": 1.0, "learning_rate": 4.471512524364795e-08, "epoch": 3.302283105022831, "percentage": 82.6, "elapsed_time": "12:20:14", "remaining_time": "2:35:54"} +{"current_steps": 4521, "total_steps": 5472, "loss": 0.0513, "accuracy": 1.0, "learning_rate": 4.462413365248913e-08, "epoch": 3.303013698630137, "percentage": 82.62, "elapsed_time": "12:20:23", "remaining_time": "2:35:44"} +{"current_steps": 4522, "total_steps": 5472, "loss": 0.062, "accuracy": 1.0, "learning_rate": 4.453322566263421e-08, "epoch": 3.303744292237443, "percentage": 82.64, "elapsed_time": "12:20:33", "remaining_time": "2:35:34"} +{"current_steps": 4523, "total_steps": 5472, "loss": 0.0417, "accuracy": 1.0, "learning_rate": 4.4442401311088534e-08, "epoch": 3.304474885844749, "percentage": 82.66, "elapsed_time": "12:20:41", "remaining_time": "2:35:24"} +{"current_steps": 4524, "total_steps": 5472, "loss": 0.025, "accuracy": 1.0, "learning_rate": 4.435166063482348e-08, "epoch": 3.305205479452055, "percentage": 82.68, "elapsed_time": "12:20:50", "remaining_time": "2:35:14"} +{"current_steps": 4525, "total_steps": 5472, "loss": 0.0188, "accuracy": 1.0, "learning_rate": 4.426100367077651e-08, "epoch": 3.3059360730593608, "percentage": 82.69, "elapsed_time": "12:21:00", "remaining_time": "2:35:04"} +{"current_steps": 4526, "total_steps": 5472, "loss": 0.0369, "accuracy": 1.0, "learning_rate": 4.417043045585078e-08, "epoch": 3.3066666666666666, "percentage": 82.71, "elapsed_time": "12:21:09", "remaining_time": "2:34:54"} +{"current_steps": 4527, "total_steps": 5472, "loss": 0.0453, "accuracy": 1.0, "learning_rate": 4.407994102691548e-08, "epoch": 3.3073972602739725, "percentage": 82.73, "elapsed_time": "12:21:20", "remaining_time": "2:34:45"} +{"current_steps": 4528, "total_steps": 5472, "loss": 0.0472, "accuracy": 1.0, "learning_rate": 4.3989535420805776e-08, "epoch": 3.3081278538812784, "percentage": 82.75, "elapsed_time": "12:21:31", "remaining_time": "2:34:35"} +{"current_steps": 4529, "total_steps": 5472, "loss": 0.0128, "accuracy": 1.0, "learning_rate": 4.3899213674322446e-08, "epoch": 3.3088584474885847, "percentage": 82.77, "elapsed_time": "12:21:40", "remaining_time": "2:34:25"} +{"current_steps": 4530, "total_steps": 5472, "loss": 0.0181, "accuracy": 1.0, "learning_rate": 4.380897582423249e-08, "epoch": 3.3095890410958906, "percentage": 82.79, "elapsed_time": "12:21:49", "remaining_time": "2:34:15"} +{"current_steps": 4531, "total_steps": 5472, "loss": 0.0293, "accuracy": 1.0, "learning_rate": 4.371882190726847e-08, "epoch": 3.3103196347031965, "percentage": 82.8, "elapsed_time": "12:21:58", "remaining_time": "2:34:05"} +{"current_steps": 4532, "total_steps": 5472, "loss": 0.0186, "accuracy": 1.0, "learning_rate": 4.362875196012888e-08, "epoch": 3.3110502283105023, "percentage": 82.82, "elapsed_time": "12:22:08", "remaining_time": "2:33:55"} +{"current_steps": 4533, "total_steps": 5472, "loss": 0.039, "accuracy": 1.0, "learning_rate": 4.353876601947801e-08, "epoch": 3.311780821917808, "percentage": 82.84, "elapsed_time": "12:22:18", "remaining_time": "2:33:45"} +{"current_steps": 4534, "total_steps": 5472, "loss": 0.0255, "accuracy": 1.0, "learning_rate": 4.344886412194598e-08, "epoch": 3.312511415525114, "percentage": 82.86, "elapsed_time": "12:22:26", "remaining_time": "2:33:35"} +{"current_steps": 4535, "total_steps": 5472, "loss": 0.0448, "accuracy": 1.0, "learning_rate": 4.335904630412885e-08, "epoch": 3.31324200913242, "percentage": 82.88, "elapsed_time": "12:22:37", "remaining_time": "2:33:26"} +{"current_steps": 4536, "total_steps": 5472, "loss": 0.0208, "accuracy": 1.0, "learning_rate": 4.326931260258806e-08, "epoch": 3.3139726027397263, "percentage": 82.89, "elapsed_time": "12:22:46", "remaining_time": "2:33:16"} +{"current_steps": 4537, "total_steps": 5472, "loss": 0.038, "accuracy": 1.0, "learning_rate": 4.3179663053851233e-08, "epoch": 3.314703196347032, "percentage": 82.91, "elapsed_time": "12:22:55", "remaining_time": "2:33:06"} +{"current_steps": 4538, "total_steps": 5472, "loss": 0.0234, "accuracy": 1.0, "learning_rate": 4.3090097694411406e-08, "epoch": 3.315433789954338, "percentage": 82.93, "elapsed_time": "12:23:04", "remaining_time": "2:32:56"} +{"current_steps": 4539, "total_steps": 5472, "loss": 0.0356, "accuracy": 1.0, "learning_rate": 4.300061656072762e-08, "epoch": 3.316164383561644, "percentage": 82.95, "elapsed_time": "12:23:12", "remaining_time": "2:32:46"} +{"current_steps": 4540, "total_steps": 5472, "loss": 0.028, "accuracy": 1.0, "learning_rate": 4.291121968922448e-08, "epoch": 3.3168949771689498, "percentage": 82.97, "elapsed_time": "12:23:21", "remaining_time": "2:32:36"} +{"current_steps": 4541, "total_steps": 5472, "loss": 0.0316, "accuracy": 1.0, "learning_rate": 4.282190711629219e-08, "epoch": 3.3176255707762556, "percentage": 82.99, "elapsed_time": "12:23:29", "remaining_time": "2:32:25"} +{"current_steps": 4542, "total_steps": 5472, "loss": 0.0254, "accuracy": 1.0, "learning_rate": 4.273267887828694e-08, "epoch": 3.3183561643835615, "percentage": 83.0, "elapsed_time": "12:23:39", "remaining_time": "2:32:16"} +{"current_steps": 4543, "total_steps": 5472, "loss": 0.0329, "accuracy": 1.0, "learning_rate": 4.264353501153026e-08, "epoch": 3.3190867579908674, "percentage": 83.02, "elapsed_time": "12:23:49", "remaining_time": "2:32:06"} +{"current_steps": 4544, "total_steps": 5472, "loss": 0.0227, "accuracy": 1.0, "learning_rate": 4.255447555230962e-08, "epoch": 3.3198173515981737, "percentage": 83.04, "elapsed_time": "12:23:58", "remaining_time": "2:31:56"} +{"current_steps": 4545, "total_steps": 5472, "loss": 0.0373, "accuracy": 0.875, "learning_rate": 4.246550053687795e-08, "epoch": 3.3205479452054796, "percentage": 83.06, "elapsed_time": "12:24:08", "remaining_time": "2:31:46"} +{"current_steps": 4546, "total_steps": 5472, "loss": 0.0338, "accuracy": 1.0, "learning_rate": 4.237661000145376e-08, "epoch": 3.3212785388127855, "percentage": 83.08, "elapsed_time": "12:24:18", "remaining_time": "2:31:36"} +{"current_steps": 4547, "total_steps": 5472, "loss": 0.0116, "accuracy": 1.0, "learning_rate": 4.2287803982221425e-08, "epoch": 3.3220091324200913, "percentage": 83.1, "elapsed_time": "12:24:27", "remaining_time": "2:31:26"} +{"current_steps": 4548, "total_steps": 5472, "loss": 0.023, "accuracy": 1.0, "learning_rate": 4.219908251533066e-08, "epoch": 3.322739726027397, "percentage": 83.11, "elapsed_time": "12:24:37", "remaining_time": "2:31:16"} +{"current_steps": 4549, "total_steps": 5472, "loss": 0.0147, "accuracy": 1.0, "learning_rate": 4.211044563689689e-08, "epoch": 3.323470319634703, "percentage": 83.13, "elapsed_time": "12:24:46", "remaining_time": "2:31:06"} +{"current_steps": 4550, "total_steps": 5472, "loss": 0.0132, "accuracy": 1.0, "learning_rate": 4.2021893383000995e-08, "epoch": 3.324200913242009, "percentage": 83.15, "elapsed_time": "12:24:55", "remaining_time": "2:30:57"} +{"current_steps": 4551, "total_steps": 5472, "loss": 0.0342, "accuracy": 1.0, "learning_rate": 4.1933425789689586e-08, "epoch": 3.324931506849315, "percentage": 83.17, "elapsed_time": "12:25:05", "remaining_time": "2:30:47"} +{"current_steps": 4552, "total_steps": 5472, "loss": 0.0196, "accuracy": 1.0, "learning_rate": 4.184504289297472e-08, "epoch": 3.325662100456621, "percentage": 83.19, "elapsed_time": "12:25:16", "remaining_time": "2:30:37"} +{"current_steps": 4553, "total_steps": 5472, "loss": 0.0288, "accuracy": 1.0, "learning_rate": 4.175674472883392e-08, "epoch": 3.326392694063927, "percentage": 83.21, "elapsed_time": "12:25:25", "remaining_time": "2:30:27"} +{"current_steps": 4554, "total_steps": 5472, "loss": 0.0442, "accuracy": 1.0, "learning_rate": 4.16685313332103e-08, "epoch": 3.327123287671233, "percentage": 83.22, "elapsed_time": "12:25:36", "remaining_time": "2:30:17"} +{"current_steps": 4555, "total_steps": 5472, "loss": 0.0399, "accuracy": 1.0, "learning_rate": 4.158040274201236e-08, "epoch": 3.3278538812785388, "percentage": 83.24, "elapsed_time": "12:25:45", "remaining_time": "2:30:08"} +{"current_steps": 4556, "total_steps": 5472, "loss": 0.0275, "accuracy": 1.0, "learning_rate": 4.149235899111428e-08, "epoch": 3.3285844748858446, "percentage": 83.26, "elapsed_time": "12:25:54", "remaining_time": "2:29:58"} +{"current_steps": 4557, "total_steps": 5472, "loss": 0.0145, "accuracy": 1.0, "learning_rate": 4.140440011635551e-08, "epoch": 3.3293150684931505, "percentage": 83.28, "elapsed_time": "12:26:04", "remaining_time": "2:29:48"} +{"current_steps": 4558, "total_steps": 5472, "loss": 0.0178, "accuracy": 1.0, "learning_rate": 4.131652615354095e-08, "epoch": 3.3300456621004564, "percentage": 83.3, "elapsed_time": "12:26:13", "remaining_time": "2:29:38"} +{"current_steps": 4559, "total_steps": 5472, "loss": 0.0224, "accuracy": 1.0, "learning_rate": 4.122873713844116e-08, "epoch": 3.3307762557077627, "percentage": 83.32, "elapsed_time": "12:26:23", "remaining_time": "2:29:28"} +{"current_steps": 4560, "total_steps": 5472, "loss": 0.0309, "accuracy": 1.0, "learning_rate": 4.1141033106791814e-08, "epoch": 3.3315068493150686, "percentage": 83.33, "elapsed_time": "12:26:32", "remaining_time": "2:29:18"} +{"current_steps": 4561, "total_steps": 5472, "loss": 0.0129, "accuracy": 1.0, "learning_rate": 4.105341409429427e-08, "epoch": 3.3322374429223744, "percentage": 83.35, "elapsed_time": "12:26:43", "remaining_time": "2:29:08"} +{"current_steps": 4562, "total_steps": 5472, "loss": 0.0432, "accuracy": 1.0, "learning_rate": 4.096588013661509e-08, "epoch": 3.3329680365296803, "percentage": 83.37, "elapsed_time": "12:26:51", "remaining_time": "2:28:58"} +{"current_steps": 4563, "total_steps": 5472, "loss": 0.0162, "accuracy": 1.0, "learning_rate": 4.087843126938623e-08, "epoch": 3.333698630136986, "percentage": 83.39, "elapsed_time": "12:27:03", "remaining_time": "2:28:49"} +{"current_steps": 4564, "total_steps": 5472, "loss": 0.0176, "accuracy": 1.0, "learning_rate": 4.0791067528205156e-08, "epoch": 3.334429223744292, "percentage": 83.41, "elapsed_time": "12:27:14", "remaining_time": "2:28:39"} +{"current_steps": 4565, "total_steps": 5472, "loss": 0.0244, "accuracy": 1.0, "learning_rate": 4.0703788948634493e-08, "epoch": 3.335159817351598, "percentage": 83.42, "elapsed_time": "12:27:24", "remaining_time": "2:28:29"} +{"current_steps": 4566, "total_steps": 5472, "loss": 0.0624, "accuracy": 1.0, "learning_rate": 4.0616595566202395e-08, "epoch": 3.3358904109589043, "percentage": 83.44, "elapsed_time": "12:27:33", "remaining_time": "2:28:19"} +{"current_steps": 4567, "total_steps": 5472, "loss": 0.0208, "accuracy": 1.0, "learning_rate": 4.052948741640205e-08, "epoch": 3.33662100456621, "percentage": 83.46, "elapsed_time": "12:27:43", "remaining_time": "2:28:10"} +{"current_steps": 4568, "total_steps": 5472, "loss": 0.0424, "accuracy": 1.0, "learning_rate": 4.04424645346923e-08, "epoch": 3.337351598173516, "percentage": 83.48, "elapsed_time": "12:27:51", "remaining_time": "2:27:59"} +{"current_steps": 4569, "total_steps": 5472, "loss": 0.0344, "accuracy": 1.0, "learning_rate": 4.035552695649696e-08, "epoch": 3.338082191780822, "percentage": 83.5, "elapsed_time": "12:27:59", "remaining_time": "2:27:49"} +{"current_steps": 4570, "total_steps": 5472, "loss": 0.0214, "accuracy": 1.0, "learning_rate": 4.026867471720541e-08, "epoch": 3.3388127853881278, "percentage": 83.52, "elapsed_time": "12:28:08", "remaining_time": "2:27:39"} +{"current_steps": 4571, "total_steps": 5472, "loss": 0.0314, "accuracy": 1.0, "learning_rate": 4.018190785217207e-08, "epoch": 3.3395433789954336, "percentage": 83.53, "elapsed_time": "12:28:17", "remaining_time": "2:27:29"} +{"current_steps": 4572, "total_steps": 5472, "loss": 0.0273, "accuracy": 1.0, "learning_rate": 4.009522639671661e-08, "epoch": 3.3402739726027395, "percentage": 83.55, "elapsed_time": "12:28:26", "remaining_time": "2:27:19"} +{"current_steps": 4573, "total_steps": 5472, "loss": 0.0283, "accuracy": 1.0, "learning_rate": 4.0008630386124177e-08, "epoch": 3.341004566210046, "percentage": 83.57, "elapsed_time": "12:28:35", "remaining_time": "2:27:09"} +{"current_steps": 4574, "total_steps": 5472, "loss": 0.0389, "accuracy": 1.0, "learning_rate": 3.992211985564484e-08, "epoch": 3.3417351598173517, "percentage": 83.59, "elapsed_time": "12:28:45", "remaining_time": "2:27:00"} +{"current_steps": 4575, "total_steps": 5472, "loss": 0.0448, "accuracy": 1.0, "learning_rate": 3.983569484049398e-08, "epoch": 3.3424657534246576, "percentage": 83.61, "elapsed_time": "12:28:54", "remaining_time": "2:26:50"} +{"current_steps": 4576, "total_steps": 5472, "loss": 0.0717, "accuracy": 1.0, "learning_rate": 3.974935537585233e-08, "epoch": 3.3431963470319634, "percentage": 83.63, "elapsed_time": "12:29:03", "remaining_time": "2:26:40"} +{"current_steps": 4577, "total_steps": 5472, "loss": 0.0184, "accuracy": 1.0, "learning_rate": 3.966310149686547e-08, "epoch": 3.3439269406392693, "percentage": 83.64, "elapsed_time": "12:29:13", "remaining_time": "2:26:30"} +{"current_steps": 4578, "total_steps": 5472, "loss": 0.0431, "accuracy": 1.0, "learning_rate": 3.95769332386445e-08, "epoch": 3.344657534246575, "percentage": 83.66, "elapsed_time": "12:29:23", "remaining_time": "2:26:20"} +{"current_steps": 4579, "total_steps": 5472, "loss": 0.0262, "accuracy": 1.0, "learning_rate": 3.949085063626539e-08, "epoch": 3.345388127853881, "percentage": 83.68, "elapsed_time": "12:29:32", "remaining_time": "2:26:10"} +{"current_steps": 4580, "total_steps": 5472, "loss": 0.0075, "accuracy": 1.0, "learning_rate": 3.9404853724769344e-08, "epoch": 3.3461187214611874, "percentage": 83.7, "elapsed_time": "12:29:41", "remaining_time": "2:26:00"} +{"current_steps": 4581, "total_steps": 5472, "loss": 0.0138, "accuracy": 1.0, "learning_rate": 3.931894253916273e-08, "epoch": 3.3468493150684933, "percentage": 83.72, "elapsed_time": "12:29:52", "remaining_time": "2:25:51"} +{"current_steps": 4582, "total_steps": 5472, "loss": 0.0239, "accuracy": 1.0, "learning_rate": 3.9233117114416905e-08, "epoch": 3.347579908675799, "percentage": 83.74, "elapsed_time": "12:30:02", "remaining_time": "2:25:41"} +{"current_steps": 4583, "total_steps": 5472, "loss": 0.0267, "accuracy": 1.0, "learning_rate": 3.914737748546856e-08, "epoch": 3.348310502283105, "percentage": 83.75, "elapsed_time": "12:30:11", "remaining_time": "2:25:31"} +{"current_steps": 4584, "total_steps": 5472, "loss": 0.0429, "accuracy": 1.0, "learning_rate": 3.906172368721902e-08, "epoch": 3.349041095890411, "percentage": 83.77, "elapsed_time": "12:30:20", "remaining_time": "2:25:21"} +{"current_steps": 4585, "total_steps": 5472, "loss": 0.0167, "accuracy": 1.0, "learning_rate": 3.897615575453517e-08, "epoch": 3.3497716894977168, "percentage": 83.79, "elapsed_time": "12:30:31", "remaining_time": "2:25:11"} +{"current_steps": 4586, "total_steps": 5472, "loss": 0.0129, "accuracy": 1.0, "learning_rate": 3.889067372224855e-08, "epoch": 3.3505022831050226, "percentage": 83.81, "elapsed_time": "12:30:40", "remaining_time": "2:25:01"} +{"current_steps": 4587, "total_steps": 5472, "loss": 0.0324, "accuracy": 1.0, "learning_rate": 3.880527762515601e-08, "epoch": 3.351232876712329, "percentage": 83.83, "elapsed_time": "12:30:50", "remaining_time": "2:24:51"} +{"current_steps": 4588, "total_steps": 5472, "loss": 0.0395, "accuracy": 1.0, "learning_rate": 3.871996749801926e-08, "epoch": 3.351963470319635, "percentage": 83.85, "elapsed_time": "12:31:00", "remaining_time": "2:24:42"} +{"current_steps": 4589, "total_steps": 5472, "loss": 0.0365, "accuracy": 1.0, "learning_rate": 3.8634743375564995e-08, "epoch": 3.3526940639269407, "percentage": 83.86, "elapsed_time": "12:31:11", "remaining_time": "2:24:32"} +{"current_steps": 4590, "total_steps": 5472, "loss": 0.0249, "accuracy": 1.0, "learning_rate": 3.85496052924851e-08, "epoch": 3.3534246575342466, "percentage": 83.88, "elapsed_time": "12:31:20", "remaining_time": "2:24:22"} +{"current_steps": 4591, "total_steps": 5472, "loss": 0.0282, "accuracy": 1.0, "learning_rate": 3.8464553283436144e-08, "epoch": 3.3541552511415524, "percentage": 83.9, "elapsed_time": "12:31:28", "remaining_time": "2:24:12"} +{"current_steps": 4592, "total_steps": 5472, "loss": 0.0189, "accuracy": 1.0, "learning_rate": 3.837958738303995e-08, "epoch": 3.3548858447488583, "percentage": 83.92, "elapsed_time": "12:31:38", "remaining_time": "2:24:02"} +{"current_steps": 4593, "total_steps": 5472, "loss": 0.0104, "accuracy": 1.0, "learning_rate": 3.82947076258831e-08, "epoch": 3.355616438356164, "percentage": 83.94, "elapsed_time": "12:31:49", "remaining_time": "2:23:52"} +{"current_steps": 4594, "total_steps": 5472, "loss": 0.0137, "accuracy": 1.0, "learning_rate": 3.820991404651708e-08, "epoch": 3.3563470319634705, "percentage": 83.95, "elapsed_time": "12:32:00", "remaining_time": "2:23:43"} +{"current_steps": 4595, "total_steps": 5472, "loss": 0.0251, "accuracy": 1.0, "learning_rate": 3.8125206679458535e-08, "epoch": 3.3570776255707764, "percentage": 83.97, "elapsed_time": "12:32:08", "remaining_time": "2:23:33"} +{"current_steps": 4596, "total_steps": 5472, "loss": 0.0205, "accuracy": 1.0, "learning_rate": 3.8040585559188765e-08, "epoch": 3.3578082191780823, "percentage": 83.99, "elapsed_time": "12:32:17", "remaining_time": "2:23:23"} +{"current_steps": 4597, "total_steps": 5472, "loss": 0.0077, "accuracy": 1.0, "learning_rate": 3.795605072015401e-08, "epoch": 3.358538812785388, "percentage": 84.01, "elapsed_time": "12:32:28", "remaining_time": "2:23:13"} +{"current_steps": 4598, "total_steps": 5472, "loss": 0.0255, "accuracy": 1.0, "learning_rate": 3.787160219676555e-08, "epoch": 3.359269406392694, "percentage": 84.03, "elapsed_time": "12:32:37", "remaining_time": "2:23:03"} +{"current_steps": 4599, "total_steps": 5472, "loss": 0.024, "accuracy": 1.0, "learning_rate": 3.7787240023399335e-08, "epoch": 3.36, "percentage": 84.05, "elapsed_time": "12:32:49", "remaining_time": "2:22:54"} +{"current_steps": 4600, "total_steps": 5472, "loss": 0.0505, "accuracy": 1.0, "learning_rate": 3.770296423439634e-08, "epoch": 3.3607305936073057, "percentage": 84.06, "elapsed_time": "12:32:59", "remaining_time": "2:22:44"} +{"current_steps": 4601, "total_steps": 5472, "loss": 0.0188, "accuracy": 1.0, "learning_rate": 3.7618774864062116e-08, "epoch": 3.361461187214612, "percentage": 84.08, "elapsed_time": "12:33:09", "remaining_time": "2:22:34"} +{"current_steps": 4602, "total_steps": 5472, "loss": 0.0277, "accuracy": 1.0, "learning_rate": 3.7534671946667344e-08, "epoch": 3.362191780821918, "percentage": 84.1, "elapsed_time": "12:33:19", "remaining_time": "2:22:24"} +{"current_steps": 4603, "total_steps": 5472, "loss": 0.0793, "accuracy": 1.0, "learning_rate": 3.745065551644727e-08, "epoch": 3.362922374429224, "percentage": 84.12, "elapsed_time": "12:33:28", "remaining_time": "2:22:14"} +{"current_steps": 4604, "total_steps": 5472, "loss": 0.0247, "accuracy": 1.0, "learning_rate": 3.7366725607602066e-08, "epoch": 3.3636529680365297, "percentage": 84.14, "elapsed_time": "12:33:37", "remaining_time": "2:22:04"} +{"current_steps": 4605, "total_steps": 5472, "loss": 0.0168, "accuracy": 1.0, "learning_rate": 3.7282882254296767e-08, "epoch": 3.3643835616438356, "percentage": 84.16, "elapsed_time": "12:33:47", "remaining_time": "2:21:55"} +{"current_steps": 4606, "total_steps": 5472, "loss": 0.0237, "accuracy": 1.0, "learning_rate": 3.7199125490660846e-08, "epoch": 3.3651141552511414, "percentage": 84.17, "elapsed_time": "12:33:56", "remaining_time": "2:21:45"} +{"current_steps": 4607, "total_steps": 5472, "loss": 0.0189, "accuracy": 1.0, "learning_rate": 3.7115455350788916e-08, "epoch": 3.3658447488584473, "percentage": 84.19, "elapsed_time": "12:34:07", "remaining_time": "2:21:35"} +{"current_steps": 4608, "total_steps": 5472, "loss": 0.0293, "accuracy": 1.0, "learning_rate": 3.703187186874002e-08, "epoch": 3.3665753424657536, "percentage": 84.21, "elapsed_time": "12:34:18", "remaining_time": "2:21:25"} +{"current_steps": 4609, "total_steps": 5472, "loss": 0.0178, "accuracy": 1.0, "learning_rate": 3.694837507853818e-08, "epoch": 3.3673059360730595, "percentage": 84.23, "elapsed_time": "12:34:28", "remaining_time": "2:21:16"} +{"current_steps": 4610, "total_steps": 5472, "loss": 0.0288, "accuracy": 1.0, "learning_rate": 3.6864965014171965e-08, "epoch": 3.3680365296803654, "percentage": 84.25, "elapsed_time": "12:34:38", "remaining_time": "2:21:06"} +{"current_steps": 4611, "total_steps": 5472, "loss": 0.0378, "accuracy": 1.0, "learning_rate": 3.6781641709594605e-08, "epoch": 3.3687671232876713, "percentage": 84.27, "elapsed_time": "12:34:46", "remaining_time": "2:20:56"} +{"current_steps": 4612, "total_steps": 5472, "loss": 0.018, "accuracy": 1.0, "learning_rate": 3.669840519872419e-08, "epoch": 3.369497716894977, "percentage": 84.28, "elapsed_time": "12:34:55", "remaining_time": "2:20:46"} +{"current_steps": 4613, "total_steps": 5472, "loss": 0.0206, "accuracy": 1.0, "learning_rate": 3.66152555154434e-08, "epoch": 3.370228310502283, "percentage": 84.3, "elapsed_time": "12:35:04", "remaining_time": "2:20:36"} +{"current_steps": 4614, "total_steps": 5472, "loss": 0.0144, "accuracy": 1.0, "learning_rate": 3.653219269359939e-08, "epoch": 3.370958904109589, "percentage": 84.32, "elapsed_time": "12:35:15", "remaining_time": "2:20:26"} +{"current_steps": 4615, "total_steps": 5472, "loss": 0.0373, "accuracy": 1.0, "learning_rate": 3.6449216767004295e-08, "epoch": 3.371689497716895, "percentage": 84.34, "elapsed_time": "12:35:24", "remaining_time": "2:20:16"} +{"current_steps": 4616, "total_steps": 5472, "loss": 0.0102, "accuracy": 1.0, "learning_rate": 3.63663277694346e-08, "epoch": 3.372420091324201, "percentage": 84.36, "elapsed_time": "12:35:34", "remaining_time": "2:20:06"} +{"current_steps": 4617, "total_steps": 5472, "loss": 0.0324, "accuracy": 1.0, "learning_rate": 3.628352573463159e-08, "epoch": 3.373150684931507, "percentage": 84.38, "elapsed_time": "12:35:45", "remaining_time": "2:19:57"} +{"current_steps": 4618, "total_steps": 5472, "loss": 0.0273, "accuracy": 1.0, "learning_rate": 3.620081069630101e-08, "epoch": 3.373881278538813, "percentage": 84.39, "elapsed_time": "12:35:55", "remaining_time": "2:19:47"} +{"current_steps": 4619, "total_steps": 5472, "loss": 0.0282, "accuracy": 1.0, "learning_rate": 3.611818268811326e-08, "epoch": 3.3746118721461187, "percentage": 84.41, "elapsed_time": "12:36:05", "remaining_time": "2:19:37"} +{"current_steps": 4620, "total_steps": 5472, "loss": 0.0174, "accuracy": 1.0, "learning_rate": 3.6035641743703213e-08, "epoch": 3.3753424657534246, "percentage": 84.43, "elapsed_time": "12:36:14", "remaining_time": "2:19:27"} +{"current_steps": 4621, "total_steps": 5472, "loss": 0.05, "accuracy": 1.0, "learning_rate": 3.595318789667054e-08, "epoch": 3.3760730593607304, "percentage": 84.45, "elapsed_time": "12:36:23", "remaining_time": "2:19:17"} +{"current_steps": 4622, "total_steps": 5472, "loss": 0.0124, "accuracy": 1.0, "learning_rate": 3.587082118057924e-08, "epoch": 3.3768036529680368, "percentage": 84.47, "elapsed_time": "12:36:33", "remaining_time": "2:19:08"} +{"current_steps": 4623, "total_steps": 5472, "loss": 0.0182, "accuracy": 1.0, "learning_rate": 3.5788541628957836e-08, "epoch": 3.3775342465753426, "percentage": 84.48, "elapsed_time": "12:36:43", "remaining_time": "2:18:58"} +{"current_steps": 4624, "total_steps": 5472, "loss": 0.0244, "accuracy": 1.0, "learning_rate": 3.570634927529958e-08, "epoch": 3.3782648401826485, "percentage": 84.5, "elapsed_time": "12:36:52", "remaining_time": "2:18:48"} +{"current_steps": 4625, "total_steps": 5472, "loss": 0.0387, "accuracy": 1.0, "learning_rate": 3.562424415306198e-08, "epoch": 3.3789954337899544, "percentage": 84.52, "elapsed_time": "12:37:01", "remaining_time": "2:18:38"} +{"current_steps": 4626, "total_steps": 5472, "loss": 0.0268, "accuracy": 1.0, "learning_rate": 3.554222629566725e-08, "epoch": 3.3797260273972602, "percentage": 84.54, "elapsed_time": "12:37:10", "remaining_time": "2:18:28"} +{"current_steps": 4627, "total_steps": 5472, "loss": 0.0316, "accuracy": 1.0, "learning_rate": 3.5460295736501917e-08, "epoch": 3.380456621004566, "percentage": 84.56, "elapsed_time": "12:37:18", "remaining_time": "2:18:18"} +{"current_steps": 4628, "total_steps": 5472, "loss": 0.0346, "accuracy": 1.0, "learning_rate": 3.537845250891702e-08, "epoch": 3.381187214611872, "percentage": 84.58, "elapsed_time": "12:37:29", "remaining_time": "2:18:08"} +{"current_steps": 4629, "total_steps": 5472, "loss": 0.0345, "accuracy": 1.0, "learning_rate": 3.5296696646228114e-08, "epoch": 3.3819178082191783, "percentage": 84.59, "elapsed_time": "12:37:38", "remaining_time": "2:17:58"} +{"current_steps": 4630, "total_steps": 5472, "loss": 0.0314, "accuracy": 1.0, "learning_rate": 3.521502818171507e-08, "epoch": 3.382648401826484, "percentage": 84.61, "elapsed_time": "12:37:48", "remaining_time": "2:17:48"} +{"current_steps": 4631, "total_steps": 5472, "loss": 0.0201, "accuracy": 1.0, "learning_rate": 3.51334471486224e-08, "epoch": 3.38337899543379, "percentage": 84.63, "elapsed_time": "12:37:57", "remaining_time": "2:17:38"} +{"current_steps": 4632, "total_steps": 5472, "loss": 0.0498, "accuracy": 1.0, "learning_rate": 3.5051953580158664e-08, "epoch": 3.384109589041096, "percentage": 84.65, "elapsed_time": "12:38:07", "remaining_time": "2:17:29"} +{"current_steps": 4633, "total_steps": 5472, "loss": 0.0152, "accuracy": 1.0, "learning_rate": 3.4970547509497154e-08, "epoch": 3.384840182648402, "percentage": 84.67, "elapsed_time": "12:38:17", "remaining_time": "2:17:19"} +{"current_steps": 4634, "total_steps": 5472, "loss": 0.0425, "accuracy": 1.0, "learning_rate": 3.488922896977545e-08, "epoch": 3.3855707762557077, "percentage": 84.69, "elapsed_time": "12:38:26", "remaining_time": "2:17:09"} +{"current_steps": 4635, "total_steps": 5472, "loss": 0.0245, "accuracy": 1.0, "learning_rate": 3.480799799409545e-08, "epoch": 3.3863013698630136, "percentage": 84.7, "elapsed_time": "12:38:36", "remaining_time": "2:16:59"} +{"current_steps": 4636, "total_steps": 5472, "loss": 0.0222, "accuracy": 1.0, "learning_rate": 3.472685461552341e-08, "epoch": 3.38703196347032, "percentage": 84.72, "elapsed_time": "12:38:46", "remaining_time": "2:16:49"} +{"current_steps": 4637, "total_steps": 5472, "loss": 0.0495, "accuracy": 1.0, "learning_rate": 3.4645798867089906e-08, "epoch": 3.3877625570776257, "percentage": 84.74, "elapsed_time": "12:38:54", "remaining_time": "2:16:39"} +{"current_steps": 4638, "total_steps": 5472, "loss": 0.0089, "accuracy": 1.0, "learning_rate": 3.456483078178998e-08, "epoch": 3.3884931506849316, "percentage": 84.76, "elapsed_time": "12:39:05", "remaining_time": "2:16:29"} +{"current_steps": 4639, "total_steps": 5472, "loss": 0.0283, "accuracy": 1.0, "learning_rate": 3.4483950392582814e-08, "epoch": 3.3892237442922375, "percentage": 84.78, "elapsed_time": "12:39:15", "remaining_time": "2:16:20"} +{"current_steps": 4640, "total_steps": 5472, "loss": 0.0258, "accuracy": 1.0, "learning_rate": 3.440315773239208e-08, "epoch": 3.3899543378995434, "percentage": 84.8, "elapsed_time": "12:39:27", "remaining_time": "2:16:10"} +{"current_steps": 4641, "total_steps": 5472, "loss": 0.0208, "accuracy": 1.0, "learning_rate": 3.432245283410556e-08, "epoch": 3.3906849315068492, "percentage": 84.81, "elapsed_time": "12:39:36", "remaining_time": "2:16:00"} +{"current_steps": 4642, "total_steps": 5472, "loss": 0.0268, "accuracy": 1.0, "learning_rate": 3.424183573057535e-08, "epoch": 3.391415525114155, "percentage": 84.83, "elapsed_time": "12:39:45", "remaining_time": "2:15:50"} +{"current_steps": 4643, "total_steps": 5472, "loss": 0.0187, "accuracy": 1.0, "learning_rate": 3.4161306454617924e-08, "epoch": 3.3921461187214614, "percentage": 84.85, "elapsed_time": "12:39:55", "remaining_time": "2:15:40"} +{"current_steps": 4644, "total_steps": 5472, "loss": 0.0214, "accuracy": 1.0, "learning_rate": 3.408086503901389e-08, "epoch": 3.3928767123287673, "percentage": 84.87, "elapsed_time": "12:40:03", "remaining_time": "2:15:30"} +{"current_steps": 4645, "total_steps": 5472, "loss": 0.0223, "accuracy": 1.0, "learning_rate": 3.400051151650804e-08, "epoch": 3.393607305936073, "percentage": 84.89, "elapsed_time": "12:40:12", "remaining_time": "2:15:20"} +{"current_steps": 4646, "total_steps": 5472, "loss": 0.0235, "accuracy": 1.0, "learning_rate": 3.392024591980963e-08, "epoch": 3.394337899543379, "percentage": 84.9, "elapsed_time": "12:40:21", "remaining_time": "2:15:10"} +{"current_steps": 4647, "total_steps": 5472, "loss": 0.0185, "accuracy": 1.0, "learning_rate": 3.3840068281591834e-08, "epoch": 3.395068493150685, "percentage": 84.92, "elapsed_time": "12:40:30", "remaining_time": "2:15:00"} +{"current_steps": 4648, "total_steps": 5472, "loss": 0.0311, "accuracy": 1.0, "learning_rate": 3.3759978634492316e-08, "epoch": 3.395799086757991, "percentage": 84.94, "elapsed_time": "12:40:39", "remaining_time": "2:14:51"} +{"current_steps": 4649, "total_steps": 5472, "loss": 0.0565, "accuracy": 0.875, "learning_rate": 3.367997701111253e-08, "epoch": 3.3965296803652967, "percentage": 84.96, "elapsed_time": "12:40:48", "remaining_time": "2:14:41"} +{"current_steps": 4650, "total_steps": 5472, "loss": 0.019, "accuracy": 1.0, "learning_rate": 3.3600063444018416e-08, "epoch": 3.3972602739726026, "percentage": 84.98, "elapsed_time": "12:40:58", "remaining_time": "2:14:31"} +{"current_steps": 4651, "total_steps": 5472, "loss": 0.027, "accuracy": 1.0, "learning_rate": 3.3520237965740106e-08, "epoch": 3.397990867579909, "percentage": 85.0, "elapsed_time": "12:41:09", "remaining_time": "2:14:21"} +{"current_steps": 4652, "total_steps": 5472, "loss": 0.016, "accuracy": 1.0, "learning_rate": 3.344050060877157e-08, "epoch": 3.3987214611872147, "percentage": 85.01, "elapsed_time": "12:41:19", "remaining_time": "2:14:11"} +{"current_steps": 4653, "total_steps": 5472, "loss": 0.0203, "accuracy": 1.0, "learning_rate": 3.3360851405571325e-08, "epoch": 3.3994520547945206, "percentage": 85.03, "elapsed_time": "12:41:28", "remaining_time": "2:14:01"} +{"current_steps": 4654, "total_steps": 5472, "loss": 0.0193, "accuracy": 1.0, "learning_rate": 3.328129038856145e-08, "epoch": 3.4001826484018265, "percentage": 85.05, "elapsed_time": "12:41:38", "remaining_time": "2:13:52"} +{"current_steps": 4655, "total_steps": 5472, "loss": 0.0111, "accuracy": 1.0, "learning_rate": 3.320181759012869e-08, "epoch": 3.4009132420091324, "percentage": 85.07, "elapsed_time": "12:41:49", "remaining_time": "2:13:42"} +{"current_steps": 4656, "total_steps": 5472, "loss": 0.0249, "accuracy": 1.0, "learning_rate": 3.3122433042623465e-08, "epoch": 3.4016438356164382, "percentage": 85.09, "elapsed_time": "12:41:58", "remaining_time": "2:13:32"} +{"current_steps": 4657, "total_steps": 5472, "loss": 0.0326, "accuracy": 1.0, "learning_rate": 3.3043136778360595e-08, "epoch": 3.402374429223744, "percentage": 85.11, "elapsed_time": "12:42:07", "remaining_time": "2:13:22"} +{"current_steps": 4658, "total_steps": 5472, "loss": 0.0212, "accuracy": 1.0, "learning_rate": 3.296392882961871e-08, "epoch": 3.40310502283105, "percentage": 85.12, "elapsed_time": "12:42:17", "remaining_time": "2:13:12"} +{"current_steps": 4659, "total_steps": 5472, "loss": 0.0207, "accuracy": 1.0, "learning_rate": 3.288480922864054e-08, "epoch": 3.4038356164383563, "percentage": 85.14, "elapsed_time": "12:42:27", "remaining_time": "2:13:03"} +{"current_steps": 4660, "total_steps": 5472, "loss": 0.0187, "accuracy": 1.0, "learning_rate": 3.280577800763301e-08, "epoch": 3.404566210045662, "percentage": 85.16, "elapsed_time": "12:42:37", "remaining_time": "2:12:53"} +{"current_steps": 4661, "total_steps": 5472, "loss": 0.0195, "accuracy": 1.0, "learning_rate": 3.27268351987669e-08, "epoch": 3.405296803652968, "percentage": 85.18, "elapsed_time": "12:42:47", "remaining_time": "2:12:43"} +{"current_steps": 4662, "total_steps": 5472, "loss": 0.0401, "accuracy": 1.0, "learning_rate": 3.2647980834176995e-08, "epoch": 3.406027397260274, "percentage": 85.2, "elapsed_time": "12:42:56", "remaining_time": "2:12:33"} +{"current_steps": 4663, "total_steps": 5472, "loss": 0.0147, "accuracy": 1.0, "learning_rate": 3.256921494596227e-08, "epoch": 3.40675799086758, "percentage": 85.22, "elapsed_time": "12:43:06", "remaining_time": "2:12:23"} +{"current_steps": 4664, "total_steps": 5472, "loss": 0.0469, "accuracy": 1.0, "learning_rate": 3.2490537566185413e-08, "epoch": 3.4074885844748857, "percentage": 85.23, "elapsed_time": "12:43:16", "remaining_time": "2:12:13"} +{"current_steps": 4665, "total_steps": 5472, "loss": 0.0258, "accuracy": 1.0, "learning_rate": 3.241194872687333e-08, "epoch": 3.4082191780821915, "percentage": 85.25, "elapsed_time": "12:43:25", "remaining_time": "2:12:03"} +{"current_steps": 4666, "total_steps": 5472, "loss": 0.0235, "accuracy": 1.0, "learning_rate": 3.233344846001676e-08, "epoch": 3.408949771689498, "percentage": 85.27, "elapsed_time": "12:43:34", "remaining_time": "2:11:53"} +{"current_steps": 4667, "total_steps": 5472, "loss": 0.0419, "accuracy": 1.0, "learning_rate": 3.225503679757033e-08, "epoch": 3.4096803652968037, "percentage": 85.29, "elapsed_time": "12:43:47", "remaining_time": "2:11:44"} +{"current_steps": 4668, "total_steps": 5472, "loss": 0.0277, "accuracy": 1.0, "learning_rate": 3.217671377145278e-08, "epoch": 3.4104109589041096, "percentage": 85.31, "elapsed_time": "12:43:59", "remaining_time": "2:11:35"} +{"current_steps": 4669, "total_steps": 5472, "loss": 0.0348, "accuracy": 1.0, "learning_rate": 3.209847941354657e-08, "epoch": 3.4111415525114155, "percentage": 85.33, "elapsed_time": "12:44:09", "remaining_time": "2:11:25"} +{"current_steps": 4670, "total_steps": 5472, "loss": 0.0162, "accuracy": 1.0, "learning_rate": 3.202033375569829e-08, "epoch": 3.4118721461187214, "percentage": 85.34, "elapsed_time": "12:44:19", "remaining_time": "2:11:15"} +{"current_steps": 4671, "total_steps": 5472, "loss": 0.0102, "accuracy": 1.0, "learning_rate": 3.1942276829718116e-08, "epoch": 3.4126027397260272, "percentage": 85.36, "elapsed_time": "12:44:30", "remaining_time": "2:11:06"} +{"current_steps": 4672, "total_steps": 5472, "loss": 0.0267, "accuracy": 1.0, "learning_rate": 3.186430866738041e-08, "epoch": 3.413333333333333, "percentage": 85.38, "elapsed_time": "12:44:40", "remaining_time": "2:10:56"} +{"current_steps": 4673, "total_steps": 5472, "loss": 0.0162, "accuracy": 1.0, "learning_rate": 3.178642930042319e-08, "epoch": 3.4140639269406394, "percentage": 85.4, "elapsed_time": "12:44:49", "remaining_time": "2:10:46"} +{"current_steps": 4674, "total_steps": 5472, "loss": 0.011, "accuracy": 1.0, "learning_rate": 3.1708638760548494e-08, "epoch": 3.4147945205479453, "percentage": 85.42, "elapsed_time": "12:44:58", "remaining_time": "2:10:36"} +{"current_steps": 4675, "total_steps": 5472, "loss": 0.0248, "accuracy": 1.0, "learning_rate": 3.163093707942211e-08, "epoch": 3.415525114155251, "percentage": 85.43, "elapsed_time": "12:45:09", "remaining_time": "2:10:26"} +{"current_steps": 4676, "total_steps": 5472, "loss": 0.0837, "accuracy": 1.0, "learning_rate": 3.155332428867355e-08, "epoch": 3.416255707762557, "percentage": 85.45, "elapsed_time": "12:45:17", "remaining_time": "2:10:16"} +{"current_steps": 4677, "total_steps": 5472, "loss": 0.0347, "accuracy": 1.0, "learning_rate": 3.147580041989642e-08, "epoch": 3.416986301369863, "percentage": 85.47, "elapsed_time": "12:45:26", "remaining_time": "2:10:06"} +{"current_steps": 4678, "total_steps": 5472, "loss": 0.0259, "accuracy": 1.0, "learning_rate": 3.139836550464783e-08, "epoch": 3.417716894977169, "percentage": 85.49, "elapsed_time": "12:45:34", "remaining_time": "2:09:56"} +{"current_steps": 4679, "total_steps": 5472, "loss": 0.0487, "accuracy": 1.0, "learning_rate": 3.1321019574448906e-08, "epoch": 3.4184474885844747, "percentage": 85.51, "elapsed_time": "12:45:44", "remaining_time": "2:09:46"} +{"current_steps": 4680, "total_steps": 5472, "loss": 0.0274, "accuracy": 1.0, "learning_rate": 3.124376266078446e-08, "epoch": 3.419178082191781, "percentage": 85.53, "elapsed_time": "12:45:54", "remaining_time": "2:09:36"} +{"current_steps": 4681, "total_steps": 5472, "loss": 0.0107, "accuracy": 1.0, "learning_rate": 3.1166594795102945e-08, "epoch": 3.419908675799087, "percentage": 85.54, "elapsed_time": "12:46:05", "remaining_time": "2:09:27"} +{"current_steps": 4682, "total_steps": 5472, "loss": 0.0244, "accuracy": 1.0, "learning_rate": 3.1089516008816846e-08, "epoch": 3.4206392694063927, "percentage": 85.56, "elapsed_time": "12:46:15", "remaining_time": "2:09:17"} +{"current_steps": 4683, "total_steps": 5472, "loss": 0.0098, "accuracy": 1.0, "learning_rate": 3.101252633330217e-08, "epoch": 3.4213698630136986, "percentage": 85.58, "elapsed_time": "12:46:23", "remaining_time": "2:09:07"} +{"current_steps": 4684, "total_steps": 5472, "loss": 0.0277, "accuracy": 1.0, "learning_rate": 3.0935625799898697e-08, "epoch": 3.4221004566210045, "percentage": 85.6, "elapsed_time": "12:46:32", "remaining_time": "2:08:57"} +{"current_steps": 4685, "total_steps": 5472, "loss": 0.0261, "accuracy": 1.0, "learning_rate": 3.0858814439909895e-08, "epoch": 3.4228310502283104, "percentage": 85.62, "elapsed_time": "12:46:41", "remaining_time": "2:08:47"} +{"current_steps": 4686, "total_steps": 5472, "loss": 0.0393, "accuracy": 1.0, "learning_rate": 3.078209228460302e-08, "epoch": 3.4235616438356162, "percentage": 85.64, "elapsed_time": "12:46:50", "remaining_time": "2:08:37"} +{"current_steps": 4687, "total_steps": 5472, "loss": 0.0138, "accuracy": 1.0, "learning_rate": 3.070545936520905e-08, "epoch": 3.4242922374429225, "percentage": 85.65, "elapsed_time": "12:47:00", "remaining_time": "2:08:27"} +{"current_steps": 4688, "total_steps": 5472, "loss": 0.0206, "accuracy": 1.0, "learning_rate": 3.062891571292239e-08, "epoch": 3.4250228310502284, "percentage": 85.67, "elapsed_time": "12:47:11", "remaining_time": "2:08:18"} +{"current_steps": 4689, "total_steps": 5472, "loss": 0.026, "accuracy": 1.0, "learning_rate": 3.0552461358901385e-08, "epoch": 3.4257534246575343, "percentage": 85.69, "elapsed_time": "12:47:19", "remaining_time": "2:08:08"} +{"current_steps": 4690, "total_steps": 5472, "loss": 0.0174, "accuracy": 1.0, "learning_rate": 3.047609633426784e-08, "epoch": 3.42648401826484, "percentage": 85.71, "elapsed_time": "12:47:28", "remaining_time": "2:07:58"} +{"current_steps": 4691, "total_steps": 5472, "loss": 0.0295, "accuracy": 1.0, "learning_rate": 3.039982067010738e-08, "epoch": 3.427214611872146, "percentage": 85.73, "elapsed_time": "12:47:37", "remaining_time": "2:07:48"} +{"current_steps": 4692, "total_steps": 5472, "loss": 0.0298, "accuracy": 1.0, "learning_rate": 3.03236343974691e-08, "epoch": 3.427945205479452, "percentage": 85.75, "elapsed_time": "12:47:48", "remaining_time": "2:07:38"} +{"current_steps": 4693, "total_steps": 5472, "loss": 0.0279, "accuracy": 1.0, "learning_rate": 3.0247537547365696e-08, "epoch": 3.428675799086758, "percentage": 85.76, "elapsed_time": "12:47:59", "remaining_time": "2:07:28"} +{"current_steps": 4694, "total_steps": 5472, "loss": 0.0232, "accuracy": 1.0, "learning_rate": 3.0171530150773614e-08, "epoch": 3.429406392694064, "percentage": 85.78, "elapsed_time": "12:48:08", "remaining_time": "2:07:18"} +{"current_steps": 4695, "total_steps": 5472, "loss": 0.0153, "accuracy": 1.0, "learning_rate": 3.0095612238632715e-08, "epoch": 3.43013698630137, "percentage": 85.8, "elapsed_time": "12:48:20", "remaining_time": "2:07:09"} +{"current_steps": 4696, "total_steps": 5472, "loss": 0.0217, "accuracy": 1.0, "learning_rate": 3.001978384184661e-08, "epoch": 3.430867579908676, "percentage": 85.82, "elapsed_time": "12:48:30", "remaining_time": "2:06:59"} +{"current_steps": 4697, "total_steps": 5472, "loss": 0.0402, "accuracy": 1.0, "learning_rate": 2.994404499128231e-08, "epoch": 3.4315981735159817, "percentage": 85.84, "elapsed_time": "12:48:39", "remaining_time": "2:06:49"} +{"current_steps": 4698, "total_steps": 5472, "loss": 0.0309, "accuracy": 1.0, "learning_rate": 2.9868395717770416e-08, "epoch": 3.4323287671232876, "percentage": 85.86, "elapsed_time": "12:48:48", "remaining_time": "2:06:39"} +{"current_steps": 4699, "total_steps": 5472, "loss": 0.0281, "accuracy": 1.0, "learning_rate": 2.9792836052105197e-08, "epoch": 3.4330593607305935, "percentage": 85.87, "elapsed_time": "12:49:00", "remaining_time": "2:06:30"} +{"current_steps": 4700, "total_steps": 5472, "loss": 0.037, "accuracy": 1.0, "learning_rate": 2.9717366025044264e-08, "epoch": 3.4337899543378994, "percentage": 85.89, "elapsed_time": "12:49:08", "remaining_time": "2:06:20"} +{"current_steps": 4701, "total_steps": 5472, "loss": 0.0181, "accuracy": 1.0, "learning_rate": 2.96419856673088e-08, "epoch": 3.4345205479452057, "percentage": 85.91, "elapsed_time": "12:49:18", "remaining_time": "2:06:10"} +{"current_steps": 4702, "total_steps": 5472, "loss": 0.0213, "accuracy": 1.0, "learning_rate": 2.9566695009583504e-08, "epoch": 3.4352511415525115, "percentage": 85.93, "elapsed_time": "12:49:26", "remaining_time": "2:06:00"} +{"current_steps": 4703, "total_steps": 5472, "loss": 0.0322, "accuracy": 1.0, "learning_rate": 2.949149408251658e-08, "epoch": 3.4359817351598174, "percentage": 85.95, "elapsed_time": "12:49:36", "remaining_time": "2:05:50"} +{"current_steps": 4704, "total_steps": 5472, "loss": 0.0425, "accuracy": 1.0, "learning_rate": 2.9416382916719744e-08, "epoch": 3.4367123287671233, "percentage": 85.96, "elapsed_time": "12:49:46", "remaining_time": "2:05:40"} +{"current_steps": 4705, "total_steps": 5472, "loss": 0.0234, "accuracy": 1.0, "learning_rate": 2.9341361542768032e-08, "epoch": 3.437442922374429, "percentage": 85.98, "elapsed_time": "12:49:57", "remaining_time": "2:05:31"} +{"current_steps": 4706, "total_steps": 5472, "loss": 0.0185, "accuracy": 1.0, "learning_rate": 2.9266429991200076e-08, "epoch": 3.438173515981735, "percentage": 86.0, "elapsed_time": "12:50:07", "remaining_time": "2:05:21"} +{"current_steps": 4707, "total_steps": 5472, "loss": 0.0633, "accuracy": 1.0, "learning_rate": 2.9191588292517748e-08, "epoch": 3.438904109589041, "percentage": 86.02, "elapsed_time": "12:50:16", "remaining_time": "2:05:11"} +{"current_steps": 4708, "total_steps": 5472, "loss": 0.0145, "accuracy": 1.0, "learning_rate": 2.9116836477186658e-08, "epoch": 3.4396347031963472, "percentage": 86.04, "elapsed_time": "12:50:26", "remaining_time": "2:05:01"} +{"current_steps": 4709, "total_steps": 5472, "loss": 0.0733, "accuracy": 1.0, "learning_rate": 2.9042174575635543e-08, "epoch": 3.440365296803653, "percentage": 86.06, "elapsed_time": "12:50:35", "remaining_time": "2:04:51"} +{"current_steps": 4710, "total_steps": 5472, "loss": 0.0146, "accuracy": 1.0, "learning_rate": 2.896760261825659e-08, "epoch": 3.441095890410959, "percentage": 86.07, "elapsed_time": "12:50:44", "remaining_time": "2:04:41"} +{"current_steps": 4711, "total_steps": 5472, "loss": 0.0126, "accuracy": 1.0, "learning_rate": 2.8893120635405525e-08, "epoch": 3.441826484018265, "percentage": 86.09, "elapsed_time": "12:50:54", "remaining_time": "2:04:31"} +{"current_steps": 4712, "total_steps": 5472, "loss": 0.0213, "accuracy": 1.0, "learning_rate": 2.8818728657401286e-08, "epoch": 3.4425570776255707, "percentage": 86.11, "elapsed_time": "12:51:03", "remaining_time": "2:04:21"} +{"current_steps": 4713, "total_steps": 5472, "loss": 0.0279, "accuracy": 1.0, "learning_rate": 2.8744426714526315e-08, "epoch": 3.4432876712328766, "percentage": 86.13, "elapsed_time": "12:51:14", "remaining_time": "2:04:12"} +{"current_steps": 4714, "total_steps": 5472, "loss": 0.0224, "accuracy": 1.0, "learning_rate": 2.8670214837026252e-08, "epoch": 3.4440182648401825, "percentage": 86.15, "elapsed_time": "12:51:23", "remaining_time": "2:04:02"} +{"current_steps": 4715, "total_steps": 5472, "loss": 0.0207, "accuracy": 1.0, "learning_rate": 2.8596093055110127e-08, "epoch": 3.444748858447489, "percentage": 86.17, "elapsed_time": "12:51:33", "remaining_time": "2:03:52"} +{"current_steps": 4716, "total_steps": 5472, "loss": 0.023, "accuracy": 1.0, "learning_rate": 2.8522061398950386e-08, "epoch": 3.4454794520547947, "percentage": 86.18, "elapsed_time": "12:51:43", "remaining_time": "2:03:42"} +{"current_steps": 4717, "total_steps": 5472, "loss": 0.0548, "accuracy": 0.875, "learning_rate": 2.844811989868265e-08, "epoch": 3.4462100456621005, "percentage": 86.2, "elapsed_time": "12:51:52", "remaining_time": "2:03:32"} +{"current_steps": 4718, "total_steps": 5472, "loss": 0.0133, "accuracy": 1.0, "learning_rate": 2.837426858440603e-08, "epoch": 3.4469406392694064, "percentage": 86.22, "elapsed_time": "12:52:01", "remaining_time": "2:03:22"} +{"current_steps": 4719, "total_steps": 5472, "loss": 0.0137, "accuracy": 1.0, "learning_rate": 2.8300507486182596e-08, "epoch": 3.4476712328767123, "percentage": 86.24, "elapsed_time": "12:52:09", "remaining_time": "2:03:12"} +{"current_steps": 4720, "total_steps": 5472, "loss": 0.0255, "accuracy": 1.0, "learning_rate": 2.8226836634038048e-08, "epoch": 3.448401826484018, "percentage": 86.26, "elapsed_time": "12:52:18", "remaining_time": "2:03:02"} +{"current_steps": 4721, "total_steps": 5472, "loss": 0.02, "accuracy": 1.0, "learning_rate": 2.8153256057961207e-08, "epoch": 3.449132420091324, "percentage": 86.28, "elapsed_time": "12:52:26", "remaining_time": "2:02:52"} +{"current_steps": 4722, "total_steps": 5472, "loss": 0.0252, "accuracy": 1.0, "learning_rate": 2.8079765787904107e-08, "epoch": 3.4498630136986304, "percentage": 86.29, "elapsed_time": "12:52:37", "remaining_time": "2:02:43"} +{"current_steps": 4723, "total_steps": 5472, "loss": 0.0282, "accuracy": 1.0, "learning_rate": 2.800636585378205e-08, "epoch": 3.4505936073059362, "percentage": 86.31, "elapsed_time": "12:52:46", "remaining_time": "2:02:33"} +{"current_steps": 4724, "total_steps": 5472, "loss": 0.0681, "accuracy": 1.0, "learning_rate": 2.7933056285473543e-08, "epoch": 3.451324200913242, "percentage": 86.33, "elapsed_time": "12:52:55", "remaining_time": "2:02:23"} +{"current_steps": 4725, "total_steps": 5472, "loss": 0.0513, "accuracy": 1.0, "learning_rate": 2.7859837112820418e-08, "epoch": 3.452054794520548, "percentage": 86.35, "elapsed_time": "12:53:04", "remaining_time": "2:02:13"} +{"current_steps": 4726, "total_steps": 5472, "loss": 0.0438, "accuracy": 1.0, "learning_rate": 2.778670836562752e-08, "epoch": 3.452785388127854, "percentage": 86.37, "elapsed_time": "12:53:13", "remaining_time": "2:02:03"} +{"current_steps": 4727, "total_steps": 5472, "loss": 0.0385, "accuracy": 1.0, "learning_rate": 2.7713670073663127e-08, "epoch": 3.4535159817351597, "percentage": 86.39, "elapsed_time": "12:53:23", "remaining_time": "2:01:53"} +{"current_steps": 4728, "total_steps": 5472, "loss": 0.0133, "accuracy": 1.0, "learning_rate": 2.764072226665848e-08, "epoch": 3.4542465753424656, "percentage": 86.4, "elapsed_time": "12:53:33", "remaining_time": "2:01:43"} +{"current_steps": 4729, "total_steps": 5472, "loss": 0.0327, "accuracy": 1.0, "learning_rate": 2.7567864974308047e-08, "epoch": 3.454977168949772, "percentage": 86.42, "elapsed_time": "12:53:42", "remaining_time": "2:01:33"} +{"current_steps": 4730, "total_steps": 5472, "loss": 0.035, "accuracy": 1.0, "learning_rate": 2.7495098226269553e-08, "epoch": 3.455707762557078, "percentage": 86.44, "elapsed_time": "12:53:53", "remaining_time": "2:01:24"} +{"current_steps": 4731, "total_steps": 5472, "loss": 0.0352, "accuracy": 1.0, "learning_rate": 2.7422422052163774e-08, "epoch": 3.4564383561643837, "percentage": 86.46, "elapsed_time": "12:54:02", "remaining_time": "2:01:14"} +{"current_steps": 4732, "total_steps": 5472, "loss": 0.0298, "accuracy": 1.0, "learning_rate": 2.7349836481574518e-08, "epoch": 3.4571689497716895, "percentage": 86.48, "elapsed_time": "12:54:12", "remaining_time": "2:01:04"} +{"current_steps": 4733, "total_steps": 5472, "loss": 0.0641, "accuracy": 1.0, "learning_rate": 2.7277341544048954e-08, "epoch": 3.4578995433789954, "percentage": 86.49, "elapsed_time": "12:54:22", "remaining_time": "2:00:54"} +{"current_steps": 4734, "total_steps": 5472, "loss": 0.0236, "accuracy": 1.0, "learning_rate": 2.7204937269097117e-08, "epoch": 3.4586301369863013, "percentage": 86.51, "elapsed_time": "12:54:33", "remaining_time": "2:00:44"} +{"current_steps": 4735, "total_steps": 5472, "loss": 0.0542, "accuracy": 1.0, "learning_rate": 2.713262368619243e-08, "epoch": 3.459360730593607, "percentage": 86.53, "elapsed_time": "12:54:42", "remaining_time": "2:00:34"} +{"current_steps": 4736, "total_steps": 5472, "loss": 0.034, "accuracy": 1.0, "learning_rate": 2.7060400824770957e-08, "epoch": 3.4600913242009135, "percentage": 86.55, "elapsed_time": "12:54:52", "remaining_time": "2:00:25"} +{"current_steps": 4737, "total_steps": 5472, "loss": 0.0418, "accuracy": 1.0, "learning_rate": 2.6988268714232236e-08, "epoch": 3.4608219178082194, "percentage": 86.57, "elapsed_time": "12:55:01", "remaining_time": "2:00:15"} +{"current_steps": 4738, "total_steps": 5472, "loss": 0.0332, "accuracy": 1.0, "learning_rate": 2.6916227383938727e-08, "epoch": 3.4615525114155252, "percentage": 86.59, "elapsed_time": "12:55:12", "remaining_time": "2:00:05"} +{"current_steps": 4739, "total_steps": 5472, "loss": 0.0288, "accuracy": 1.0, "learning_rate": 2.684427686321586e-08, "epoch": 3.462283105022831, "percentage": 86.6, "elapsed_time": "12:55:23", "remaining_time": "1:59:55"} +{"current_steps": 4740, "total_steps": 5472, "loss": 0.0166, "accuracy": 1.0, "learning_rate": 2.6772417181352312e-08, "epoch": 3.463013698630137, "percentage": 86.62, "elapsed_time": "12:55:32", "remaining_time": "1:59:46"} +{"current_steps": 4741, "total_steps": 5472, "loss": 0.0184, "accuracy": 1.0, "learning_rate": 2.6700648367599414e-08, "epoch": 3.463744292237443, "percentage": 86.64, "elapsed_time": "12:55:41", "remaining_time": "1:59:36"} +{"current_steps": 4742, "total_steps": 5472, "loss": 0.0323, "accuracy": 1.0, "learning_rate": 2.6628970451171908e-08, "epoch": 3.4644748858447487, "percentage": 86.66, "elapsed_time": "12:55:50", "remaining_time": "1:59:26"} +{"current_steps": 4743, "total_steps": 5472, "loss": 0.0191, "accuracy": 1.0, "learning_rate": 2.6557383461247223e-08, "epoch": 3.465205479452055, "percentage": 86.68, "elapsed_time": "12:55:59", "remaining_time": "1:59:16"} +{"current_steps": 4744, "total_steps": 5472, "loss": 0.0766, "accuracy": 1.0, "learning_rate": 2.6485887426966032e-08, "epoch": 3.465936073059361, "percentage": 86.7, "elapsed_time": "12:56:08", "remaining_time": "1:59:06"} +{"current_steps": 4745, "total_steps": 5472, "loss": 0.024, "accuracy": 1.0, "learning_rate": 2.6414482377431796e-08, "epoch": 3.466666666666667, "percentage": 86.71, "elapsed_time": "12:56:18", "remaining_time": "1:58:56"} +{"current_steps": 4746, "total_steps": 5472, "loss": 0.0399, "accuracy": 1.0, "learning_rate": 2.634316834171099e-08, "epoch": 3.4673972602739727, "percentage": 86.73, "elapsed_time": "12:56:26", "remaining_time": "1:58:46"} +{"current_steps": 4747, "total_steps": 5472, "loss": 0.0288, "accuracy": 1.0, "learning_rate": 2.627194534883309e-08, "epoch": 3.4681278538812785, "percentage": 86.75, "elapsed_time": "12:56:37", "remaining_time": "1:58:36"} +{"current_steps": 4748, "total_steps": 5472, "loss": 0.0239, "accuracy": 1.0, "learning_rate": 2.6200813427790487e-08, "epoch": 3.4688584474885844, "percentage": 86.77, "elapsed_time": "12:56:47", "remaining_time": "1:58:26"} +{"current_steps": 4749, "total_steps": 5472, "loss": 0.0311, "accuracy": 1.0, "learning_rate": 2.612977260753843e-08, "epoch": 3.4695890410958903, "percentage": 86.79, "elapsed_time": "12:56:57", "remaining_time": "1:58:17"} +{"current_steps": 4750, "total_steps": 5472, "loss": 0.0226, "accuracy": 1.0, "learning_rate": 2.605882291699521e-08, "epoch": 3.470319634703196, "percentage": 86.81, "elapsed_time": "12:57:08", "remaining_time": "1:58:07"} +{"current_steps": 4751, "total_steps": 5472, "loss": 0.0527, "accuracy": 1.0, "learning_rate": 2.598796438504186e-08, "epoch": 3.4710502283105025, "percentage": 86.82, "elapsed_time": "12:57:19", "remaining_time": "1:57:57"} +{"current_steps": 4752, "total_steps": 5472, "loss": 0.0223, "accuracy": 1.0, "learning_rate": 2.5917197040522532e-08, "epoch": 3.4717808219178083, "percentage": 86.84, "elapsed_time": "12:57:28", "remaining_time": "1:57:47"} +{"current_steps": 4753, "total_steps": 5472, "loss": 0.0397, "accuracy": 1.0, "learning_rate": 2.584652091224404e-08, "epoch": 3.472511415525114, "percentage": 86.86, "elapsed_time": "12:57:39", "remaining_time": "1:57:38"} +{"current_steps": 4754, "total_steps": 5472, "loss": 0.0377, "accuracy": 1.0, "learning_rate": 2.577593602897618e-08, "epoch": 3.47324200913242, "percentage": 86.88, "elapsed_time": "12:57:48", "remaining_time": "1:57:28"} +{"current_steps": 4755, "total_steps": 5472, "loss": 0.0204, "accuracy": 1.0, "learning_rate": 2.5705442419451522e-08, "epoch": 3.473972602739726, "percentage": 86.9, "elapsed_time": "12:57:57", "remaining_time": "1:57:18"} +{"current_steps": 4756, "total_steps": 5472, "loss": 0.0244, "accuracy": 1.0, "learning_rate": 2.5635040112365558e-08, "epoch": 3.474703196347032, "percentage": 86.92, "elapsed_time": "12:58:07", "remaining_time": "1:57:08"} +{"current_steps": 4757, "total_steps": 5472, "loss": 0.0115, "accuracy": 1.0, "learning_rate": 2.556472913637675e-08, "epoch": 3.4754337899543377, "percentage": 86.93, "elapsed_time": "12:58:17", "remaining_time": "1:56:58"} +{"current_steps": 4758, "total_steps": 5472, "loss": 0.031, "accuracy": 1.0, "learning_rate": 2.549450952010601e-08, "epoch": 3.4761643835616436, "percentage": 86.95, "elapsed_time": "12:58:27", "remaining_time": "1:56:49"} +{"current_steps": 4759, "total_steps": 5472, "loss": 0.0539, "accuracy": 1.0, "learning_rate": 2.542438129213742e-08, "epoch": 3.47689497716895, "percentage": 86.97, "elapsed_time": "12:58:35", "remaining_time": "1:56:39"} +{"current_steps": 4760, "total_steps": 5472, "loss": 0.0688, "accuracy": 1.0, "learning_rate": 2.5354344481017613e-08, "epoch": 3.477625570776256, "percentage": 86.99, "elapsed_time": "12:58:46", "remaining_time": "1:56:29"} +{"current_steps": 4761, "total_steps": 5472, "loss": 0.027, "accuracy": 1.0, "learning_rate": 2.5284399115256205e-08, "epoch": 3.4783561643835617, "percentage": 87.01, "elapsed_time": "12:58:56", "remaining_time": "1:56:19"} +{"current_steps": 4762, "total_steps": 5472, "loss": 0.0365, "accuracy": 1.0, "learning_rate": 2.52145452233255e-08, "epoch": 3.4790867579908675, "percentage": 87.02, "elapsed_time": "12:59:07", "remaining_time": "1:56:09"} +{"current_steps": 4763, "total_steps": 5472, "loss": 0.0438, "accuracy": 1.0, "learning_rate": 2.514478283366045e-08, "epoch": 3.4798173515981734, "percentage": 87.04, "elapsed_time": "12:59:16", "remaining_time": "1:55:59"} +{"current_steps": 4764, "total_steps": 5472, "loss": 0.013, "accuracy": 1.0, "learning_rate": 2.5075111974659e-08, "epoch": 3.4805479452054793, "percentage": 87.06, "elapsed_time": "12:59:26", "remaining_time": "1:55:50"} +{"current_steps": 4765, "total_steps": 5472, "loss": 0.0327, "accuracy": 1.0, "learning_rate": 2.500553267468164e-08, "epoch": 3.481278538812785, "percentage": 87.08, "elapsed_time": "12:59:36", "remaining_time": "1:55:40"} +{"current_steps": 4766, "total_steps": 5472, "loss": 0.0247, "accuracy": 1.0, "learning_rate": 2.4936044962051733e-08, "epoch": 3.4820091324200915, "percentage": 87.1, "elapsed_time": "12:59:46", "remaining_time": "1:55:30"} +{"current_steps": 4767, "total_steps": 5472, "loss": 0.0212, "accuracy": 1.0, "learning_rate": 2.486664886505524e-08, "epoch": 3.4827397260273973, "percentage": 87.12, "elapsed_time": "12:59:55", "remaining_time": "1:55:20"} +{"current_steps": 4768, "total_steps": 5472, "loss": 0.0196, "accuracy": 1.0, "learning_rate": 2.4797344411940813e-08, "epoch": 3.483470319634703, "percentage": 87.13, "elapsed_time": "13:00:05", "remaining_time": "1:55:10"} +{"current_steps": 4769, "total_steps": 5472, "loss": 0.0169, "accuracy": 1.0, "learning_rate": 2.472813163091997e-08, "epoch": 3.484200913242009, "percentage": 87.15, "elapsed_time": "13:00:14", "remaining_time": "1:55:00"} +{"current_steps": 4770, "total_steps": 5472, "loss": 0.0244, "accuracy": 1.0, "learning_rate": 2.4659010550166755e-08, "epoch": 3.484931506849315, "percentage": 87.17, "elapsed_time": "13:00:23", "remaining_time": "1:54:50"} +{"current_steps": 4771, "total_steps": 5472, "loss": 0.0204, "accuracy": 1.0, "learning_rate": 2.458998119781794e-08, "epoch": 3.485662100456621, "percentage": 87.19, "elapsed_time": "13:00:32", "remaining_time": "1:54:40"} +{"current_steps": 4772, "total_steps": 5472, "loss": 0.0333, "accuracy": 1.0, "learning_rate": 2.452104360197288e-08, "epoch": 3.4863926940639267, "percentage": 87.21, "elapsed_time": "13:00:41", "remaining_time": "1:54:31"} +{"current_steps": 4773, "total_steps": 5472, "loss": 0.0088, "accuracy": 1.0, "learning_rate": 2.445219779069374e-08, "epoch": 3.487123287671233, "percentage": 87.23, "elapsed_time": "13:00:50", "remaining_time": "1:54:21"} +{"current_steps": 4774, "total_steps": 5472, "loss": 0.0304, "accuracy": 1.0, "learning_rate": 2.43834437920053e-08, "epoch": 3.487853881278539, "percentage": 87.24, "elapsed_time": "13:00:59", "remaining_time": "1:54:11"} +{"current_steps": 4775, "total_steps": 5472, "loss": 0.0274, "accuracy": 1.0, "learning_rate": 2.4314781633894695e-08, "epoch": 3.4885844748858448, "percentage": 87.26, "elapsed_time": "13:01:07", "remaining_time": "1:54:01"} +{"current_steps": 4776, "total_steps": 5472, "loss": 0.0245, "accuracy": 1.0, "learning_rate": 2.424621134431204e-08, "epoch": 3.4893150684931507, "percentage": 87.28, "elapsed_time": "13:01:16", "remaining_time": "1:53:51"} +{"current_steps": 4777, "total_steps": 5472, "loss": 0.0528, "accuracy": 1.0, "learning_rate": 2.417773295116979e-08, "epoch": 3.4900456621004565, "percentage": 87.3, "elapsed_time": "13:01:24", "remaining_time": "1:53:41"} +{"current_steps": 4778, "total_steps": 5472, "loss": 0.0162, "accuracy": 1.0, "learning_rate": 2.4109346482343195e-08, "epoch": 3.4907762557077624, "percentage": 87.32, "elapsed_time": "13:01:34", "remaining_time": "1:53:31"} +{"current_steps": 4779, "total_steps": 5472, "loss": 0.0178, "accuracy": 1.0, "learning_rate": 2.404105196566994e-08, "epoch": 3.4915068493150683, "percentage": 87.34, "elapsed_time": "13:01:44", "remaining_time": "1:53:21"} +{"current_steps": 4780, "total_steps": 5472, "loss": 0.0155, "accuracy": 1.0, "learning_rate": 2.397284942895028e-08, "epoch": 3.4922374429223746, "percentage": 87.35, "elapsed_time": "13:01:53", "remaining_time": "1:53:11"} +{"current_steps": 4781, "total_steps": 5472, "loss": 0.0344, "accuracy": 1.0, "learning_rate": 2.3904738899947152e-08, "epoch": 3.4929680365296805, "percentage": 87.37, "elapsed_time": "13:02:02", "remaining_time": "1:53:01"} +{"current_steps": 4782, "total_steps": 5472, "loss": 0.0237, "accuracy": 1.0, "learning_rate": 2.3836720406385875e-08, "epoch": 3.4936986301369863, "percentage": 87.39, "elapsed_time": "13:02:11", "remaining_time": "1:52:51"} +{"current_steps": 4783, "total_steps": 5472, "loss": 0.0168, "accuracy": 1.0, "learning_rate": 2.3768793975954495e-08, "epoch": 3.494429223744292, "percentage": 87.41, "elapsed_time": "13:02:21", "remaining_time": "1:52:42"} +{"current_steps": 4784, "total_steps": 5472, "loss": 0.0102, "accuracy": 1.0, "learning_rate": 2.370095963630339e-08, "epoch": 3.495159817351598, "percentage": 87.43, "elapsed_time": "13:02:32", "remaining_time": "1:52:32"} +{"current_steps": 4785, "total_steps": 5472, "loss": 0.0326, "accuracy": 1.0, "learning_rate": 2.3633217415045565e-08, "epoch": 3.495890410958904, "percentage": 87.45, "elapsed_time": "13:02:43", "remaining_time": "1:52:22"} +{"current_steps": 4786, "total_steps": 5472, "loss": 0.0232, "accuracy": 1.0, "learning_rate": 2.356556733975651e-08, "epoch": 3.49662100456621, "percentage": 87.46, "elapsed_time": "13:02:53", "remaining_time": "1:52:12"} +{"current_steps": 4787, "total_steps": 5472, "loss": 0.0136, "accuracy": 1.0, "learning_rate": 2.3498009437974197e-08, "epoch": 3.497351598173516, "percentage": 87.48, "elapsed_time": "13:03:03", "remaining_time": "1:52:03"} +{"current_steps": 4788, "total_steps": 5472, "loss": 0.0369, "accuracy": 1.0, "learning_rate": 2.3430543737199048e-08, "epoch": 3.498082191780822, "percentage": 87.5, "elapsed_time": "13:03:12", "remaining_time": "1:51:53"} +{"current_steps": 4789, "total_steps": 5472, "loss": 0.0237, "accuracy": 1.0, "learning_rate": 2.3363170264893983e-08, "epoch": 3.498812785388128, "percentage": 87.52, "elapsed_time": "13:03:21", "remaining_time": "1:51:43"} +{"current_steps": 4790, "total_steps": 5472, "loss": 0.0224, "accuracy": 1.0, "learning_rate": 2.3295889048484368e-08, "epoch": 3.4995433789954338, "percentage": 87.54, "elapsed_time": "13:03:31", "remaining_time": "1:51:33"} +{"current_steps": 4791, "total_steps": 5472, "loss": 0.0242, "accuracy": 1.0, "learning_rate": 2.32287001153581e-08, "epoch": 3.5002739726027396, "percentage": 87.55, "elapsed_time": "13:03:42", "remaining_time": "1:51:23"} +{"current_steps": 4792, "total_steps": 5472, "loss": 0.0381, "accuracy": 1.0, "learning_rate": 2.316160349286539e-08, "epoch": 3.5010045662100455, "percentage": 87.57, "elapsed_time": "13:03:51", "remaining_time": "1:51:13"} +{"current_steps": 4793, "total_steps": 5472, "loss": 0.0321, "accuracy": 1.0, "learning_rate": 2.3094599208318883e-08, "epoch": 3.5017351598173514, "percentage": 87.59, "elapsed_time": "13:04:01", "remaining_time": "1:51:04"} +{"current_steps": 4794, "total_steps": 5472, "loss": 0.0478, "accuracy": 1.0, "learning_rate": 2.302768728899368e-08, "epoch": 3.5024657534246577, "percentage": 87.61, "elapsed_time": "13:04:10", "remaining_time": "1:50:54"} +{"current_steps": 4795, "total_steps": 5472, "loss": 0.0319, "accuracy": 1.0, "learning_rate": 2.2960867762127328e-08, "epoch": 3.5031963470319636, "percentage": 87.63, "elapsed_time": "13:04:21", "remaining_time": "1:50:44"} +{"current_steps": 4796, "total_steps": 5472, "loss": 0.0181, "accuracy": 1.0, "learning_rate": 2.2894140654919652e-08, "epoch": 3.5039269406392695, "percentage": 87.65, "elapsed_time": "13:04:31", "remaining_time": "1:50:34"} +{"current_steps": 4797, "total_steps": 5472, "loss": 0.0344, "accuracy": 1.0, "learning_rate": 2.2827505994532898e-08, "epoch": 3.5046575342465753, "percentage": 87.66, "elapsed_time": "13:04:40", "remaining_time": "1:50:24"} +{"current_steps": 4798, "total_steps": 5472, "loss": 0.0441, "accuracy": 1.0, "learning_rate": 2.276096380809181e-08, "epoch": 3.505388127853881, "percentage": 87.68, "elapsed_time": "13:04:49", "remaining_time": "1:50:14"} +{"current_steps": 4799, "total_steps": 5472, "loss": 0.0125, "accuracy": 1.0, "learning_rate": 2.2694514122683223e-08, "epoch": 3.506118721461187, "percentage": 87.7, "elapsed_time": "13:04:58", "remaining_time": "1:50:04"} +{"current_steps": 4800, "total_steps": 5472, "loss": 0.0159, "accuracy": 1.0, "learning_rate": 2.262815696535658e-08, "epoch": 3.506849315068493, "percentage": 87.72, "elapsed_time": "13:05:07", "remaining_time": "1:49:55"} +{"current_steps": 4801, "total_steps": 5472, "loss": 0.0438, "accuracy": 0.875, "learning_rate": 2.256189236312353e-08, "epoch": 3.5075799086757993, "percentage": 87.74, "elapsed_time": "13:05:16", "remaining_time": "1:49:45"} +{"current_steps": 4802, "total_steps": 5472, "loss": 0.0362, "accuracy": 1.0, "learning_rate": 2.2495720342958017e-08, "epoch": 3.508310502283105, "percentage": 87.76, "elapsed_time": "13:05:25", "remaining_time": "1:49:35"} +{"current_steps": 4803, "total_steps": 5472, "loss": 0.0268, "accuracy": 1.0, "learning_rate": 2.242964093179642e-08, "epoch": 3.509041095890411, "percentage": 87.77, "elapsed_time": "13:05:34", "remaining_time": "1:49:25"} +{"current_steps": 4804, "total_steps": 5472, "loss": 0.0305, "accuracy": 1.0, "learning_rate": 2.2363654156537264e-08, "epoch": 3.509771689497717, "percentage": 87.79, "elapsed_time": "13:05:43", "remaining_time": "1:49:15"} +{"current_steps": 4805, "total_steps": 5472, "loss": 0.0356, "accuracy": 1.0, "learning_rate": 2.2297760044041576e-08, "epoch": 3.5105022831050228, "percentage": 87.81, "elapsed_time": "13:05:52", "remaining_time": "1:49:05"} +{"current_steps": 4806, "total_steps": 5472, "loss": 0.0313, "accuracy": 1.0, "learning_rate": 2.2231958621132364e-08, "epoch": 3.5112328767123286, "percentage": 87.83, "elapsed_time": "13:06:01", "remaining_time": "1:48:55"} +{"current_steps": 4807, "total_steps": 5472, "loss": 0.0222, "accuracy": 1.0, "learning_rate": 2.216624991459523e-08, "epoch": 3.5119634703196345, "percentage": 87.85, "elapsed_time": "13:06:11", "remaining_time": "1:48:45"} +{"current_steps": 4808, "total_steps": 5472, "loss": 0.0144, "accuracy": 1.0, "learning_rate": 2.2100633951177755e-08, "epoch": 3.512694063926941, "percentage": 87.87, "elapsed_time": "13:06:20", "remaining_time": "1:48:35"} +{"current_steps": 4809, "total_steps": 5472, "loss": 0.0162, "accuracy": 1.0, "learning_rate": 2.2035110757589987e-08, "epoch": 3.5134246575342467, "percentage": 87.88, "elapsed_time": "13:06:29", "remaining_time": "1:48:25"} +{"current_steps": 4810, "total_steps": 5472, "loss": 0.0233, "accuracy": 1.0, "learning_rate": 2.1969680360504116e-08, "epoch": 3.5141552511415526, "percentage": 87.9, "elapsed_time": "13:06:38", "remaining_time": "1:48:15"} +{"current_steps": 4811, "total_steps": 5472, "loss": 0.0279, "accuracy": 1.0, "learning_rate": 2.1904342786554453e-08, "epoch": 3.5148858447488585, "percentage": 87.92, "elapsed_time": "13:06:48", "remaining_time": "1:48:06"} +{"current_steps": 4812, "total_steps": 5472, "loss": 0.0114, "accuracy": 1.0, "learning_rate": 2.1839098062337773e-08, "epoch": 3.5156164383561643, "percentage": 87.94, "elapsed_time": "13:06:56", "remaining_time": "1:47:56"} +{"current_steps": 4813, "total_steps": 5472, "loss": 0.0159, "accuracy": 1.0, "learning_rate": 2.177394621441278e-08, "epoch": 3.51634703196347, "percentage": 87.96, "elapsed_time": "13:07:07", "remaining_time": "1:47:46"} +{"current_steps": 4814, "total_steps": 5472, "loss": 0.056, "accuracy": 1.0, "learning_rate": 2.170888726930062e-08, "epoch": 3.517077625570776, "percentage": 87.98, "elapsed_time": "13:07:17", "remaining_time": "1:47:36"} +{"current_steps": 4815, "total_steps": 5472, "loss": 0.0382, "accuracy": 1.0, "learning_rate": 2.1643921253484466e-08, "epoch": 3.5178082191780824, "percentage": 87.99, "elapsed_time": "13:07:27", "remaining_time": "1:47:26"} +{"current_steps": 4816, "total_steps": 5472, "loss": 0.0304, "accuracy": 1.0, "learning_rate": 2.1579048193409637e-08, "epoch": 3.5185388127853883, "percentage": 88.01, "elapsed_time": "13:07:38", "remaining_time": "1:47:17"} +{"current_steps": 4817, "total_steps": 5472, "loss": 0.051, "accuracy": 1.0, "learning_rate": 2.151426811548379e-08, "epoch": 3.519269406392694, "percentage": 88.03, "elapsed_time": "13:07:47", "remaining_time": "1:47:07"} +{"current_steps": 4818, "total_steps": 5472, "loss": 0.0425, "accuracy": 1.0, "learning_rate": 2.1449581046076527e-08, "epoch": 3.52, "percentage": 88.05, "elapsed_time": "13:07:56", "remaining_time": "1:46:57"} +{"current_steps": 4819, "total_steps": 5472, "loss": 0.0355, "accuracy": 1.0, "learning_rate": 2.1384987011519696e-08, "epoch": 3.520730593607306, "percentage": 88.07, "elapsed_time": "13:08:07", "remaining_time": "1:46:47"} +{"current_steps": 4820, "total_steps": 5472, "loss": 0.0179, "accuracy": 1.0, "learning_rate": 2.1320486038107322e-08, "epoch": 3.5214611872146118, "percentage": 88.08, "elapsed_time": "13:08:17", "remaining_time": "1:46:37"} +{"current_steps": 4821, "total_steps": 5472, "loss": 0.0176, "accuracy": 1.0, "learning_rate": 2.1256078152095403e-08, "epoch": 3.5221917808219176, "percentage": 88.1, "elapsed_time": "13:08:26", "remaining_time": "1:46:28"} +{"current_steps": 4822, "total_steps": 5472, "loss": 0.0123, "accuracy": 1.0, "learning_rate": 2.1191763379702245e-08, "epoch": 3.522922374429224, "percentage": 88.12, "elapsed_time": "13:08:35", "remaining_time": "1:46:18"} +{"current_steps": 4823, "total_steps": 5472, "loss": 0.0225, "accuracy": 1.0, "learning_rate": 2.1127541747107986e-08, "epoch": 3.52365296803653, "percentage": 88.14, "elapsed_time": "13:08:44", "remaining_time": "1:46:08"} +{"current_steps": 4824, "total_steps": 5472, "loss": 0.0221, "accuracy": 1.0, "learning_rate": 2.1063413280455104e-08, "epoch": 3.5243835616438357, "percentage": 88.16, "elapsed_time": "13:08:54", "remaining_time": "1:45:58"} +{"current_steps": 4825, "total_steps": 5472, "loss": 0.0184, "accuracy": 1.0, "learning_rate": 2.099937800584797e-08, "epoch": 3.5251141552511416, "percentage": 88.18, "elapsed_time": "13:09:04", "remaining_time": "1:45:48"} +{"current_steps": 4826, "total_steps": 5472, "loss": 0.0203, "accuracy": 1.0, "learning_rate": 2.0935435949353152e-08, "epoch": 3.5258447488584475, "percentage": 88.19, "elapsed_time": "13:09:12", "remaining_time": "1:45:38"} +{"current_steps": 4827, "total_steps": 5472, "loss": 0.0425, "accuracy": 1.0, "learning_rate": 2.0871587136999268e-08, "epoch": 3.5265753424657533, "percentage": 88.21, "elapsed_time": "13:09:22", "remaining_time": "1:45:28"} +{"current_steps": 4828, "total_steps": 5472, "loss": 0.0408, "accuracy": 1.0, "learning_rate": 2.080783159477681e-08, "epoch": 3.527305936073059, "percentage": 88.23, "elapsed_time": "13:09:32", "remaining_time": "1:45:18"} +{"current_steps": 4829, "total_steps": 5472, "loss": 0.0269, "accuracy": 1.0, "learning_rate": 2.0744169348638484e-08, "epoch": 3.5280365296803655, "percentage": 88.25, "elapsed_time": "13:09:40", "remaining_time": "1:45:08"} +{"current_steps": 4830, "total_steps": 5472, "loss": 0.0256, "accuracy": 1.0, "learning_rate": 2.06806004244989e-08, "epoch": 3.5287671232876714, "percentage": 88.27, "elapsed_time": "13:09:50", "remaining_time": "1:44:59"} +{"current_steps": 4831, "total_steps": 5472, "loss": 0.0284, "accuracy": 1.0, "learning_rate": 2.061712484823483e-08, "epoch": 3.5294977168949773, "percentage": 88.29, "elapsed_time": "13:09:58", "remaining_time": "1:44:49"} +{"current_steps": 4832, "total_steps": 5472, "loss": 0.0315, "accuracy": 1.0, "learning_rate": 2.0553742645684908e-08, "epoch": 3.530228310502283, "percentage": 88.3, "elapsed_time": "13:10:08", "remaining_time": "1:44:39"} +{"current_steps": 4833, "total_steps": 5472, "loss": 0.0244, "accuracy": 1.0, "learning_rate": 2.049045384264972e-08, "epoch": 3.530958904109589, "percentage": 88.32, "elapsed_time": "13:10:16", "remaining_time": "1:44:29"} +{"current_steps": 4834, "total_steps": 5472, "loss": 0.043, "accuracy": 1.0, "learning_rate": 2.0427258464892072e-08, "epoch": 3.531689497716895, "percentage": 88.34, "elapsed_time": "13:10:27", "remaining_time": "1:44:19"} +{"current_steps": 4835, "total_steps": 5472, "loss": 0.0562, "accuracy": 1.0, "learning_rate": 2.0364156538136472e-08, "epoch": 3.5324200913242008, "percentage": 88.36, "elapsed_time": "13:10:36", "remaining_time": "1:44:09"} +{"current_steps": 4836, "total_steps": 5472, "loss": 0.0131, "accuracy": 1.0, "learning_rate": 2.0301148088069515e-08, "epoch": 3.533150684931507, "percentage": 88.38, "elapsed_time": "13:10:47", "remaining_time": "1:43:59"} +{"current_steps": 4837, "total_steps": 5472, "loss": 0.0419, "accuracy": 1.0, "learning_rate": 2.023823314033976e-08, "epoch": 3.5338812785388125, "percentage": 88.4, "elapsed_time": "13:10:56", "remaining_time": "1:43:50"} +{"current_steps": 4838, "total_steps": 5472, "loss": 0.0265, "accuracy": 1.0, "learning_rate": 2.0175411720557616e-08, "epoch": 3.534611872146119, "percentage": 88.41, "elapsed_time": "13:11:06", "remaining_time": "1:43:40"} +{"current_steps": 4839, "total_steps": 5472, "loss": 0.0396, "accuracy": 1.0, "learning_rate": 2.011268385429557e-08, "epoch": 3.5353424657534247, "percentage": 88.43, "elapsed_time": "13:11:15", "remaining_time": "1:43:30"} +{"current_steps": 4840, "total_steps": 5472, "loss": 0.0229, "accuracy": 1.0, "learning_rate": 2.005004956708789e-08, "epoch": 3.5360730593607306, "percentage": 88.45, "elapsed_time": "13:11:24", "remaining_time": "1:43:20"} +{"current_steps": 4841, "total_steps": 5472, "loss": 0.0215, "accuracy": 1.0, "learning_rate": 1.9987508884430764e-08, "epoch": 3.5368036529680364, "percentage": 88.47, "elapsed_time": "13:11:33", "remaining_time": "1:43:10"} +{"current_steps": 4842, "total_steps": 5472, "loss": 0.0442, "accuracy": 1.0, "learning_rate": 1.9925061831782302e-08, "epoch": 3.5375342465753423, "percentage": 88.49, "elapsed_time": "13:11:44", "remaining_time": "1:43:00"} +{"current_steps": 4843, "total_steps": 5472, "loss": 0.0314, "accuracy": 1.0, "learning_rate": 1.986270843456253e-08, "epoch": 3.5382648401826486, "percentage": 88.51, "elapsed_time": "13:11:53", "remaining_time": "1:42:50"} +{"current_steps": 4844, "total_steps": 5472, "loss": 0.0499, "accuracy": 0.875, "learning_rate": 1.9800448718153423e-08, "epoch": 3.538995433789954, "percentage": 88.52, "elapsed_time": "13:12:03", "remaining_time": "1:42:41"} +{"current_steps": 4845, "total_steps": 5472, "loss": 0.0379, "accuracy": 1.0, "learning_rate": 1.973828270789854e-08, "epoch": 3.5397260273972604, "percentage": 88.54, "elapsed_time": "13:12:12", "remaining_time": "1:42:31"} +{"current_steps": 4846, "total_steps": 5472, "loss": 0.0319, "accuracy": 1.0, "learning_rate": 1.9676210429103613e-08, "epoch": 3.5404566210045663, "percentage": 88.56, "elapsed_time": "13:12:21", "remaining_time": "1:42:21"} +{"current_steps": 4847, "total_steps": 5472, "loss": 0.0173, "accuracy": 1.0, "learning_rate": 1.9614231907035984e-08, "epoch": 3.541187214611872, "percentage": 88.58, "elapsed_time": "13:12:31", "remaining_time": "1:42:11"} +{"current_steps": 4848, "total_steps": 5472, "loss": 0.0385, "accuracy": 1.0, "learning_rate": 1.955234716692508e-08, "epoch": 3.541917808219178, "percentage": 88.6, "elapsed_time": "13:12:40", "remaining_time": "1:42:01"} +{"current_steps": 4849, "total_steps": 5472, "loss": 0.0435, "accuracy": 1.0, "learning_rate": 1.9490556233961898e-08, "epoch": 3.542648401826484, "percentage": 88.61, "elapsed_time": "13:12:49", "remaining_time": "1:41:51"} +{"current_steps": 4850, "total_steps": 5472, "loss": 0.013, "accuracy": 1.0, "learning_rate": 1.9428859133299364e-08, "epoch": 3.54337899543379, "percentage": 88.63, "elapsed_time": "13:12:59", "remaining_time": "1:41:41"} +{"current_steps": 4851, "total_steps": 5472, "loss": 0.0402, "accuracy": 1.0, "learning_rate": 1.9367255890052225e-08, "epoch": 3.5441095890410956, "percentage": 88.65, "elapsed_time": "13:13:09", "remaining_time": "1:41:32"} +{"current_steps": 4852, "total_steps": 5472, "loss": 0.0198, "accuracy": 1.0, "learning_rate": 1.9305746529296978e-08, "epoch": 3.544840182648402, "percentage": 88.67, "elapsed_time": "13:13:18", "remaining_time": "1:41:22"} +{"current_steps": 4853, "total_steps": 5472, "loss": 0.0647, "accuracy": 1.0, "learning_rate": 1.9244331076071986e-08, "epoch": 3.545570776255708, "percentage": 88.69, "elapsed_time": "13:13:28", "remaining_time": "1:41:12"} +{"current_steps": 4854, "total_steps": 5472, "loss": 0.023, "accuracy": 1.0, "learning_rate": 1.9183009555377246e-08, "epoch": 3.5463013698630137, "percentage": 88.71, "elapsed_time": "13:13:38", "remaining_time": "1:41:02"} +{"current_steps": 4855, "total_steps": 5472, "loss": 0.018, "accuracy": 1.0, "learning_rate": 1.9121781992174598e-08, "epoch": 3.5470319634703196, "percentage": 88.72, "elapsed_time": "13:13:48", "remaining_time": "1:40:52"} +{"current_steps": 4856, "total_steps": 5472, "loss": 0.0397, "accuracy": 1.0, "learning_rate": 1.9060648411387714e-08, "epoch": 3.5477625570776254, "percentage": 88.74, "elapsed_time": "13:13:57", "remaining_time": "1:40:42"} +{"current_steps": 4857, "total_steps": 5472, "loss": 0.0123, "accuracy": 1.0, "learning_rate": 1.8999608837901858e-08, "epoch": 3.5484931506849318, "percentage": 88.76, "elapsed_time": "13:14:06", "remaining_time": "1:40:33"} +{"current_steps": 4858, "total_steps": 5472, "loss": 0.0299, "accuracy": 1.0, "learning_rate": 1.893866329656413e-08, "epoch": 3.549223744292237, "percentage": 88.78, "elapsed_time": "13:14:15", "remaining_time": "1:40:23"} +{"current_steps": 4859, "total_steps": 5472, "loss": 0.0268, "accuracy": 1.0, "learning_rate": 1.8877811812183257e-08, "epoch": 3.5499543378995435, "percentage": 88.8, "elapsed_time": "13:14:23", "remaining_time": "1:40:13"} +{"current_steps": 4860, "total_steps": 5472, "loss": 0.0149, "accuracy": 1.0, "learning_rate": 1.8817054409529825e-08, "epoch": 3.5506849315068494, "percentage": 88.82, "elapsed_time": "13:14:33", "remaining_time": "1:40:03"} +{"current_steps": 4861, "total_steps": 5472, "loss": 0.0294, "accuracy": 1.0, "learning_rate": 1.8756391113336018e-08, "epoch": 3.5514155251141553, "percentage": 88.83, "elapsed_time": "13:14:41", "remaining_time": "1:39:53"} +{"current_steps": 4862, "total_steps": 5472, "loss": 0.0147, "accuracy": 1.0, "learning_rate": 1.8695821948295663e-08, "epoch": 3.552146118721461, "percentage": 88.85, "elapsed_time": "13:14:52", "remaining_time": "1:39:43"} +{"current_steps": 4863, "total_steps": 5472, "loss": 0.0228, "accuracy": 1.0, "learning_rate": 1.8635346939064432e-08, "epoch": 3.552876712328767, "percentage": 88.87, "elapsed_time": "13:15:01", "remaining_time": "1:39:33"} +{"current_steps": 4864, "total_steps": 5472, "loss": 0.0464, "accuracy": 1.0, "learning_rate": 1.857496611025952e-08, "epoch": 3.5536073059360733, "percentage": 88.89, "elapsed_time": "13:15:10", "remaining_time": "1:39:23"} +{"current_steps": 4865, "total_steps": 5472, "loss": 0.0265, "accuracy": 1.0, "learning_rate": 1.8514679486459877e-08, "epoch": 3.5543378995433788, "percentage": 88.91, "elapsed_time": "13:15:19", "remaining_time": "1:39:13"} +{"current_steps": 4866, "total_steps": 5472, "loss": 0.0313, "accuracy": 1.0, "learning_rate": 1.8454487092206095e-08, "epoch": 3.555068493150685, "percentage": 88.93, "elapsed_time": "13:15:29", "remaining_time": "1:39:04"} +{"current_steps": 4867, "total_steps": 5472, "loss": 0.0135, "accuracy": 1.0, "learning_rate": 1.8394388952000295e-08, "epoch": 3.555799086757991, "percentage": 88.94, "elapsed_time": "13:15:39", "remaining_time": "1:38:54"} +{"current_steps": 4868, "total_steps": 5472, "loss": 0.0152, "accuracy": 1.0, "learning_rate": 1.8334385090306382e-08, "epoch": 3.556529680365297, "percentage": 88.96, "elapsed_time": "13:15:48", "remaining_time": "1:38:44"} +{"current_steps": 4869, "total_steps": 5472, "loss": 0.0233, "accuracy": 1.0, "learning_rate": 1.8274475531549816e-08, "epoch": 3.5572602739726027, "percentage": 88.98, "elapsed_time": "13:15:58", "remaining_time": "1:38:34"} +{"current_steps": 4870, "total_steps": 5472, "loss": 0.022, "accuracy": 1.0, "learning_rate": 1.8214660300117702e-08, "epoch": 3.5579908675799086, "percentage": 89.0, "elapsed_time": "13:16:10", "remaining_time": "1:38:25"} +{"current_steps": 4871, "total_steps": 5472, "loss": 0.0188, "accuracy": 1.0, "learning_rate": 1.8154939420358645e-08, "epoch": 3.558721461187215, "percentage": 89.02, "elapsed_time": "13:16:20", "remaining_time": "1:38:15"} +{"current_steps": 4872, "total_steps": 5472, "loss": 0.015, "accuracy": 1.0, "learning_rate": 1.809531291658295e-08, "epoch": 3.5594520547945203, "percentage": 89.04, "elapsed_time": "13:16:31", "remaining_time": "1:38:05"} +{"current_steps": 4873, "total_steps": 5472, "loss": 0.0117, "accuracy": 1.0, "learning_rate": 1.8035780813062535e-08, "epoch": 3.5601826484018266, "percentage": 89.05, "elapsed_time": "13:16:41", "remaining_time": "1:37:55"} +{"current_steps": 4874, "total_steps": 5472, "loss": 0.0337, "accuracy": 1.0, "learning_rate": 1.7976343134030763e-08, "epoch": 3.5609132420091325, "percentage": 89.07, "elapsed_time": "13:16:50", "remaining_time": "1:37:45"} +{"current_steps": 4875, "total_steps": 5472, "loss": 0.0204, "accuracy": 1.0, "learning_rate": 1.7916999903682644e-08, "epoch": 3.5616438356164384, "percentage": 89.09, "elapsed_time": "13:17:01", "remaining_time": "1:37:36"} +{"current_steps": 4876, "total_steps": 5472, "loss": 0.0638, "accuracy": 1.0, "learning_rate": 1.785775114617466e-08, "epoch": 3.5623744292237443, "percentage": 89.11, "elapsed_time": "13:17:11", "remaining_time": "1:37:26"} +{"current_steps": 4877, "total_steps": 5472, "loss": 0.044, "accuracy": 1.0, "learning_rate": 1.7798596885625045e-08, "epoch": 3.56310502283105, "percentage": 89.13, "elapsed_time": "13:17:21", "remaining_time": "1:37:16"} +{"current_steps": 4878, "total_steps": 5472, "loss": 0.0461, "accuracy": 1.0, "learning_rate": 1.773953714611326e-08, "epoch": 3.563835616438356, "percentage": 89.14, "elapsed_time": "13:17:32", "remaining_time": "1:37:07"} +{"current_steps": 4879, "total_steps": 5472, "loss": 0.054, "accuracy": 1.0, "learning_rate": 1.7680571951680573e-08, "epoch": 3.564566210045662, "percentage": 89.16, "elapsed_time": "13:17:41", "remaining_time": "1:36:57"} +{"current_steps": 4880, "total_steps": 5472, "loss": 0.0731, "accuracy": 1.0, "learning_rate": 1.762170132632962e-08, "epoch": 3.565296803652968, "percentage": 89.18, "elapsed_time": "13:17:51", "remaining_time": "1:36:47"} +{"current_steps": 4881, "total_steps": 5472, "loss": 0.0296, "accuracy": 1.0, "learning_rate": 1.7562925294024504e-08, "epoch": 3.566027397260274, "percentage": 89.2, "elapsed_time": "13:17:59", "remaining_time": "1:36:37"} +{"current_steps": 4882, "total_steps": 5472, "loss": 0.0301, "accuracy": 1.0, "learning_rate": 1.7504243878690927e-08, "epoch": 3.56675799086758, "percentage": 89.22, "elapsed_time": "13:18:09", "remaining_time": "1:36:27"} +{"current_steps": 4883, "total_steps": 5472, "loss": 0.0258, "accuracy": 1.0, "learning_rate": 1.744565710421608e-08, "epoch": 3.567488584474886, "percentage": 89.24, "elapsed_time": "13:18:18", "remaining_time": "1:36:17"} +{"current_steps": 4884, "total_steps": 5472, "loss": 0.0318, "accuracy": 1.0, "learning_rate": 1.738716499444845e-08, "epoch": 3.5682191780821917, "percentage": 89.25, "elapsed_time": "13:18:28", "remaining_time": "1:36:07"} +{"current_steps": 4885, "total_steps": 5472, "loss": 0.0219, "accuracy": 1.0, "learning_rate": 1.732876757319826e-08, "epoch": 3.5689497716894976, "percentage": 89.27, "elapsed_time": "13:18:37", "remaining_time": "1:35:58"} +{"current_steps": 4886, "total_steps": 5472, "loss": 0.0291, "accuracy": 1.0, "learning_rate": 1.727046486423697e-08, "epoch": 3.5696803652968034, "percentage": 89.29, "elapsed_time": "13:18:47", "remaining_time": "1:35:48"} +{"current_steps": 4887, "total_steps": 5472, "loss": 0.0167, "accuracy": 1.0, "learning_rate": 1.7212256891297656e-08, "epoch": 3.5704109589041098, "percentage": 89.31, "elapsed_time": "13:18:56", "remaining_time": "1:35:38"} +{"current_steps": 4888, "total_steps": 5472, "loss": 0.0699, "accuracy": 1.0, "learning_rate": 1.715414367807458e-08, "epoch": 3.5711415525114156, "percentage": 89.33, "elapsed_time": "13:19:06", "remaining_time": "1:35:28"} +{"current_steps": 4889, "total_steps": 5472, "loss": 0.0226, "accuracy": 1.0, "learning_rate": 1.709612524822368e-08, "epoch": 3.5718721461187215, "percentage": 89.35, "elapsed_time": "13:19:15", "remaining_time": "1:35:18"} +{"current_steps": 4890, "total_steps": 5472, "loss": 0.0179, "accuracy": 1.0, "learning_rate": 1.7038201625362292e-08, "epoch": 3.5726027397260274, "percentage": 89.36, "elapsed_time": "13:19:25", "remaining_time": "1:35:08"} +{"current_steps": 4891, "total_steps": 5472, "loss": 0.0376, "accuracy": 1.0, "learning_rate": 1.6980372833068967e-08, "epoch": 3.5733333333333333, "percentage": 89.38, "elapsed_time": "13:19:34", "remaining_time": "1:34:58"} +{"current_steps": 4892, "total_steps": 5472, "loss": 0.036, "accuracy": 1.0, "learning_rate": 1.6922638894883906e-08, "epoch": 3.574063926940639, "percentage": 89.4, "elapsed_time": "13:19:44", "remaining_time": "1:34:49"} +{"current_steps": 4893, "total_steps": 5472, "loss": 0.0933, "accuracy": 1.0, "learning_rate": 1.686499983430842e-08, "epoch": 3.574794520547945, "percentage": 89.42, "elapsed_time": "13:19:57", "remaining_time": "1:34:39"} +{"current_steps": 4894, "total_steps": 5472, "loss": 0.0259, "accuracy": 1.0, "learning_rate": 1.680745567480546e-08, "epoch": 3.5755251141552513, "percentage": 89.44, "elapsed_time": "13:20:06", "remaining_time": "1:34:29"} +{"current_steps": 4895, "total_steps": 5472, "loss": 0.0159, "accuracy": 1.0, "learning_rate": 1.6750006439799123e-08, "epoch": 3.576255707762557, "percentage": 89.46, "elapsed_time": "13:20:15", "remaining_time": "1:34:19"} +{"current_steps": 4896, "total_steps": 5472, "loss": 0.0139, "accuracy": 1.0, "learning_rate": 1.6692652152675125e-08, "epoch": 3.576986301369863, "percentage": 89.47, "elapsed_time": "13:20:26", "remaining_time": "1:34:10"} +{"current_steps": 4897, "total_steps": 5472, "loss": 0.018, "accuracy": 1.0, "learning_rate": 1.663539283678028e-08, "epoch": 3.577716894977169, "percentage": 89.49, "elapsed_time": "13:20:34", "remaining_time": "1:34:00"} +{"current_steps": 4898, "total_steps": 5472, "loss": 0.046, "accuracy": 1.0, "learning_rate": 1.6578228515422842e-08, "epoch": 3.578447488584475, "percentage": 89.51, "elapsed_time": "13:20:45", "remaining_time": "1:33:50"} +{"current_steps": 4899, "total_steps": 5472, "loss": 0.0228, "accuracy": 1.0, "learning_rate": 1.6521159211872445e-08, "epoch": 3.5791780821917807, "percentage": 89.53, "elapsed_time": "13:20:55", "remaining_time": "1:33:40"} +{"current_steps": 4900, "total_steps": 5472, "loss": 0.0259, "accuracy": 1.0, "learning_rate": 1.646418494935997e-08, "epoch": 3.5799086757990866, "percentage": 89.55, "elapsed_time": "13:21:03", "remaining_time": "1:33:30"} +{"current_steps": 4901, "total_steps": 5472, "loss": 0.0392, "accuracy": 1.0, "learning_rate": 1.6407305751077628e-08, "epoch": 3.580639269406393, "percentage": 89.57, "elapsed_time": "13:21:13", "remaining_time": "1:33:20"} +{"current_steps": 4902, "total_steps": 5472, "loss": 0.0341, "accuracy": 1.0, "learning_rate": 1.6350521640179e-08, "epoch": 3.5813698630136988, "percentage": 89.58, "elapsed_time": "13:21:22", "remaining_time": "1:33:10"} +{"current_steps": 4903, "total_steps": 5472, "loss": 0.0112, "accuracy": 1.0, "learning_rate": 1.629383263977882e-08, "epoch": 3.5821004566210046, "percentage": 89.6, "elapsed_time": "13:21:31", "remaining_time": "1:33:01"} +{"current_steps": 4904, "total_steps": 5472, "loss": 0.0202, "accuracy": 1.0, "learning_rate": 1.623723877295327e-08, "epoch": 3.5828310502283105, "percentage": 89.62, "elapsed_time": "13:21:40", "remaining_time": "1:32:51"} +{"current_steps": 4905, "total_steps": 5472, "loss": 0.0403, "accuracy": 1.0, "learning_rate": 1.6180740062739672e-08, "epoch": 3.5835616438356164, "percentage": 89.64, "elapsed_time": "13:21:49", "remaining_time": "1:32:41"} +{"current_steps": 4906, "total_steps": 5472, "loss": 0.0338, "accuracy": 1.0, "learning_rate": 1.6124336532136684e-08, "epoch": 3.5842922374429222, "percentage": 89.66, "elapsed_time": "13:21:59", "remaining_time": "1:32:31"} +{"current_steps": 4907, "total_steps": 5472, "loss": 0.0206, "accuracy": 1.0, "learning_rate": 1.6068028204104216e-08, "epoch": 3.585022831050228, "percentage": 89.67, "elapsed_time": "13:22:11", "remaining_time": "1:32:21"} +{"current_steps": 4908, "total_steps": 5472, "loss": 0.013, "accuracy": 1.0, "learning_rate": 1.601181510156338e-08, "epoch": 3.5857534246575344, "percentage": 89.69, "elapsed_time": "13:22:22", "remaining_time": "1:32:12"} +{"current_steps": 4909, "total_steps": 5472, "loss": 0.0235, "accuracy": 1.0, "learning_rate": 1.595569724739665e-08, "epoch": 3.5864840182648403, "percentage": 89.71, "elapsed_time": "13:22:31", "remaining_time": "1:32:02"} +{"current_steps": 4910, "total_steps": 5472, "loss": 0.0206, "accuracy": 1.0, "learning_rate": 1.589967466444747e-08, "epoch": 3.587214611872146, "percentage": 89.73, "elapsed_time": "13:22:40", "remaining_time": "1:31:52"} +{"current_steps": 4911, "total_steps": 5472, "loss": 0.0234, "accuracy": 1.0, "learning_rate": 1.58437473755208e-08, "epoch": 3.587945205479452, "percentage": 89.75, "elapsed_time": "13:22:49", "remaining_time": "1:31:42"} +{"current_steps": 4912, "total_steps": 5472, "loss": 0.0201, "accuracy": 1.0, "learning_rate": 1.578791540338259e-08, "epoch": 3.588675799086758, "percentage": 89.77, "elapsed_time": "13:22:58", "remaining_time": "1:31:32"} +{"current_steps": 4913, "total_steps": 5472, "loss": 0.0207, "accuracy": 1.0, "learning_rate": 1.5732178770760164e-08, "epoch": 3.589406392694064, "percentage": 89.78, "elapsed_time": "13:23:09", "remaining_time": "1:31:22"} +{"current_steps": 4914, "total_steps": 5472, "loss": 0.0373, "accuracy": 1.0, "learning_rate": 1.5676537500341895e-08, "epoch": 3.5901369863013697, "percentage": 89.8, "elapsed_time": "13:23:20", "remaining_time": "1:31:13"} +{"current_steps": 4915, "total_steps": 5472, "loss": 0.0102, "accuracy": 1.0, "learning_rate": 1.562099161477737e-08, "epoch": 3.590867579908676, "percentage": 89.82, "elapsed_time": "13:23:28", "remaining_time": "1:31:03"} +{"current_steps": 4916, "total_steps": 5472, "loss": 0.0211, "accuracy": 1.0, "learning_rate": 1.5565541136677406e-08, "epoch": 3.591598173515982, "percentage": 89.84, "elapsed_time": "13:23:38", "remaining_time": "1:30:53"} +{"current_steps": 4917, "total_steps": 5472, "loss": 0.0534, "accuracy": 1.0, "learning_rate": 1.551018608861393e-08, "epoch": 3.5923287671232877, "percentage": 89.86, "elapsed_time": "13:23:48", "remaining_time": "1:30:43"} +{"current_steps": 4918, "total_steps": 5472, "loss": 0.0276, "accuracy": 1.0, "learning_rate": 1.545492649312005e-08, "epoch": 3.5930593607305936, "percentage": 89.88, "elapsed_time": "13:23:59", "remaining_time": "1:30:34"} +{"current_steps": 4919, "total_steps": 5472, "loss": 0.017, "accuracy": 1.0, "learning_rate": 1.539976237269003e-08, "epoch": 3.5937899543378995, "percentage": 89.89, "elapsed_time": "13:24:07", "remaining_time": "1:30:24"} +{"current_steps": 4920, "total_steps": 5472, "loss": 0.0279, "accuracy": 1.0, "learning_rate": 1.5344693749779146e-08, "epoch": 3.5945205479452054, "percentage": 89.91, "elapsed_time": "13:24:18", "remaining_time": "1:30:14"} +{"current_steps": 4921, "total_steps": 5472, "loss": 0.036, "accuracy": 1.0, "learning_rate": 1.5289720646804033e-08, "epoch": 3.5952511415525112, "percentage": 89.93, "elapsed_time": "13:24:28", "remaining_time": "1:30:04"} +{"current_steps": 4922, "total_steps": 5472, "loss": 0.0401, "accuracy": 1.0, "learning_rate": 1.5234843086142258e-08, "epoch": 3.5959817351598176, "percentage": 89.95, "elapsed_time": "13:24:40", "remaining_time": "1:29:55"} +{"current_steps": 4923, "total_steps": 5472, "loss": 0.0339, "accuracy": 1.0, "learning_rate": 1.5180061090132505e-08, "epoch": 3.5967123287671234, "percentage": 89.97, "elapsed_time": "13:24:50", "remaining_time": "1:29:45"} +{"current_steps": 4924, "total_steps": 5472, "loss": 0.031, "accuracy": 1.0, "learning_rate": 1.5125374681074637e-08, "epoch": 3.5974429223744293, "percentage": 89.99, "elapsed_time": "13:24:59", "remaining_time": "1:29:35"} +{"current_steps": 4925, "total_steps": 5472, "loss": 0.011, "accuracy": 1.0, "learning_rate": 1.5070783881229537e-08, "epoch": 3.598173515981735, "percentage": 90.0, "elapsed_time": "13:25:09", "remaining_time": "1:29:25"} +{"current_steps": 4926, "total_steps": 5472, "loss": 0.0146, "accuracy": 1.0, "learning_rate": 1.5016288712819292e-08, "epoch": 3.598904109589041, "percentage": 90.02, "elapsed_time": "13:25:19", "remaining_time": "1:29:15"} +{"current_steps": 4927, "total_steps": 5472, "loss": 0.017, "accuracy": 1.0, "learning_rate": 1.4961889198026932e-08, "epoch": 3.599634703196347, "percentage": 90.04, "elapsed_time": "13:25:30", "remaining_time": "1:29:06"} +{"current_steps": 4928, "total_steps": 5472, "loss": 0.0325, "accuracy": 1.0, "learning_rate": 1.4907585358996555e-08, "epoch": 3.600365296803653, "percentage": 90.06, "elapsed_time": "13:25:41", "remaining_time": "1:28:56"} +{"current_steps": 4929, "total_steps": 5472, "loss": 0.0137, "accuracy": 1.0, "learning_rate": 1.4853377217833308e-08, "epoch": 3.601095890410959, "percentage": 90.08, "elapsed_time": "13:25:51", "remaining_time": "1:28:46"} +{"current_steps": 4930, "total_steps": 5472, "loss": 0.0239, "accuracy": 1.0, "learning_rate": 1.479926479660354e-08, "epoch": 3.601826484018265, "percentage": 90.1, "elapsed_time": "13:26:00", "remaining_time": "1:28:36"} +{"current_steps": 4931, "total_steps": 5472, "loss": 0.041, "accuracy": 1.0, "learning_rate": 1.4745248117334463e-08, "epoch": 3.602557077625571, "percentage": 90.11, "elapsed_time": "13:26:11", "remaining_time": "1:28:27"} +{"current_steps": 4932, "total_steps": 5472, "loss": 0.0403, "accuracy": 1.0, "learning_rate": 1.4691327202014298e-08, "epoch": 3.6032876712328767, "percentage": 90.13, "elapsed_time": "13:26:21", "remaining_time": "1:28:17"} +{"current_steps": 4933, "total_steps": 5472, "loss": 0.0404, "accuracy": 1.0, "learning_rate": 1.4637502072592484e-08, "epoch": 3.6040182648401826, "percentage": 90.15, "elapsed_time": "13:26:33", "remaining_time": "1:28:07"} +{"current_steps": 4934, "total_steps": 5472, "loss": 0.0166, "accuracy": 1.0, "learning_rate": 1.4583772750979246e-08, "epoch": 3.6047488584474885, "percentage": 90.17, "elapsed_time": "13:26:44", "remaining_time": "1:27:57"} +{"current_steps": 4935, "total_steps": 5472, "loss": 0.057, "accuracy": 1.0, "learning_rate": 1.4530139259045949e-08, "epoch": 3.6054794520547944, "percentage": 90.19, "elapsed_time": "13:26:53", "remaining_time": "1:27:48"} +{"current_steps": 4936, "total_steps": 5472, "loss": 0.0202, "accuracy": 1.0, "learning_rate": 1.4476601618624906e-08, "epoch": 3.6062100456621007, "percentage": 90.2, "elapsed_time": "13:27:01", "remaining_time": "1:27:38"} +{"current_steps": 4937, "total_steps": 5472, "loss": 0.0386, "accuracy": 1.0, "learning_rate": 1.4423159851509381e-08, "epoch": 3.6069406392694066, "percentage": 90.22, "elapsed_time": "13:27:13", "remaining_time": "1:27:28"} +{"current_steps": 4938, "total_steps": 5472, "loss": 0.016, "accuracy": 1.0, "learning_rate": 1.4369813979453665e-08, "epoch": 3.6076712328767124, "percentage": 90.24, "elapsed_time": "13:27:21", "remaining_time": "1:27:18"} +{"current_steps": 4939, "total_steps": 5472, "loss": 0.0268, "accuracy": 1.0, "learning_rate": 1.4316564024172972e-08, "epoch": 3.6084018264840183, "percentage": 90.26, "elapsed_time": "13:27:29", "remaining_time": "1:27:08"} +{"current_steps": 4940, "total_steps": 5472, "loss": 0.0157, "accuracy": 1.0, "learning_rate": 1.4263410007343546e-08, "epoch": 3.609132420091324, "percentage": 90.28, "elapsed_time": "13:27:38", "remaining_time": "1:26:58"} +{"current_steps": 4941, "total_steps": 5472, "loss": 0.0376, "accuracy": 1.0, "learning_rate": 1.4210351950602411e-08, "epoch": 3.60986301369863, "percentage": 90.3, "elapsed_time": "13:27:48", "remaining_time": "1:26:48"} +{"current_steps": 4942, "total_steps": 5472, "loss": 0.0442, "accuracy": 1.0, "learning_rate": 1.415738987554771e-08, "epoch": 3.610593607305936, "percentage": 90.31, "elapsed_time": "13:27:57", "remaining_time": "1:26:38"} +{"current_steps": 4943, "total_steps": 5472, "loss": 0.0265, "accuracy": 1.0, "learning_rate": 1.4104523803738444e-08, "epoch": 3.6113242009132422, "percentage": 90.33, "elapsed_time": "13:28:07", "remaining_time": "1:26:29"} +{"current_steps": 4944, "total_steps": 5472, "loss": 0.0407, "accuracy": 1.0, "learning_rate": 1.4051753756694567e-08, "epoch": 3.6120547945205477, "percentage": 90.35, "elapsed_time": "13:28:16", "remaining_time": "1:26:19"} +{"current_steps": 4945, "total_steps": 5472, "loss": 0.0199, "accuracy": 1.0, "learning_rate": 1.3999079755896841e-08, "epoch": 3.612785388127854, "percentage": 90.37, "elapsed_time": "13:28:27", "remaining_time": "1:26:09"} +{"current_steps": 4946, "total_steps": 5472, "loss": 0.0107, "accuracy": 1.0, "learning_rate": 1.3946501822787005e-08, "epoch": 3.61351598173516, "percentage": 90.39, "elapsed_time": "13:28:36", "remaining_time": "1:25:59"} +{"current_steps": 4947, "total_steps": 5472, "loss": 0.0226, "accuracy": 1.0, "learning_rate": 1.3894019978767768e-08, "epoch": 3.6142465753424657, "percentage": 90.41, "elapsed_time": "13:28:45", "remaining_time": "1:25:49"} +{"current_steps": 4948, "total_steps": 5472, "loss": 0.0283, "accuracy": 1.0, "learning_rate": 1.3841634245202572e-08, "epoch": 3.6149771689497716, "percentage": 90.42, "elapsed_time": "13:28:57", "remaining_time": "1:25:40"} +{"current_steps": 4949, "total_steps": 5472, "loss": 0.014, "accuracy": 1.0, "learning_rate": 1.3789344643415801e-08, "epoch": 3.6157077625570775, "percentage": 90.44, "elapsed_time": "13:29:08", "remaining_time": "1:25:30"} +{"current_steps": 4950, "total_steps": 5472, "loss": 0.0116, "accuracy": 1.0, "learning_rate": 1.3737151194692792e-08, "epoch": 3.616438356164384, "percentage": 90.46, "elapsed_time": "13:29:17", "remaining_time": "1:25:20"} +{"current_steps": 4951, "total_steps": 5472, "loss": 0.0305, "accuracy": 1.0, "learning_rate": 1.3685053920279577e-08, "epoch": 3.6171689497716892, "percentage": 90.48, "elapsed_time": "13:29:28", "remaining_time": "1:25:10"} +{"current_steps": 4952, "total_steps": 5472, "loss": 0.0166, "accuracy": 1.0, "learning_rate": 1.363305284138322e-08, "epoch": 3.6178995433789956, "percentage": 90.5, "elapsed_time": "13:29:37", "remaining_time": "1:25:01"} +{"current_steps": 4953, "total_steps": 5472, "loss": 0.0137, "accuracy": 1.0, "learning_rate": 1.3581147979171482e-08, "epoch": 3.6186301369863014, "percentage": 90.52, "elapsed_time": "13:29:49", "remaining_time": "1:24:51"} +{"current_steps": 4954, "total_steps": 5472, "loss": 0.0359, "accuracy": 1.0, "learning_rate": 1.3529339354772963e-08, "epoch": 3.6193607305936073, "percentage": 90.53, "elapsed_time": "13:29:58", "remaining_time": "1:24:41"} +{"current_steps": 4955, "total_steps": 5472, "loss": 0.0173, "accuracy": 1.0, "learning_rate": 1.3477626989277235e-08, "epoch": 3.620091324200913, "percentage": 90.55, "elapsed_time": "13:30:11", "remaining_time": "1:24:32"} +{"current_steps": 4956, "total_steps": 5472, "loss": 0.0215, "accuracy": 1.0, "learning_rate": 1.3426010903734491e-08, "epoch": 3.620821917808219, "percentage": 90.57, "elapsed_time": "13:30:19", "remaining_time": "1:24:22"} +{"current_steps": 4957, "total_steps": 5472, "loss": 0.023, "accuracy": 1.0, "learning_rate": 1.337449111915595e-08, "epoch": 3.6215525114155254, "percentage": 90.59, "elapsed_time": "13:30:28", "remaining_time": "1:24:12"} +{"current_steps": 4958, "total_steps": 5472, "loss": 0.0405, "accuracy": 1.0, "learning_rate": 1.3323067656513365e-08, "epoch": 3.622283105022831, "percentage": 90.61, "elapsed_time": "13:30:37", "remaining_time": "1:24:02"} +{"current_steps": 4959, "total_steps": 5472, "loss": 0.0205, "accuracy": 1.0, "learning_rate": 1.3271740536739461e-08, "epoch": 3.623013698630137, "percentage": 90.62, "elapsed_time": "13:30:46", "remaining_time": "1:23:52"} +{"current_steps": 4960, "total_steps": 5472, "loss": 0.0251, "accuracy": 1.0, "learning_rate": 1.322050978072778e-08, "epoch": 3.623744292237443, "percentage": 90.64, "elapsed_time": "13:30:56", "remaining_time": "1:23:42"} +{"current_steps": 4961, "total_steps": 5472, "loss": 0.0261, "accuracy": 1.0, "learning_rate": 1.3169375409332522e-08, "epoch": 3.624474885844749, "percentage": 90.66, "elapsed_time": "13:31:05", "remaining_time": "1:23:32"} +{"current_steps": 4962, "total_steps": 5472, "loss": 0.0388, "accuracy": 1.0, "learning_rate": 1.3118337443368683e-08, "epoch": 3.6252054794520547, "percentage": 90.68, "elapsed_time": "13:31:15", "remaining_time": "1:23:22"} +{"current_steps": 4963, "total_steps": 5472, "loss": 0.0445, "accuracy": 1.0, "learning_rate": 1.3067395903612e-08, "epoch": 3.6259360730593606, "percentage": 90.7, "elapsed_time": "13:31:24", "remaining_time": "1:23:13"} +{"current_steps": 4964, "total_steps": 5472, "loss": 0.0205, "accuracy": 1.0, "learning_rate": 1.3016550810799054e-08, "epoch": 3.626666666666667, "percentage": 90.72, "elapsed_time": "13:31:35", "remaining_time": "1:23:03"} +{"current_steps": 4965, "total_steps": 5472, "loss": 0.0524, "accuracy": 1.0, "learning_rate": 1.2965802185627012e-08, "epoch": 3.6273972602739724, "percentage": 90.73, "elapsed_time": "13:31:44", "remaining_time": "1:22:53"} +{"current_steps": 4966, "total_steps": 5472, "loss": 0.0186, "accuracy": 1.0, "learning_rate": 1.2915150048753959e-08, "epoch": 3.6281278538812787, "percentage": 90.75, "elapsed_time": "13:31:53", "remaining_time": "1:22:43"} +{"current_steps": 4967, "total_steps": 5472, "loss": 0.0249, "accuracy": 1.0, "learning_rate": 1.2864594420798541e-08, "epoch": 3.6288584474885845, "percentage": 90.77, "elapsed_time": "13:32:03", "remaining_time": "1:22:33"} +{"current_steps": 4968, "total_steps": 5472, "loss": 0.0436, "accuracy": 1.0, "learning_rate": 1.281413532234013e-08, "epoch": 3.6295890410958904, "percentage": 90.79, "elapsed_time": "13:32:12", "remaining_time": "1:22:23"} +{"current_steps": 4969, "total_steps": 5472, "loss": 0.0328, "accuracy": 1.0, "learning_rate": 1.2763772773918962e-08, "epoch": 3.6303196347031963, "percentage": 90.81, "elapsed_time": "13:32:21", "remaining_time": "1:22:14"} +{"current_steps": 4970, "total_steps": 5472, "loss": 0.0219, "accuracy": 1.0, "learning_rate": 1.2713506796035805e-08, "epoch": 3.631050228310502, "percentage": 90.83, "elapsed_time": "13:32:32", "remaining_time": "1:22:04"} +{"current_steps": 4971, "total_steps": 5472, "loss": 0.0227, "accuracy": 1.0, "learning_rate": 1.2663337409152152e-08, "epoch": 3.6317808219178085, "percentage": 90.84, "elapsed_time": "13:32:42", "remaining_time": "1:21:54"} +{"current_steps": 4972, "total_steps": 5472, "loss": 0.0385, "accuracy": 0.875, "learning_rate": 1.2613264633690251e-08, "epoch": 3.632511415525114, "percentage": 90.86, "elapsed_time": "13:32:51", "remaining_time": "1:21:44"} +{"current_steps": 4973, "total_steps": 5472, "loss": 0.0348, "accuracy": 1.0, "learning_rate": 1.2563288490032908e-08, "epoch": 3.6332420091324202, "percentage": 90.88, "elapsed_time": "13:33:02", "remaining_time": "1:21:34"} +{"current_steps": 4974, "total_steps": 5472, "loss": 0.0261, "accuracy": 1.0, "learning_rate": 1.2513408998523766e-08, "epoch": 3.633972602739726, "percentage": 90.9, "elapsed_time": "13:33:11", "remaining_time": "1:21:25"} +{"current_steps": 4975, "total_steps": 5472, "loss": 0.03, "accuracy": 1.0, "learning_rate": 1.2463626179466862e-08, "epoch": 3.634703196347032, "percentage": 90.92, "elapsed_time": "13:33:21", "remaining_time": "1:21:15"} +{"current_steps": 4976, "total_steps": 5472, "loss": 0.0316, "accuracy": 1.0, "learning_rate": 1.2413940053127152e-08, "epoch": 3.635433789954338, "percentage": 90.94, "elapsed_time": "13:33:32", "remaining_time": "1:21:05"} +{"current_steps": 4977, "total_steps": 5472, "loss": 0.0373, "accuracy": 1.0, "learning_rate": 1.2364350639730042e-08, "epoch": 3.6361643835616437, "percentage": 90.95, "elapsed_time": "13:33:42", "remaining_time": "1:20:55"} +{"current_steps": 4978, "total_steps": 5472, "loss": 0.0169, "accuracy": 1.0, "learning_rate": 1.231485795946166e-08, "epoch": 3.6368949771689496, "percentage": 90.97, "elapsed_time": "13:33:51", "remaining_time": "1:20:45"} +{"current_steps": 4979, "total_steps": 5472, "loss": 0.0277, "accuracy": 1.0, "learning_rate": 1.2265462032468837e-08, "epoch": 3.6376255707762555, "percentage": 90.99, "elapsed_time": "13:34:00", "remaining_time": "1:20:35"} +{"current_steps": 4980, "total_steps": 5472, "loss": 0.0279, "accuracy": 1.0, "learning_rate": 1.2216162878858766e-08, "epoch": 3.638356164383562, "percentage": 91.01, "elapsed_time": "13:34:10", "remaining_time": "1:20:26"} +{"current_steps": 4981, "total_steps": 5472, "loss": 0.0262, "accuracy": 1.0, "learning_rate": 1.2166960518699476e-08, "epoch": 3.6390867579908677, "percentage": 91.03, "elapsed_time": "13:34:19", "remaining_time": "1:20:16"} +{"current_steps": 4982, "total_steps": 5472, "loss": 0.037, "accuracy": 1.0, "learning_rate": 1.2117854972019504e-08, "epoch": 3.6398173515981735, "percentage": 91.05, "elapsed_time": "13:34:28", "remaining_time": "1:20:06"} +{"current_steps": 4983, "total_steps": 5472, "loss": 0.0262, "accuracy": 1.0, "learning_rate": 1.2068846258808053e-08, "epoch": 3.6405479452054794, "percentage": 91.06, "elapsed_time": "13:34:39", "remaining_time": "1:19:56"} +{"current_steps": 4984, "total_steps": 5472, "loss": 0.0269, "accuracy": 1.0, "learning_rate": 1.2019934399014775e-08, "epoch": 3.6412785388127853, "percentage": 91.08, "elapsed_time": "13:34:47", "remaining_time": "1:19:46"} +{"current_steps": 4985, "total_steps": 5472, "loss": 0.0234, "accuracy": 1.0, "learning_rate": 1.1971119412549968e-08, "epoch": 3.642009132420091, "percentage": 91.1, "elapsed_time": "13:34:56", "remaining_time": "1:19:36"} +{"current_steps": 4986, "total_steps": 5472, "loss": 0.0145, "accuracy": 1.0, "learning_rate": 1.1922401319284541e-08, "epoch": 3.642739726027397, "percentage": 91.12, "elapsed_time": "13:35:05", "remaining_time": "1:19:26"} +{"current_steps": 4987, "total_steps": 5472, "loss": 0.0308, "accuracy": 1.0, "learning_rate": 1.1873780139049938e-08, "epoch": 3.6434703196347034, "percentage": 91.14, "elapsed_time": "13:35:15", "remaining_time": "1:19:17"} +{"current_steps": 4988, "total_steps": 5472, "loss": 0.0331, "accuracy": 1.0, "learning_rate": 1.1825255891638047e-08, "epoch": 3.6442009132420092, "percentage": 91.15, "elapsed_time": "13:35:24", "remaining_time": "1:19:07"} +{"current_steps": 4989, "total_steps": 5472, "loss": 0.0292, "accuracy": 1.0, "learning_rate": 1.1776828596801486e-08, "epoch": 3.644931506849315, "percentage": 91.17, "elapsed_time": "13:35:34", "remaining_time": "1:18:57"} +{"current_steps": 4990, "total_steps": 5472, "loss": 0.1086, "accuracy": 0.875, "learning_rate": 1.1728498274253207e-08, "epoch": 3.645662100456621, "percentage": 91.19, "elapsed_time": "13:35:44", "remaining_time": "1:18:47"} +{"current_steps": 4991, "total_steps": 5472, "loss": 0.0198, "accuracy": 1.0, "learning_rate": 1.168026494366689e-08, "epoch": 3.646392694063927, "percentage": 91.21, "elapsed_time": "13:35:54", "remaining_time": "1:18:37"} +{"current_steps": 4992, "total_steps": 5472, "loss": 0.0148, "accuracy": 1.0, "learning_rate": 1.1632128624676579e-08, "epoch": 3.6471232876712327, "percentage": 91.23, "elapsed_time": "13:36:04", "remaining_time": "1:18:28"} +{"current_steps": 4993, "total_steps": 5472, "loss": 0.0387, "accuracy": 1.0, "learning_rate": 1.1584089336876878e-08, "epoch": 3.6478538812785386, "percentage": 91.25, "elapsed_time": "13:36:13", "remaining_time": "1:18:18"} +{"current_steps": 4994, "total_steps": 5472, "loss": 0.0703, "accuracy": 1.0, "learning_rate": 1.153614709982284e-08, "epoch": 3.648584474885845, "percentage": 91.26, "elapsed_time": "13:36:21", "remaining_time": "1:18:08"} +{"current_steps": 4995, "total_steps": 5472, "loss": 0.0419, "accuracy": 1.0, "learning_rate": 1.148830193303016e-08, "epoch": 3.649315068493151, "percentage": 91.28, "elapsed_time": "13:36:31", "remaining_time": "1:17:58"} +{"current_steps": 4996, "total_steps": 5472, "loss": 0.0469, "accuracy": 1.0, "learning_rate": 1.1440553855974921e-08, "epoch": 3.6500456621004567, "percentage": 91.3, "elapsed_time": "13:36:40", "remaining_time": "1:17:48"} +{"current_steps": 4997, "total_steps": 5472, "loss": 0.0306, "accuracy": 1.0, "learning_rate": 1.1392902888093609e-08, "epoch": 3.6507762557077625, "percentage": 91.32, "elapsed_time": "13:36:49", "remaining_time": "1:17:38"} +{"current_steps": 4998, "total_steps": 5472, "loss": 0.0194, "accuracy": 1.0, "learning_rate": 1.1345349048783343e-08, "epoch": 3.6515068493150684, "percentage": 91.34, "elapsed_time": "13:36:58", "remaining_time": "1:17:28"} +{"current_steps": 4999, "total_steps": 5472, "loss": 0.023, "accuracy": 1.0, "learning_rate": 1.1297892357401557e-08, "epoch": 3.6522374429223743, "percentage": 91.36, "elapsed_time": "13:37:08", "remaining_time": "1:17:19"} +{"current_steps": 5000, "total_steps": 5472, "loss": 0.0248, "accuracy": 1.0, "learning_rate": 1.125053283326624e-08, "epoch": 3.65296803652968, "percentage": 91.37, "elapsed_time": "13:37:18", "remaining_time": "1:17:09"} +{"current_steps": 5001, "total_steps": 5472, "loss": 0.034, "accuracy": 1.0, "learning_rate": 1.120327049565581e-08, "epoch": 3.6536986301369865, "percentage": 91.39, "elapsed_time": "13:37:31", "remaining_time": "1:16:59"} +{"current_steps": 5002, "total_steps": 5472, "loss": 0.0194, "accuracy": 1.0, "learning_rate": 1.1156105363809038e-08, "epoch": 3.6544292237442924, "percentage": 91.41, "elapsed_time": "13:37:41", "remaining_time": "1:16:49"} +{"current_steps": 5003, "total_steps": 5472, "loss": 0.0263, "accuracy": 1.0, "learning_rate": 1.1109037456925264e-08, "epoch": 3.6551598173515982, "percentage": 91.43, "elapsed_time": "13:37:50", "remaining_time": "1:16:40"} +{"current_steps": 5004, "total_steps": 5472, "loss": 0.0095, "accuracy": 1.0, "learning_rate": 1.1062066794164105e-08, "epoch": 3.655890410958904, "percentage": 91.45, "elapsed_time": "13:37:59", "remaining_time": "1:16:30"} +{"current_steps": 5005, "total_steps": 5472, "loss": 0.0265, "accuracy": 1.0, "learning_rate": 1.101519339464574e-08, "epoch": 3.65662100456621, "percentage": 91.47, "elapsed_time": "13:38:08", "remaining_time": "1:16:20"} +{"current_steps": 5006, "total_steps": 5472, "loss": 0.0173, "accuracy": 1.0, "learning_rate": 1.0968417277450681e-08, "epoch": 3.657351598173516, "percentage": 91.48, "elapsed_time": "13:38:18", "remaining_time": "1:16:10"} +{"current_steps": 5007, "total_steps": 5472, "loss": 0.065, "accuracy": 1.0, "learning_rate": 1.0921738461619784e-08, "epoch": 3.6580821917808217, "percentage": 91.5, "elapsed_time": "13:38:27", "remaining_time": "1:16:00"} +{"current_steps": 5008, "total_steps": 5472, "loss": 0.0276, "accuracy": 1.0, "learning_rate": 1.0875156966154403e-08, "epoch": 3.658812785388128, "percentage": 91.52, "elapsed_time": "13:38:36", "remaining_time": "1:15:50"} +{"current_steps": 5009, "total_steps": 5472, "loss": 0.0176, "accuracy": 1.0, "learning_rate": 1.0828672810016231e-08, "epoch": 3.659543378995434, "percentage": 91.54, "elapsed_time": "13:38:45", "remaining_time": "1:15:40"} +{"current_steps": 5010, "total_steps": 5472, "loss": 0.0286, "accuracy": 1.0, "learning_rate": 1.0782286012127328e-08, "epoch": 3.66027397260274, "percentage": 91.56, "elapsed_time": "13:38:53", "remaining_time": "1:15:30"} +{"current_steps": 5011, "total_steps": 5472, "loss": 0.0163, "accuracy": 1.0, "learning_rate": 1.0735996591370089e-08, "epoch": 3.6610045662100457, "percentage": 91.58, "elapsed_time": "13:39:04", "remaining_time": "1:15:21"} +{"current_steps": 5012, "total_steps": 5472, "loss": 0.0189, "accuracy": 1.0, "learning_rate": 1.0689804566587329e-08, "epoch": 3.6617351598173515, "percentage": 91.59, "elapsed_time": "13:39:14", "remaining_time": "1:15:11"} +{"current_steps": 5013, "total_steps": 5472, "loss": 0.028, "accuracy": 1.0, "learning_rate": 1.0643709956582259e-08, "epoch": 3.6624657534246574, "percentage": 91.61, "elapsed_time": "13:39:24", "remaining_time": "1:15:01"} +{"current_steps": 5014, "total_steps": 5472, "loss": 0.0496, "accuracy": 1.0, "learning_rate": 1.059771278011834e-08, "epoch": 3.6631963470319633, "percentage": 91.63, "elapsed_time": "13:39:33", "remaining_time": "1:14:51"} +{"current_steps": 5015, "total_steps": 5472, "loss": 0.0264, "accuracy": 1.0, "learning_rate": 1.05518130559194e-08, "epoch": 3.6639269406392696, "percentage": 91.65, "elapsed_time": "13:39:43", "remaining_time": "1:14:41"} +{"current_steps": 5016, "total_steps": 5472, "loss": 0.0074, "accuracy": 1.0, "learning_rate": 1.050601080266958e-08, "epoch": 3.6646575342465755, "percentage": 91.67, "elapsed_time": "13:39:53", "remaining_time": "1:14:32"} +{"current_steps": 5017, "total_steps": 5472, "loss": 0.0208, "accuracy": 1.0, "learning_rate": 1.0460306039013433e-08, "epoch": 3.6653881278538814, "percentage": 91.68, "elapsed_time": "13:40:03", "remaining_time": "1:14:22"} +{"current_steps": 5018, "total_steps": 5472, "loss": 0.0174, "accuracy": 1.0, "learning_rate": 1.0414698783555692e-08, "epoch": 3.6661187214611872, "percentage": 91.7, "elapsed_time": "13:40:12", "remaining_time": "1:14:12"} +{"current_steps": 5019, "total_steps": 5472, "loss": 0.0218, "accuracy": 1.0, "learning_rate": 1.0369189054861504e-08, "epoch": 3.666849315068493, "percentage": 91.72, "elapsed_time": "13:40:22", "remaining_time": "1:14:02"} +{"current_steps": 5020, "total_steps": 5472, "loss": 0.0319, "accuracy": 1.0, "learning_rate": 1.0323776871456302e-08, "epoch": 3.667579908675799, "percentage": 91.74, "elapsed_time": "13:40:31", "remaining_time": "1:13:52"} +{"current_steps": 5021, "total_steps": 5472, "loss": 0.0616, "accuracy": 1.0, "learning_rate": 1.0278462251825742e-08, "epoch": 3.668310502283105, "percentage": 91.76, "elapsed_time": "13:40:40", "remaining_time": "1:13:42"} +{"current_steps": 5022, "total_steps": 5472, "loss": 0.0231, "accuracy": 1.0, "learning_rate": 1.0233245214415904e-08, "epoch": 3.669041095890411, "percentage": 91.78, "elapsed_time": "13:40:52", "remaining_time": "1:13:33"} +{"current_steps": 5023, "total_steps": 5472, "loss": 0.0424, "accuracy": 1.0, "learning_rate": 1.018812577763295e-08, "epoch": 3.669771689497717, "percentage": 91.79, "elapsed_time": "13:41:03", "remaining_time": "1:13:23"} +{"current_steps": 5024, "total_steps": 5472, "loss": 0.0457, "accuracy": 1.0, "learning_rate": 1.014310395984344e-08, "epoch": 3.670502283105023, "percentage": 91.81, "elapsed_time": "13:41:13", "remaining_time": "1:13:13"} +{"current_steps": 5025, "total_steps": 5472, "loss": 0.037, "accuracy": 1.0, "learning_rate": 1.0098179779374245e-08, "epoch": 3.671232876712329, "percentage": 91.83, "elapsed_time": "13:41:23", "remaining_time": "1:13:04"} +{"current_steps": 5026, "total_steps": 5472, "loss": 0.0288, "accuracy": 1.0, "learning_rate": 1.0053353254512343e-08, "epoch": 3.6719634703196347, "percentage": 91.85, "elapsed_time": "13:41:32", "remaining_time": "1:12:54"} +{"current_steps": 5027, "total_steps": 5472, "loss": 0.0149, "accuracy": 1.0, "learning_rate": 1.000862440350514e-08, "epoch": 3.6726940639269405, "percentage": 91.87, "elapsed_time": "13:41:43", "remaining_time": "1:12:44"} +{"current_steps": 5028, "total_steps": 5472, "loss": 0.0358, "accuracy": 1.0, "learning_rate": 9.963993244560043e-09, "epoch": 3.6734246575342464, "percentage": 91.89, "elapsed_time": "13:41:53", "remaining_time": "1:12:34"} +{"current_steps": 5029, "total_steps": 5472, "loss": 0.0117, "accuracy": 1.0, "learning_rate": 9.919459795844882e-09, "epoch": 3.6741552511415527, "percentage": 91.9, "elapsed_time": "13:42:03", "remaining_time": "1:12:24"} +{"current_steps": 5030, "total_steps": 5472, "loss": 0.0327, "accuracy": 1.0, "learning_rate": 9.875024075487737e-09, "epoch": 3.6748858447488586, "percentage": 91.92, "elapsed_time": "13:42:14", "remaining_time": "1:12:15"} +{"current_steps": 5031, "total_steps": 5472, "loss": 0.0327, "accuracy": 1.0, "learning_rate": 9.830686101576752e-09, "epoch": 3.6756164383561645, "percentage": 91.94, "elapsed_time": "13:42:22", "remaining_time": "1:12:05"} +{"current_steps": 5032, "total_steps": 5472, "loss": 0.0402, "accuracy": 1.0, "learning_rate": 9.786445892160378e-09, "epoch": 3.6763470319634703, "percentage": 91.96, "elapsed_time": "13:42:32", "remaining_time": "1:11:55"} +{"current_steps": 5033, "total_steps": 5472, "loss": 0.0451, "accuracy": 1.0, "learning_rate": 9.742303465247209e-09, "epoch": 3.677077625570776, "percentage": 91.98, "elapsed_time": "13:42:40", "remaining_time": "1:11:45"} +{"current_steps": 5034, "total_steps": 5472, "loss": 0.0133, "accuracy": 1.0, "learning_rate": 9.698258838806151e-09, "epoch": 3.677808219178082, "percentage": 92.0, "elapsed_time": "13:42:49", "remaining_time": "1:11:35"} +{"current_steps": 5035, "total_steps": 5472, "loss": 0.0278, "accuracy": 1.0, "learning_rate": 9.654312030766192e-09, "epoch": 3.678538812785388, "percentage": 92.01, "elapsed_time": "13:42:58", "remaining_time": "1:11:25"} +{"current_steps": 5036, "total_steps": 5472, "loss": 0.0363, "accuracy": 1.0, "learning_rate": 9.610463059016528e-09, "epoch": 3.6792694063926943, "percentage": 92.03, "elapsed_time": "13:43:09", "remaining_time": "1:11:16"} +{"current_steps": 5037, "total_steps": 5472, "loss": 0.0407, "accuracy": 1.0, "learning_rate": 9.566711941406542e-09, "epoch": 3.68, "percentage": 92.05, "elapsed_time": "13:43:19", "remaining_time": "1:11:06"} +{"current_steps": 5038, "total_steps": 5472, "loss": 0.0219, "accuracy": 1.0, "learning_rate": 9.523058695745766e-09, "epoch": 3.680730593607306, "percentage": 92.07, "elapsed_time": "13:43:28", "remaining_time": "1:10:56"} +{"current_steps": 5039, "total_steps": 5472, "loss": 0.0231, "accuracy": 1.0, "learning_rate": 9.479503339803934e-09, "epoch": 3.681461187214612, "percentage": 92.09, "elapsed_time": "13:43:37", "remaining_time": "1:10:46"} +{"current_steps": 5040, "total_steps": 5472, "loss": 0.0214, "accuracy": 1.0, "learning_rate": 9.436045891310862e-09, "epoch": 3.682191780821918, "percentage": 92.11, "elapsed_time": "13:43:47", "remaining_time": "1:10:36"} +{"current_steps": 5041, "total_steps": 5472, "loss": 0.041, "accuracy": 1.0, "learning_rate": 9.392686367956564e-09, "epoch": 3.6829223744292237, "percentage": 92.12, "elapsed_time": "13:43:58", "remaining_time": "1:10:26"} +{"current_steps": 5042, "total_steps": 5472, "loss": 0.0359, "accuracy": 1.0, "learning_rate": 9.349424787391231e-09, "epoch": 3.6836529680365295, "percentage": 92.14, "elapsed_time": "13:44:07", "remaining_time": "1:10:17"} +{"current_steps": 5043, "total_steps": 5472, "loss": 0.0635, "accuracy": 1.0, "learning_rate": 9.306261167225049e-09, "epoch": 3.684383561643836, "percentage": 92.16, "elapsed_time": "13:44:18", "remaining_time": "1:10:07"} +{"current_steps": 5044, "total_steps": 5472, "loss": 0.01, "accuracy": 1.0, "learning_rate": 9.263195525028495e-09, "epoch": 3.6851141552511413, "percentage": 92.18, "elapsed_time": "13:44:27", "remaining_time": "1:09:57"} +{"current_steps": 5045, "total_steps": 5472, "loss": 0.0355, "accuracy": 1.0, "learning_rate": 9.220227878331988e-09, "epoch": 3.6858447488584476, "percentage": 92.2, "elapsed_time": "13:44:38", "remaining_time": "1:09:47"} +{"current_steps": 5046, "total_steps": 5472, "loss": 0.0332, "accuracy": 1.0, "learning_rate": 9.177358244626232e-09, "epoch": 3.6865753424657535, "percentage": 92.21, "elapsed_time": "13:44:49", "remaining_time": "1:09:38"} +{"current_steps": 5047, "total_steps": 5472, "loss": 0.0245, "accuracy": 1.0, "learning_rate": 9.13458664136188e-09, "epoch": 3.6873059360730593, "percentage": 92.23, "elapsed_time": "13:45:00", "remaining_time": "1:09:28"} +{"current_steps": 5048, "total_steps": 5472, "loss": 0.0409, "accuracy": 1.0, "learning_rate": 9.091913085949838e-09, "epoch": 3.688036529680365, "percentage": 92.25, "elapsed_time": "13:45:09", "remaining_time": "1:09:18"} +{"current_steps": 5049, "total_steps": 5472, "loss": 0.0341, "accuracy": 1.0, "learning_rate": 9.049337595760932e-09, "epoch": 3.688767123287671, "percentage": 92.27, "elapsed_time": "13:45:19", "remaining_time": "1:09:08"} +{"current_steps": 5050, "total_steps": 5472, "loss": 0.0127, "accuracy": 1.0, "learning_rate": 9.006860188126159e-09, "epoch": 3.6894977168949774, "percentage": 92.29, "elapsed_time": "13:45:33", "remaining_time": "1:08:59"} +{"current_steps": 5051, "total_steps": 5472, "loss": 0.0281, "accuracy": 1.0, "learning_rate": 8.964480880336634e-09, "epoch": 3.690228310502283, "percentage": 92.31, "elapsed_time": "13:45:42", "remaining_time": "1:08:49"} +{"current_steps": 5052, "total_steps": 5472, "loss": 0.0288, "accuracy": 1.0, "learning_rate": 8.922199689643389e-09, "epoch": 3.690958904109589, "percentage": 92.32, "elapsed_time": "13:45:51", "remaining_time": "1:08:39"} +{"current_steps": 5053, "total_steps": 5472, "loss": 0.0173, "accuracy": 1.0, "learning_rate": 8.880016633257742e-09, "epoch": 3.691689497716895, "percentage": 92.34, "elapsed_time": "13:46:02", "remaining_time": "1:08:29"} +{"current_steps": 5054, "total_steps": 5472, "loss": 0.0256, "accuracy": 1.0, "learning_rate": 8.837931728350845e-09, "epoch": 3.692420091324201, "percentage": 92.36, "elapsed_time": "13:46:12", "remaining_time": "1:08:19"} +{"current_steps": 5055, "total_steps": 5472, "loss": 0.0167, "accuracy": 1.0, "learning_rate": 8.795944992053966e-09, "epoch": 3.6931506849315068, "percentage": 92.38, "elapsed_time": "13:46:21", "remaining_time": "1:08:10"} +{"current_steps": 5056, "total_steps": 5472, "loss": 0.0158, "accuracy": 1.0, "learning_rate": 8.754056441458519e-09, "epoch": 3.6938812785388127, "percentage": 92.4, "elapsed_time": "13:46:31", "remaining_time": "1:08:00"} +{"current_steps": 5057, "total_steps": 5472, "loss": 0.0191, "accuracy": 1.0, "learning_rate": 8.712266093615778e-09, "epoch": 3.694611872146119, "percentage": 92.42, "elapsed_time": "13:46:40", "remaining_time": "1:07:50"} +{"current_steps": 5058, "total_steps": 5472, "loss": 0.0167, "accuracy": 1.0, "learning_rate": 8.670573965537164e-09, "epoch": 3.6953424657534244, "percentage": 92.43, "elapsed_time": "13:46:49", "remaining_time": "1:07:40"} +{"current_steps": 5059, "total_steps": 5472, "loss": 0.0224, "accuracy": 1.0, "learning_rate": 8.628980074194103e-09, "epoch": 3.6960730593607307, "percentage": 92.45, "elapsed_time": "13:46:58", "remaining_time": "1:07:30"} +{"current_steps": 5060, "total_steps": 5472, "loss": 0.0232, "accuracy": 1.0, "learning_rate": 8.58748443651794e-09, "epoch": 3.6968036529680366, "percentage": 92.47, "elapsed_time": "13:47:08", "remaining_time": "1:07:20"} +{"current_steps": 5061, "total_steps": 5472, "loss": 0.0234, "accuracy": 1.0, "learning_rate": 8.546087069400188e-09, "epoch": 3.6975342465753425, "percentage": 92.49, "elapsed_time": "13:47:20", "remaining_time": "1:07:11"} +{"current_steps": 5062, "total_steps": 5472, "loss": 0.0321, "accuracy": 1.0, "learning_rate": 8.504787989692148e-09, "epoch": 3.6982648401826483, "percentage": 92.51, "elapsed_time": "13:47:29", "remaining_time": "1:07:01"} +{"current_steps": 5063, "total_steps": 5472, "loss": 0.0359, "accuracy": 1.0, "learning_rate": 8.463587214205315e-09, "epoch": 3.698995433789954, "percentage": 92.53, "elapsed_time": "13:47:38", "remaining_time": "1:06:51"} +{"current_steps": 5064, "total_steps": 5472, "loss": 0.0209, "accuracy": 1.0, "learning_rate": 8.422484759710995e-09, "epoch": 3.6997260273972605, "percentage": 92.54, "elapsed_time": "13:47:49", "remaining_time": "1:06:41"} +{"current_steps": 5065, "total_steps": 5472, "loss": 0.0388, "accuracy": 1.0, "learning_rate": 8.381480642940613e-09, "epoch": 3.700456621004566, "percentage": 92.56, "elapsed_time": "13:47:58", "remaining_time": "1:06:31"} +{"current_steps": 5066, "total_steps": 5472, "loss": 0.0363, "accuracy": 1.0, "learning_rate": 8.340574880585565e-09, "epoch": 3.7011872146118723, "percentage": 92.58, "elapsed_time": "13:48:09", "remaining_time": "1:06:22"} +{"current_steps": 5067, "total_steps": 5472, "loss": 0.0192, "accuracy": 1.0, "learning_rate": 8.299767489297033e-09, "epoch": 3.701917808219178, "percentage": 92.6, "elapsed_time": "13:48:18", "remaining_time": "1:06:12"} +{"current_steps": 5068, "total_steps": 5472, "loss": 0.0187, "accuracy": 1.0, "learning_rate": 8.259058485686338e-09, "epoch": 3.702648401826484, "percentage": 92.62, "elapsed_time": "13:48:27", "remaining_time": "1:06:02"} +{"current_steps": 5069, "total_steps": 5472, "loss": 0.0185, "accuracy": 1.0, "learning_rate": 8.218447886324642e-09, "epoch": 3.70337899543379, "percentage": 92.64, "elapsed_time": "13:48:37", "remaining_time": "1:05:52"} +{"current_steps": 5070, "total_steps": 5472, "loss": 0.0135, "accuracy": 1.0, "learning_rate": 8.177935707743166e-09, "epoch": 3.7041095890410958, "percentage": 92.65, "elapsed_time": "13:48:47", "remaining_time": "1:05:42"} +{"current_steps": 5071, "total_steps": 5472, "loss": 0.0181, "accuracy": 1.0, "learning_rate": 8.137521966432943e-09, "epoch": 3.704840182648402, "percentage": 92.67, "elapsed_time": "13:49:00", "remaining_time": "1:05:33"} +{"current_steps": 5072, "total_steps": 5472, "loss": 0.0486, "accuracy": 1.0, "learning_rate": 8.097206678844948e-09, "epoch": 3.7055707762557075, "percentage": 92.69, "elapsed_time": "13:49:10", "remaining_time": "1:05:23"} +{"current_steps": 5073, "total_steps": 5472, "loss": 0.0576, "accuracy": 1.0, "learning_rate": 8.056989861390224e-09, "epoch": 3.706301369863014, "percentage": 92.71, "elapsed_time": "13:49:19", "remaining_time": "1:05:13"} +{"current_steps": 5074, "total_steps": 5472, "loss": 0.0185, "accuracy": 1.0, "learning_rate": 8.016871530439562e-09, "epoch": 3.7070319634703197, "percentage": 92.73, "elapsed_time": "13:49:29", "remaining_time": "1:05:03"} +{"current_steps": 5075, "total_steps": 5472, "loss": 0.0367, "accuracy": 1.0, "learning_rate": 7.976851702323678e-09, "epoch": 3.7077625570776256, "percentage": 92.74, "elapsed_time": "13:49:38", "remaining_time": "1:04:54"} +{"current_steps": 5076, "total_steps": 5472, "loss": 0.0146, "accuracy": 1.0, "learning_rate": 7.936930393333346e-09, "epoch": 3.7084931506849315, "percentage": 92.76, "elapsed_time": "13:49:48", "remaining_time": "1:04:44"} +{"current_steps": 5077, "total_steps": 5472, "loss": 0.0169, "accuracy": 1.0, "learning_rate": 7.89710761971904e-09, "epoch": 3.7092237442922373, "percentage": 92.78, "elapsed_time": "13:49:57", "remaining_time": "1:04:34"} +{"current_steps": 5078, "total_steps": 5472, "loss": 0.0142, "accuracy": 1.0, "learning_rate": 7.857383397691291e-09, "epoch": 3.7099543378995437, "percentage": 92.8, "elapsed_time": "13:50:07", "remaining_time": "1:04:24"} +{"current_steps": 5079, "total_steps": 5472, "loss": 0.0305, "accuracy": 1.0, "learning_rate": 7.81775774342039e-09, "epoch": 3.710684931506849, "percentage": 92.82, "elapsed_time": "13:50:18", "remaining_time": "1:04:14"} +{"current_steps": 5080, "total_steps": 5472, "loss": 0.0272, "accuracy": 1.0, "learning_rate": 7.77823067303654e-09, "epoch": 3.7114155251141554, "percentage": 92.84, "elapsed_time": "13:50:27", "remaining_time": "1:04:04"} +{"current_steps": 5081, "total_steps": 5472, "loss": 0.024, "accuracy": 1.0, "learning_rate": 7.738802202629818e-09, "epoch": 3.7121461187214613, "percentage": 92.85, "elapsed_time": "13:50:38", "remaining_time": "1:03:55"} +{"current_steps": 5082, "total_steps": 5472, "loss": 0.0315, "accuracy": 1.0, "learning_rate": 7.699472348250191e-09, "epoch": 3.712876712328767, "percentage": 92.87, "elapsed_time": "13:50:48", "remaining_time": "1:03:45"} +{"current_steps": 5083, "total_steps": 5472, "loss": 0.0279, "accuracy": 1.0, "learning_rate": 7.660241125907518e-09, "epoch": 3.713607305936073, "percentage": 92.89, "elapsed_time": "13:50:58", "remaining_time": "1:03:35"} +{"current_steps": 5084, "total_steps": 5472, "loss": 0.0209, "accuracy": 1.0, "learning_rate": 7.621108551571332e-09, "epoch": 3.714337899543379, "percentage": 92.91, "elapsed_time": "13:51:07", "remaining_time": "1:03:25"} +{"current_steps": 5085, "total_steps": 5472, "loss": 0.0144, "accuracy": 1.0, "learning_rate": 7.582074641171193e-09, "epoch": 3.7150684931506848, "percentage": 92.93, "elapsed_time": "13:51:17", "remaining_time": "1:03:15"} +{"current_steps": 5086, "total_steps": 5472, "loss": 0.0123, "accuracy": 1.0, "learning_rate": 7.54313941059645e-09, "epoch": 3.7157990867579906, "percentage": 92.95, "elapsed_time": "13:51:26", "remaining_time": "1:03:06"} +{"current_steps": 5087, "total_steps": 5472, "loss": 0.0132, "accuracy": 1.0, "learning_rate": 7.504302875696255e-09, "epoch": 3.716529680365297, "percentage": 92.96, "elapsed_time": "13:51:35", "remaining_time": "1:02:56"} +{"current_steps": 5088, "total_steps": 5472, "loss": 0.0163, "accuracy": 1.0, "learning_rate": 7.465565052279576e-09, "epoch": 3.717260273972603, "percentage": 92.98, "elapsed_time": "13:51:46", "remaining_time": "1:02:46"} +{"current_steps": 5089, "total_steps": 5472, "loss": 0.0173, "accuracy": 1.0, "learning_rate": 7.426925956115243e-09, "epoch": 3.7179908675799087, "percentage": 93.0, "elapsed_time": "13:51:55", "remaining_time": "1:02:36"} +{"current_steps": 5090, "total_steps": 5472, "loss": 0.0263, "accuracy": 1.0, "learning_rate": 7.3883856029318956e-09, "epoch": 3.7187214611872146, "percentage": 93.02, "elapsed_time": "13:52:06", "remaining_time": "1:02:26"} +{"current_steps": 5091, "total_steps": 5472, "loss": 0.0159, "accuracy": 1.0, "learning_rate": 7.349944008417902e-09, "epoch": 3.7194520547945205, "percentage": 93.04, "elapsed_time": "13:52:15", "remaining_time": "1:02:17"} +{"current_steps": 5092, "total_steps": 5472, "loss": 0.0467, "accuracy": 1.0, "learning_rate": 7.311601188221522e-09, "epoch": 3.7201826484018263, "percentage": 93.06, "elapsed_time": "13:52:24", "remaining_time": "1:02:07"} +{"current_steps": 5093, "total_steps": 5472, "loss": 0.0244, "accuracy": 1.0, "learning_rate": 7.273357157950799e-09, "epoch": 3.720913242009132, "percentage": 93.07, "elapsed_time": "13:52:35", "remaining_time": "1:01:57"} +{"current_steps": 5094, "total_steps": 5472, "loss": 0.0286, "accuracy": 1.0, "learning_rate": 7.235211933173446e-09, "epoch": 3.7216438356164385, "percentage": 93.09, "elapsed_time": "13:52:45", "remaining_time": "1:01:47"} +{"current_steps": 5095, "total_steps": 5472, "loss": 0.0229, "accuracy": 1.0, "learning_rate": 7.197165529417154e-09, "epoch": 3.7223744292237444, "percentage": 93.11, "elapsed_time": "13:52:54", "remaining_time": "1:01:37"} +{"current_steps": 5096, "total_steps": 5472, "loss": 0.0186, "accuracy": 1.0, "learning_rate": 7.159217962169229e-09, "epoch": 3.7231050228310503, "percentage": 93.13, "elapsed_time": "13:53:04", "remaining_time": "1:01:27"} +{"current_steps": 5097, "total_steps": 5472, "loss": 0.0235, "accuracy": 1.0, "learning_rate": 7.121369246876757e-09, "epoch": 3.723835616438356, "percentage": 93.15, "elapsed_time": "13:53:12", "remaining_time": "1:01:18"} +{"current_steps": 5098, "total_steps": 5472, "loss": 0.0443, "accuracy": 1.0, "learning_rate": 7.083619398946667e-09, "epoch": 3.724566210045662, "percentage": 93.17, "elapsed_time": "13:53:20", "remaining_time": "1:01:08"} +{"current_steps": 5099, "total_steps": 5472, "loss": 0.0246, "accuracy": 1.0, "learning_rate": 7.0459684337455806e-09, "epoch": 3.725296803652968, "percentage": 93.18, "elapsed_time": "13:53:30", "remaining_time": "1:00:58"} +{"current_steps": 5100, "total_steps": 5472, "loss": 0.0253, "accuracy": 1.0, "learning_rate": 7.008416366599851e-09, "epoch": 3.7260273972602738, "percentage": 93.2, "elapsed_time": "13:53:40", "remaining_time": "1:00:48"} +{"current_steps": 5101, "total_steps": 5472, "loss": 0.0322, "accuracy": 1.0, "learning_rate": 6.970963212795694e-09, "epoch": 3.72675799086758, "percentage": 93.22, "elapsed_time": "13:53:49", "remaining_time": "1:00:38"} +{"current_steps": 5102, "total_steps": 5472, "loss": 0.0219, "accuracy": 1.0, "learning_rate": 6.933608987578915e-09, "epoch": 3.727488584474886, "percentage": 93.24, "elapsed_time": "13:54:00", "remaining_time": "1:00:28"} +{"current_steps": 5103, "total_steps": 5472, "loss": 0.0133, "accuracy": 1.0, "learning_rate": 6.896353706155073e-09, "epoch": 3.728219178082192, "percentage": 93.26, "elapsed_time": "13:54:09", "remaining_time": "1:00:19"} +{"current_steps": 5104, "total_steps": 5472, "loss": 0.0358, "accuracy": 1.0, "learning_rate": 6.859197383689563e-09, "epoch": 3.7289497716894977, "percentage": 93.27, "elapsed_time": "13:54:18", "remaining_time": "1:00:09"} +{"current_steps": 5105, "total_steps": 5472, "loss": 0.0566, "accuracy": 0.875, "learning_rate": 6.8221400353074e-09, "epoch": 3.7296803652968036, "percentage": 93.29, "elapsed_time": "13:54:29", "remaining_time": "0:59:59"} +{"current_steps": 5106, "total_steps": 5472, "loss": 0.0171, "accuracy": 1.0, "learning_rate": 6.785181676093238e-09, "epoch": 3.7304109589041095, "percentage": 93.31, "elapsed_time": "13:54:37", "remaining_time": "0:59:49"} +{"current_steps": 5107, "total_steps": 5472, "loss": 0.0321, "accuracy": 1.0, "learning_rate": 6.748322321091654e-09, "epoch": 3.7311415525114153, "percentage": 93.33, "elapsed_time": "13:54:46", "remaining_time": "0:59:39"} +{"current_steps": 5108, "total_steps": 5472, "loss": 0.0278, "accuracy": 1.0, "learning_rate": 6.71156198530673e-09, "epoch": 3.7318721461187216, "percentage": 93.35, "elapsed_time": "13:54:55", "remaining_time": "0:59:29"} +{"current_steps": 5109, "total_steps": 5472, "loss": 0.029, "accuracy": 1.0, "learning_rate": 6.674900683702356e-09, "epoch": 3.7326027397260275, "percentage": 93.37, "elapsed_time": "13:55:05", "remaining_time": "0:59:20"} +{"current_steps": 5110, "total_steps": 5472, "loss": 0.0267, "accuracy": 1.0, "learning_rate": 6.638338431201984e-09, "epoch": 3.7333333333333334, "percentage": 93.38, "elapsed_time": "13:55:14", "remaining_time": "0:59:10"} +{"current_steps": 5111, "total_steps": 5472, "loss": 0.0231, "accuracy": 1.0, "learning_rate": 6.601875242688848e-09, "epoch": 3.7340639269406393, "percentage": 93.4, "elapsed_time": "13:55:24", "remaining_time": "0:59:00"} +{"current_steps": 5112, "total_steps": 5472, "loss": 0.016, "accuracy": 1.0, "learning_rate": 6.56551113300588e-09, "epoch": 3.734794520547945, "percentage": 93.42, "elapsed_time": "13:55:34", "remaining_time": "0:58:50"} +{"current_steps": 5113, "total_steps": 5472, "loss": 0.0342, "accuracy": 1.0, "learning_rate": 6.529246116955572e-09, "epoch": 3.735525114155251, "percentage": 93.44, "elapsed_time": "13:55:44", "remaining_time": "0:58:40"} +{"current_steps": 5114, "total_steps": 5472, "loss": 0.0201, "accuracy": 1.0, "learning_rate": 6.493080209300228e-09, "epoch": 3.736255707762557, "percentage": 93.46, "elapsed_time": "13:55:56", "remaining_time": "0:58:31"} +{"current_steps": 5115, "total_steps": 5472, "loss": 0.0177, "accuracy": 1.0, "learning_rate": 6.457013424761598e-09, "epoch": 3.736986301369863, "percentage": 93.48, "elapsed_time": "13:56:04", "remaining_time": "0:58:21"} +{"current_steps": 5116, "total_steps": 5472, "loss": 0.0258, "accuracy": 1.0, "learning_rate": 6.4210457780213e-09, "epoch": 3.737716894977169, "percentage": 93.49, "elapsed_time": "13:56:14", "remaining_time": "0:58:11"} +{"current_steps": 5117, "total_steps": 5472, "loss": 0.0131, "accuracy": 1.0, "learning_rate": 6.385177283720455e-09, "epoch": 3.738447488584475, "percentage": 93.51, "elapsed_time": "13:56:25", "remaining_time": "0:58:01"} +{"current_steps": 5118, "total_steps": 5472, "loss": 0.0389, "accuracy": 1.0, "learning_rate": 6.349407956459857e-09, "epoch": 3.739178082191781, "percentage": 93.53, "elapsed_time": "13:56:34", "remaining_time": "0:57:51"} +{"current_steps": 5119, "total_steps": 5472, "loss": 0.0318, "accuracy": 1.0, "learning_rate": 6.313737810799996e-09, "epoch": 3.7399086757990867, "percentage": 93.55, "elapsed_time": "13:56:43", "remaining_time": "0:57:41"} +{"current_steps": 5120, "total_steps": 5472, "loss": 0.0812, "accuracy": 1.0, "learning_rate": 6.27816686126087e-09, "epoch": 3.7406392694063926, "percentage": 93.57, "elapsed_time": "13:56:52", "remaining_time": "0:57:32"} +{"current_steps": 5121, "total_steps": 5472, "loss": 0.0521, "accuracy": 1.0, "learning_rate": 6.242695122322228e-09, "epoch": 3.7413698630136984, "percentage": 93.59, "elapsed_time": "13:57:01", "remaining_time": "0:57:22"} +{"current_steps": 5122, "total_steps": 5472, "loss": 0.0392, "accuracy": 1.0, "learning_rate": 6.207322608423327e-09, "epoch": 3.7421004566210048, "percentage": 93.6, "elapsed_time": "13:57:12", "remaining_time": "0:57:12"} +{"current_steps": 5123, "total_steps": 5472, "loss": 0.0179, "accuracy": 1.0, "learning_rate": 6.172049333963064e-09, "epoch": 3.7428310502283106, "percentage": 93.62, "elapsed_time": "13:57:21", "remaining_time": "0:57:02"} +{"current_steps": 5124, "total_steps": 5472, "loss": 0.0512, "accuracy": 1.0, "learning_rate": 6.136875313299983e-09, "epoch": 3.7435616438356165, "percentage": 93.64, "elapsed_time": "13:57:33", "remaining_time": "0:56:52"} +{"current_steps": 5125, "total_steps": 5472, "loss": 0.0526, "accuracy": 1.0, "learning_rate": 6.101800560752185e-09, "epoch": 3.7442922374429224, "percentage": 93.66, "elapsed_time": "13:57:42", "remaining_time": "0:56:43"} +{"current_steps": 5126, "total_steps": 5472, "loss": 0.0125, "accuracy": 1.0, "learning_rate": 6.066825090597389e-09, "epoch": 3.7450228310502283, "percentage": 93.68, "elapsed_time": "13:57:50", "remaining_time": "0:56:33"} +{"current_steps": 5127, "total_steps": 5472, "loss": 0.0179, "accuracy": 1.0, "learning_rate": 6.031948917072843e-09, "epoch": 3.745753424657534, "percentage": 93.7, "elapsed_time": "13:58:00", "remaining_time": "0:56:23"} +{"current_steps": 5128, "total_steps": 5472, "loss": 0.0372, "accuracy": 1.0, "learning_rate": 5.997172054375416e-09, "epoch": 3.74648401826484, "percentage": 93.71, "elapsed_time": "13:58:10", "remaining_time": "0:56:13"} +{"current_steps": 5129, "total_steps": 5472, "loss": 0.0233, "accuracy": 1.0, "learning_rate": 5.9624945166615595e-09, "epoch": 3.7472146118721463, "percentage": 93.73, "elapsed_time": "13:58:21", "remaining_time": "0:56:03"} +{"current_steps": 5130, "total_steps": 5472, "loss": 0.0383, "accuracy": 1.0, "learning_rate": 5.927916318047288e-09, "epoch": 3.747945205479452, "percentage": 93.75, "elapsed_time": "13:58:29", "remaining_time": "0:55:53"} +{"current_steps": 5131, "total_steps": 5472, "loss": 0.0189, "accuracy": 1.0, "learning_rate": 5.8934374726082034e-09, "epoch": 3.748675799086758, "percentage": 93.77, "elapsed_time": "13:58:38", "remaining_time": "0:55:44"} +{"current_steps": 5132, "total_steps": 5472, "loss": 0.015, "accuracy": 1.0, "learning_rate": 5.859057994379357e-09, "epoch": 3.749406392694064, "percentage": 93.79, "elapsed_time": "13:58:47", "remaining_time": "0:55:34"} +{"current_steps": 5133, "total_steps": 5472, "loss": 0.0172, "accuracy": 1.0, "learning_rate": 5.824777897355471e-09, "epoch": 3.75013698630137, "percentage": 93.8, "elapsed_time": "13:58:58", "remaining_time": "0:55:24"} +{"current_steps": 5134, "total_steps": 5472, "loss": 0.0412, "accuracy": 1.0, "learning_rate": 5.790597195490771e-09, "epoch": 3.7508675799086757, "percentage": 93.82, "elapsed_time": "13:59:07", "remaining_time": "0:55:14"} +{"current_steps": 5135, "total_steps": 5472, "loss": 0.0127, "accuracy": 1.0, "learning_rate": 5.756515902699016e-09, "epoch": 3.7515981735159816, "percentage": 93.84, "elapsed_time": "13:59:16", "remaining_time": "0:55:04"} +{"current_steps": 5136, "total_steps": 5472, "loss": 0.0128, "accuracy": 1.0, "learning_rate": 5.7225340328534985e-09, "epoch": 3.752328767123288, "percentage": 93.86, "elapsed_time": "13:59:25", "remaining_time": "0:54:54"} +{"current_steps": 5137, "total_steps": 5472, "loss": 0.0456, "accuracy": 1.0, "learning_rate": 5.6886515997870145e-09, "epoch": 3.7530593607305938, "percentage": 93.88, "elapsed_time": "13:59:34", "remaining_time": "0:54:45"} +{"current_steps": 5138, "total_steps": 5472, "loss": 0.0415, "accuracy": 1.0, "learning_rate": 5.6548686172920026e-09, "epoch": 3.7537899543378996, "percentage": 93.9, "elapsed_time": "13:59:44", "remaining_time": "0:54:35"} +{"current_steps": 5139, "total_steps": 5472, "loss": 0.0294, "accuracy": 1.0, "learning_rate": 5.62118509912024e-09, "epoch": 3.7545205479452055, "percentage": 93.91, "elapsed_time": "13:59:52", "remaining_time": "0:54:25"} +{"current_steps": 5140, "total_steps": 5472, "loss": 0.0497, "accuracy": 1.0, "learning_rate": 5.587601058983149e-09, "epoch": 3.7552511415525114, "percentage": 93.93, "elapsed_time": "14:00:02", "remaining_time": "0:54:15"} +{"current_steps": 5141, "total_steps": 5472, "loss": 0.0117, "accuracy": 1.0, "learning_rate": 5.554116510551598e-09, "epoch": 3.7559817351598173, "percentage": 93.95, "elapsed_time": "14:00:11", "remaining_time": "0:54:05"} +{"current_steps": 5142, "total_steps": 5472, "loss": 0.0222, "accuracy": 1.0, "learning_rate": 5.520731467455963e-09, "epoch": 3.756712328767123, "percentage": 93.97, "elapsed_time": "14:00:20", "remaining_time": "0:53:55"} +{"current_steps": 5143, "total_steps": 5472, "loss": 0.0186, "accuracy": 1.0, "learning_rate": 5.487445943286123e-09, "epoch": 3.7574429223744295, "percentage": 93.99, "elapsed_time": "14:00:30", "remaining_time": "0:53:46"} +{"current_steps": 5144, "total_steps": 5472, "loss": 0.0169, "accuracy": 1.0, "learning_rate": 5.454259951591489e-09, "epoch": 3.7581735159817353, "percentage": 94.01, "elapsed_time": "14:00:39", "remaining_time": "0:53:36"} +{"current_steps": 5145, "total_steps": 5472, "loss": 0.0182, "accuracy": 1.0, "learning_rate": 5.421173505880866e-09, "epoch": 3.758904109589041, "percentage": 94.02, "elapsed_time": "14:00:49", "remaining_time": "0:53:26"} +{"current_steps": 5146, "total_steps": 5472, "loss": 0.0279, "accuracy": 1.0, "learning_rate": 5.388186619622592e-09, "epoch": 3.759634703196347, "percentage": 94.04, "elapsed_time": "14:00:58", "remaining_time": "0:53:16"} +{"current_steps": 5147, "total_steps": 5472, "loss": 0.0233, "accuracy": 1.0, "learning_rate": 5.355299306244482e-09, "epoch": 3.760365296803653, "percentage": 94.06, "elapsed_time": "14:01:08", "remaining_time": "0:53:06"} +{"current_steps": 5148, "total_steps": 5472, "loss": 0.025, "accuracy": 1.0, "learning_rate": 5.322511579133826e-09, "epoch": 3.761095890410959, "percentage": 94.08, "elapsed_time": "14:01:17", "remaining_time": "0:52:56"} +{"current_steps": 5149, "total_steps": 5472, "loss": 0.0206, "accuracy": 1.0, "learning_rate": 5.289823451637282e-09, "epoch": 3.7618264840182647, "percentage": 94.1, "elapsed_time": "14:01:25", "remaining_time": "0:52:46"} +{"current_steps": 5150, "total_steps": 5472, "loss": 0.0348, "accuracy": 1.0, "learning_rate": 5.2572349370611225e-09, "epoch": 3.762557077625571, "percentage": 94.12, "elapsed_time": "14:01:34", "remaining_time": "0:52:37"} +{"current_steps": 5151, "total_steps": 5472, "loss": 0.0326, "accuracy": 1.0, "learning_rate": 5.224746048670931e-09, "epoch": 3.7632876712328764, "percentage": 94.13, "elapsed_time": "14:01:44", "remaining_time": "0:52:27"} +{"current_steps": 5152, "total_steps": 5472, "loss": 0.0237, "accuracy": 1.0, "learning_rate": 5.1923567996918494e-09, "epoch": 3.7640182648401828, "percentage": 94.15, "elapsed_time": "14:01:54", "remaining_time": "0:52:17"} +{"current_steps": 5153, "total_steps": 5472, "loss": 0.0243, "accuracy": 1.0, "learning_rate": 5.1600672033083604e-09, "epoch": 3.7647488584474886, "percentage": 94.17, "elapsed_time": "14:02:03", "remaining_time": "0:52:07"} +{"current_steps": 5154, "total_steps": 5472, "loss": 0.039, "accuracy": 1.0, "learning_rate": 5.127877272664393e-09, "epoch": 3.7654794520547945, "percentage": 94.19, "elapsed_time": "14:02:12", "remaining_time": "0:51:57"} +{"current_steps": 5155, "total_steps": 5472, "loss": 0.0177, "accuracy": 1.0, "learning_rate": 5.095787020863412e-09, "epoch": 3.7662100456621004, "percentage": 94.21, "elapsed_time": "14:02:21", "remaining_time": "0:51:47"} +{"current_steps": 5156, "total_steps": 5472, "loss": 0.0227, "accuracy": 1.0, "learning_rate": 5.0637964609681894e-09, "epoch": 3.7669406392694063, "percentage": 94.23, "elapsed_time": "14:02:34", "remaining_time": "0:51:38"} +{"current_steps": 5157, "total_steps": 5472, "loss": 0.0139, "accuracy": 1.0, "learning_rate": 5.031905606000974e-09, "epoch": 3.7676712328767126, "percentage": 94.24, "elapsed_time": "14:02:43", "remaining_time": "0:51:28"} +{"current_steps": 5158, "total_steps": 5472, "loss": 0.0248, "accuracy": 1.0, "learning_rate": 5.00011446894344e-09, "epoch": 3.768401826484018, "percentage": 94.26, "elapsed_time": "14:02:54", "remaining_time": "0:51:18"} +{"current_steps": 5159, "total_steps": 5472, "loss": 0.032, "accuracy": 1.0, "learning_rate": 4.968423062736565e-09, "epoch": 3.7691324200913243, "percentage": 94.28, "elapsed_time": "14:03:02", "remaining_time": "0:51:08"} +{"current_steps": 5160, "total_steps": 5472, "loss": 0.0221, "accuracy": 1.0, "learning_rate": 4.9368314002808665e-09, "epoch": 3.76986301369863, "percentage": 94.3, "elapsed_time": "14:03:11", "remaining_time": "0:50:59"} +{"current_steps": 5161, "total_steps": 5472, "loss": 0.0234, "accuracy": 1.0, "learning_rate": 4.905339494436194e-09, "epoch": 3.770593607305936, "percentage": 94.32, "elapsed_time": "14:03:21", "remaining_time": "0:50:49"} +{"current_steps": 5162, "total_steps": 5472, "loss": 0.0225, "accuracy": 1.0, "learning_rate": 4.873947358021796e-09, "epoch": 3.771324200913242, "percentage": 94.33, "elapsed_time": "14:03:31", "remaining_time": "0:50:39"} +{"current_steps": 5163, "total_steps": 5472, "loss": 0.0284, "accuracy": 1.0, "learning_rate": 4.842655003816281e-09, "epoch": 3.772054794520548, "percentage": 94.35, "elapsed_time": "14:03:39", "remaining_time": "0:50:29"} +{"current_steps": 5164, "total_steps": 5472, "loss": 0.014, "accuracy": 1.0, "learning_rate": 4.811462444557713e-09, "epoch": 3.772785388127854, "percentage": 94.37, "elapsed_time": "14:03:49", "remaining_time": "0:50:19"} +{"current_steps": 5165, "total_steps": 5472, "loss": 0.0172, "accuracy": 1.0, "learning_rate": 4.780369692943459e-09, "epoch": 3.7735159817351596, "percentage": 94.39, "elapsed_time": "14:03:58", "remaining_time": "0:50:09"} +{"current_steps": 5166, "total_steps": 5472, "loss": 0.0159, "accuracy": 1.0, "learning_rate": 4.749376761630286e-09, "epoch": 3.774246575342466, "percentage": 94.41, "elapsed_time": "14:04:06", "remaining_time": "0:49:59"} +{"current_steps": 5167, "total_steps": 5472, "loss": 0.0209, "accuracy": 1.0, "learning_rate": 4.718483663234351e-09, "epoch": 3.7749771689497718, "percentage": 94.43, "elapsed_time": "14:04:18", "remaining_time": "0:49:50"} +{"current_steps": 5168, "total_steps": 5472, "loss": 0.0498, "accuracy": 1.0, "learning_rate": 4.687690410331096e-09, "epoch": 3.7757077625570776, "percentage": 94.44, "elapsed_time": "14:04:27", "remaining_time": "0:49:40"} +{"current_steps": 5169, "total_steps": 5472, "loss": 0.0175, "accuracy": 1.0, "learning_rate": 4.656997015455439e-09, "epoch": 3.7764383561643835, "percentage": 94.46, "elapsed_time": "14:04:37", "remaining_time": "0:49:30"} +{"current_steps": 5170, "total_steps": 5472, "loss": 0.0315, "accuracy": 1.0, "learning_rate": 4.626403491101577e-09, "epoch": 3.7771689497716894, "percentage": 94.48, "elapsed_time": "14:04:47", "remaining_time": "0:49:20"} +{"current_steps": 5171, "total_steps": 5472, "loss": 0.026, "accuracy": 1.0, "learning_rate": 4.595909849722995e-09, "epoch": 3.7778995433789957, "percentage": 94.5, "elapsed_time": "14:04:57", "remaining_time": "0:49:11"} +{"current_steps": 5172, "total_steps": 5472, "loss": 0.0304, "accuracy": 1.0, "learning_rate": 4.565516103732625e-09, "epoch": 3.778630136986301, "percentage": 94.52, "elapsed_time": "14:05:05", "remaining_time": "0:49:01"} +{"current_steps": 5173, "total_steps": 5472, "loss": 0.0587, "accuracy": 1.0, "learning_rate": 4.535222265502708e-09, "epoch": 3.7793607305936074, "percentage": 94.54, "elapsed_time": "14:05:16", "remaining_time": "0:48:51"} +{"current_steps": 5174, "total_steps": 5472, "loss": 0.0149, "accuracy": 1.0, "learning_rate": 4.505028347364797e-09, "epoch": 3.7800913242009133, "percentage": 94.55, "elapsed_time": "14:05:25", "remaining_time": "0:48:41"} +{"current_steps": 5175, "total_steps": 5472, "loss": 0.0304, "accuracy": 1.0, "learning_rate": 4.4749343616097555e-09, "epoch": 3.780821917808219, "percentage": 94.57, "elapsed_time": "14:05:35", "remaining_time": "0:48:31"} +{"current_steps": 5176, "total_steps": 5472, "loss": 0.0286, "accuracy": 1.0, "learning_rate": 4.444940320487783e-09, "epoch": 3.781552511415525, "percentage": 94.59, "elapsed_time": "14:05:44", "remaining_time": "0:48:21"} +{"current_steps": 5177, "total_steps": 5472, "loss": 0.0557, "accuracy": 1.0, "learning_rate": 4.4150462362084474e-09, "epoch": 3.782283105022831, "percentage": 94.61, "elapsed_time": "14:05:54", "remaining_time": "0:48:12"} +{"current_steps": 5178, "total_steps": 5472, "loss": 0.0134, "accuracy": 1.0, "learning_rate": 4.3852521209405414e-09, "epoch": 3.7830136986301373, "percentage": 94.63, "elapsed_time": "14:06:04", "remaining_time": "0:48:02"} +{"current_steps": 5179, "total_steps": 5472, "loss": 0.015, "accuracy": 1.0, "learning_rate": 4.355557986812225e-09, "epoch": 3.7837442922374427, "percentage": 94.65, "elapsed_time": "14:06:12", "remaining_time": "0:47:52"} +{"current_steps": 5180, "total_steps": 5472, "loss": 0.0194, "accuracy": 1.0, "learning_rate": 4.325963845910913e-09, "epoch": 3.784474885844749, "percentage": 94.66, "elapsed_time": "14:06:22", "remaining_time": "0:47:42"} +{"current_steps": 5181, "total_steps": 5472, "loss": 0.0285, "accuracy": 1.0, "learning_rate": 4.296469710283329e-09, "epoch": 3.785205479452055, "percentage": 94.68, "elapsed_time": "14:06:33", "remaining_time": "0:47:32"} +{"current_steps": 5182, "total_steps": 5472, "loss": 0.0396, "accuracy": 1.0, "learning_rate": 4.267075591935565e-09, "epoch": 3.7859360730593608, "percentage": 94.7, "elapsed_time": "14:06:42", "remaining_time": "0:47:23"} +{"current_steps": 5183, "total_steps": 5472, "loss": 0.0368, "accuracy": 1.0, "learning_rate": 4.237781502832882e-09, "epoch": 3.7866666666666666, "percentage": 94.72, "elapsed_time": "14:06:51", "remaining_time": "0:47:13"} +{"current_steps": 5184, "total_steps": 5472, "loss": 0.0719, "accuracy": 0.875, "learning_rate": 4.208587454899881e-09, "epoch": 3.7873972602739725, "percentage": 94.74, "elapsed_time": "14:06:59", "remaining_time": "0:47:03"} +{"current_steps": 5185, "total_steps": 5472, "loss": 0.02, "accuracy": 1.0, "learning_rate": 4.179493460020417e-09, "epoch": 3.7881278538812784, "percentage": 94.76, "elapsed_time": "14:07:08", "remaining_time": "0:46:53"} +{"current_steps": 5186, "total_steps": 5472, "loss": 0.0349, "accuracy": 1.0, "learning_rate": 4.150499530037682e-09, "epoch": 3.7888584474885842, "percentage": 94.77, "elapsed_time": "14:07:20", "remaining_time": "0:46:43"} +{"current_steps": 5187, "total_steps": 5472, "loss": 0.0302, "accuracy": 1.0, "learning_rate": 4.1216056767540415e-09, "epoch": 3.7895890410958906, "percentage": 94.79, "elapsed_time": "14:07:30", "remaining_time": "0:46:33"} +{"current_steps": 5188, "total_steps": 5472, "loss": 0.0367, "accuracy": 1.0, "learning_rate": 4.092811911931199e-09, "epoch": 3.7903196347031964, "percentage": 94.81, "elapsed_time": "14:07:40", "remaining_time": "0:46:24"} +{"current_steps": 5189, "total_steps": 5472, "loss": 0.0196, "accuracy": 1.0, "learning_rate": 4.064118247290082e-09, "epoch": 3.7910502283105023, "percentage": 94.83, "elapsed_time": "14:07:49", "remaining_time": "0:46:14"} +{"current_steps": 5190, "total_steps": 5472, "loss": 0.0238, "accuracy": 1.0, "learning_rate": 4.03552469451085e-09, "epoch": 3.791780821917808, "percentage": 94.85, "elapsed_time": "14:07:59", "remaining_time": "0:46:04"} +{"current_steps": 5191, "total_steps": 5472, "loss": 0.0542, "accuracy": 0.875, "learning_rate": 4.0070312652329685e-09, "epoch": 3.792511415525114, "percentage": 94.86, "elapsed_time": "14:08:08", "remaining_time": "0:45:54"} +{"current_steps": 5192, "total_steps": 5472, "loss": 0.0346, "accuracy": 1.0, "learning_rate": 3.978637971055104e-09, "epoch": 3.79324200913242, "percentage": 94.88, "elapsed_time": "14:08:17", "remaining_time": "0:45:44"} +{"current_steps": 5193, "total_steps": 5472, "loss": 0.0136, "accuracy": 1.0, "learning_rate": 3.950344823535124e-09, "epoch": 3.793972602739726, "percentage": 94.9, "elapsed_time": "14:08:26", "remaining_time": "0:45:35"} +{"current_steps": 5194, "total_steps": 5472, "loss": 0.0619, "accuracy": 1.0, "learning_rate": 3.922151834190229e-09, "epoch": 3.794703196347032, "percentage": 94.92, "elapsed_time": "14:08:35", "remaining_time": "0:45:25"} +{"current_steps": 5195, "total_steps": 5472, "loss": 0.0154, "accuracy": 1.0, "learning_rate": 3.89405901449677e-09, "epoch": 3.795433789954338, "percentage": 94.94, "elapsed_time": "14:08:46", "remaining_time": "0:45:15"} +{"current_steps": 5196, "total_steps": 5472, "loss": 0.052, "accuracy": 1.0, "learning_rate": 3.8660663758904034e-09, "epoch": 3.796164383561644, "percentage": 94.96, "elapsed_time": "14:08:56", "remaining_time": "0:45:05"} +{"current_steps": 5197, "total_steps": 5472, "loss": 0.0191, "accuracy": 1.0, "learning_rate": 3.83817392976582e-09, "epoch": 3.7968949771689497, "percentage": 94.97, "elapsed_time": "14:09:05", "remaining_time": "0:44:55"} +{"current_steps": 5198, "total_steps": 5472, "loss": 0.0479, "accuracy": 1.0, "learning_rate": 3.810381687477188e-09, "epoch": 3.7976255707762556, "percentage": 94.99, "elapsed_time": "14:09:14", "remaining_time": "0:44:45"} +{"current_steps": 5199, "total_steps": 5472, "loss": 0.0246, "accuracy": 1.0, "learning_rate": 3.782689660337679e-09, "epoch": 3.7983561643835615, "percentage": 95.01, "elapsed_time": "14:09:26", "remaining_time": "0:44:36"} +{"current_steps": 5200, "total_steps": 5472, "loss": 0.0203, "accuracy": 1.0, "learning_rate": 3.755097859619749e-09, "epoch": 3.7990867579908674, "percentage": 95.03, "elapsed_time": "14:09:36", "remaining_time": "0:44:26"} +{"current_steps": 5201, "total_steps": 5472, "loss": 0.0623, "accuracy": 0.875, "learning_rate": 3.727606296555136e-09, "epoch": 3.7998173515981737, "percentage": 95.05, "elapsed_time": "14:09:45", "remaining_time": "0:44:16"} +{"current_steps": 5202, "total_steps": 5472, "loss": 0.0686, "accuracy": 0.875, "learning_rate": 3.700214982334554e-09, "epoch": 3.8005479452054796, "percentage": 95.07, "elapsed_time": "14:09:54", "remaining_time": "0:44:06"} +{"current_steps": 5203, "total_steps": 5472, "loss": 0.0248, "accuracy": 1.0, "learning_rate": 3.672923928108168e-09, "epoch": 3.8012785388127854, "percentage": 95.08, "elapsed_time": "14:10:05", "remaining_time": "0:43:57"} +{"current_steps": 5204, "total_steps": 5472, "loss": 0.0268, "accuracy": 1.0, "learning_rate": 3.6457331449851193e-09, "epoch": 3.8020091324200913, "percentage": 95.1, "elapsed_time": "14:10:14", "remaining_time": "0:43:47"} +{"current_steps": 5205, "total_steps": 5472, "loss": 0.0138, "accuracy": 1.0, "learning_rate": 3.618642644033859e-09, "epoch": 3.802739726027397, "percentage": 95.12, "elapsed_time": "14:10:26", "remaining_time": "0:43:37"} +{"current_steps": 5206, "total_steps": 5472, "loss": 0.0287, "accuracy": 1.0, "learning_rate": 3.5916524362819834e-09, "epoch": 3.803470319634703, "percentage": 95.14, "elapsed_time": "14:10:36", "remaining_time": "0:43:27"} +{"current_steps": 5207, "total_steps": 5472, "loss": 0.0216, "accuracy": 1.0, "learning_rate": 3.564762532716231e-09, "epoch": 3.804200913242009, "percentage": 95.16, "elapsed_time": "14:10:45", "remaining_time": "0:43:17"} +{"current_steps": 5208, "total_steps": 5472, "loss": 0.0173, "accuracy": 1.0, "learning_rate": 3.5379729442825967e-09, "epoch": 3.8049315068493152, "percentage": 95.18, "elapsed_time": "14:10:54", "remaining_time": "0:43:08"} +{"current_steps": 5209, "total_steps": 5472, "loss": 0.0174, "accuracy": 1.0, "learning_rate": 3.5112836818861345e-09, "epoch": 3.805662100456621, "percentage": 95.19, "elapsed_time": "14:11:04", "remaining_time": "0:42:58"} +{"current_steps": 5210, "total_steps": 5472, "loss": 0.0203, "accuracy": 1.0, "learning_rate": 3.484694756391071e-09, "epoch": 3.806392694063927, "percentage": 95.21, "elapsed_time": "14:11:13", "remaining_time": "0:42:48"} +{"current_steps": 5211, "total_steps": 5472, "loss": 0.0226, "accuracy": 1.0, "learning_rate": 3.458206178620915e-09, "epoch": 3.807123287671233, "percentage": 95.23, "elapsed_time": "14:11:23", "remaining_time": "0:42:38"} +{"current_steps": 5212, "total_steps": 5472, "loss": 0.0173, "accuracy": 1.0, "learning_rate": 3.431817959358152e-09, "epoch": 3.8078538812785387, "percentage": 95.25, "elapsed_time": "14:11:32", "remaining_time": "0:42:28"} +{"current_steps": 5213, "total_steps": 5472, "loss": 0.0321, "accuracy": 1.0, "learning_rate": 3.405530109344551e-09, "epoch": 3.8085844748858446, "percentage": 95.27, "elapsed_time": "14:11:42", "remaining_time": "0:42:18"} +{"current_steps": 5214, "total_steps": 5472, "loss": 0.0307, "accuracy": 1.0, "learning_rate": 3.379342639280969e-09, "epoch": 3.8093150684931505, "percentage": 95.29, "elapsed_time": "14:11:51", "remaining_time": "0:42:09"} +{"current_steps": 5215, "total_steps": 5472, "loss": 0.0081, "accuracy": 1.0, "learning_rate": 3.3532555598273783e-09, "epoch": 3.810045662100457, "percentage": 95.3, "elapsed_time": "14:12:02", "remaining_time": "0:41:59"} +{"current_steps": 5216, "total_steps": 5472, "loss": 0.0183, "accuracy": 1.0, "learning_rate": 3.3272688816029236e-09, "epoch": 3.8107762557077627, "percentage": 95.32, "elapsed_time": "14:12:11", "remaining_time": "0:41:49"} +{"current_steps": 5217, "total_steps": 5472, "loss": 0.0286, "accuracy": 1.0, "learning_rate": 3.301382615185866e-09, "epoch": 3.8115068493150686, "percentage": 95.34, "elapsed_time": "14:12:20", "remaining_time": "0:41:39"} +{"current_steps": 5218, "total_steps": 5472, "loss": 0.0128, "accuracy": 1.0, "learning_rate": 3.2755967711136366e-09, "epoch": 3.8122374429223744, "percentage": 95.36, "elapsed_time": "14:12:30", "remaining_time": "0:41:29"} +{"current_steps": 5219, "total_steps": 5472, "loss": 0.0245, "accuracy": 1.0, "learning_rate": 3.2499113598826734e-09, "epoch": 3.8129680365296803, "percentage": 95.38, "elapsed_time": "14:12:42", "remaining_time": "0:41:20"} +{"current_steps": 5220, "total_steps": 5472, "loss": 0.0289, "accuracy": 1.0, "learning_rate": 3.2243263919486676e-09, "epoch": 3.813698630136986, "percentage": 95.39, "elapsed_time": "14:12:53", "remaining_time": "0:41:10"} +{"current_steps": 5221, "total_steps": 5472, "loss": 0.0228, "accuracy": 1.0, "learning_rate": 3.1988418777263437e-09, "epoch": 3.814429223744292, "percentage": 95.41, "elapsed_time": "14:13:04", "remaining_time": "0:41:00"} +{"current_steps": 5222, "total_steps": 5472, "loss": 0.0441, "accuracy": 1.0, "learning_rate": 3.173457827589543e-09, "epoch": 3.8151598173515984, "percentage": 95.43, "elapsed_time": "14:13:12", "remaining_time": "0:40:50"} +{"current_steps": 5223, "total_steps": 5472, "loss": 0.0144, "accuracy": 1.0, "learning_rate": 3.148174251871222e-09, "epoch": 3.8158904109589042, "percentage": 95.45, "elapsed_time": "14:13:25", "remaining_time": "0:40:41"} +{"current_steps": 5224, "total_steps": 5472, "loss": 0.0194, "accuracy": 1.0, "learning_rate": 3.122991160863453e-09, "epoch": 3.81662100456621, "percentage": 95.47, "elapsed_time": "14:13:35", "remaining_time": "0:40:31"} +{"current_steps": 5225, "total_steps": 5472, "loss": 0.0211, "accuracy": 1.0, "learning_rate": 3.09790856481737e-09, "epoch": 3.817351598173516, "percentage": 95.49, "elapsed_time": "14:13:45", "remaining_time": "0:40:21"} +{"current_steps": 5226, "total_steps": 5472, "loss": 0.0164, "accuracy": 1.0, "learning_rate": 3.072926473943194e-09, "epoch": 3.818082191780822, "percentage": 95.5, "elapsed_time": "14:13:55", "remaining_time": "0:40:11"} +{"current_steps": 5227, "total_steps": 5472, "loss": 0.0154, "accuracy": 1.0, "learning_rate": 3.048044898410318e-09, "epoch": 3.8188127853881277, "percentage": 95.52, "elapsed_time": "14:14:04", "remaining_time": "0:40:01"} +{"current_steps": 5228, "total_steps": 5472, "loss": 0.0484, "accuracy": 1.0, "learning_rate": 3.0232638483471407e-09, "epoch": 3.8195433789954336, "percentage": 95.54, "elapsed_time": "14:14:14", "remaining_time": "0:39:52"} +{"current_steps": 5229, "total_steps": 5472, "loss": 0.0371, "accuracy": 1.0, "learning_rate": 2.9985833338411202e-09, "epoch": 3.82027397260274, "percentage": 95.56, "elapsed_time": "14:14:22", "remaining_time": "0:39:42"} +{"current_steps": 5230, "total_steps": 5472, "loss": 0.0164, "accuracy": 1.0, "learning_rate": 2.9740033649388596e-09, "epoch": 3.821004566210046, "percentage": 95.58, "elapsed_time": "14:14:33", "remaining_time": "0:39:32"} +{"current_steps": 5231, "total_steps": 5472, "loss": 0.0193, "accuracy": 1.0, "learning_rate": 2.9495239516459934e-09, "epoch": 3.8217351598173517, "percentage": 95.6, "elapsed_time": "14:14:42", "remaining_time": "0:39:22"} +{"current_steps": 5232, "total_steps": 5472, "loss": 0.02, "accuracy": 1.0, "learning_rate": 2.925145103927218e-09, "epoch": 3.8224657534246576, "percentage": 95.61, "elapsed_time": "14:14:55", "remaining_time": "0:39:12"} +{"current_steps": 5233, "total_steps": 5472, "loss": 0.0303, "accuracy": 1.0, "learning_rate": 2.900866831706289e-09, "epoch": 3.8231963470319634, "percentage": 95.63, "elapsed_time": "14:15:04", "remaining_time": "0:39:03"} +{"current_steps": 5234, "total_steps": 5472, "loss": 0.0365, "accuracy": 1.0, "learning_rate": 2.876689144866107e-09, "epoch": 3.8239269406392693, "percentage": 95.65, "elapsed_time": "14:15:14", "remaining_time": "0:38:53"} +{"current_steps": 5235, "total_steps": 5472, "loss": 0.0182, "accuracy": 1.0, "learning_rate": 2.852612053248521e-09, "epoch": 3.824657534246575, "percentage": 95.67, "elapsed_time": "14:15:24", "remaining_time": "0:38:43"} +{"current_steps": 5236, "total_steps": 5472, "loss": 0.0277, "accuracy": 1.0, "learning_rate": 2.8286355666544413e-09, "epoch": 3.8253881278538815, "percentage": 95.69, "elapsed_time": "14:15:34", "remaining_time": "0:38:33"} +{"current_steps": 5237, "total_steps": 5472, "loss": 0.0273, "accuracy": 1.0, "learning_rate": 2.8047596948439223e-09, "epoch": 3.8261187214611874, "percentage": 95.71, "elapsed_time": "14:15:43", "remaining_time": "0:38:23"} +{"current_steps": 5238, "total_steps": 5472, "loss": 0.0413, "accuracy": 1.0, "learning_rate": 2.780984447535911e-09, "epoch": 3.8268493150684932, "percentage": 95.72, "elapsed_time": "14:15:52", "remaining_time": "0:38:14"} +{"current_steps": 5239, "total_steps": 5472, "loss": 0.0455, "accuracy": 1.0, "learning_rate": 2.757309834408528e-09, "epoch": 3.827579908675799, "percentage": 95.74, "elapsed_time": "14:16:01", "remaining_time": "0:38:04"} +{"current_steps": 5240, "total_steps": 5472, "loss": 0.0339, "accuracy": 1.0, "learning_rate": 2.7337358650988686e-09, "epoch": 3.828310502283105, "percentage": 95.76, "elapsed_time": "14:16:10", "remaining_time": "0:37:54"} +{"current_steps": 5241, "total_steps": 5472, "loss": 0.0218, "accuracy": 1.0, "learning_rate": 2.710262549203063e-09, "epoch": 3.829041095890411, "percentage": 95.78, "elapsed_time": "14:16:19", "remaining_time": "0:37:44"} +{"current_steps": 5242, "total_steps": 5472, "loss": 0.0216, "accuracy": 1.0, "learning_rate": 2.686889896276273e-09, "epoch": 3.8297716894977167, "percentage": 95.8, "elapsed_time": "14:16:28", "remaining_time": "0:37:34"} +{"current_steps": 5243, "total_steps": 5472, "loss": 0.0186, "accuracy": 1.0, "learning_rate": 2.6636179158326668e-09, "epoch": 3.830502283105023, "percentage": 95.82, "elapsed_time": "14:16:37", "remaining_time": "0:37:24"} +{"current_steps": 5244, "total_steps": 5472, "loss": 0.0536, "accuracy": 1.0, "learning_rate": 2.6404466173454986e-09, "epoch": 3.831232876712329, "percentage": 95.83, "elapsed_time": "14:16:47", "remaining_time": "0:37:15"} +{"current_steps": 5245, "total_steps": 5472, "loss": 0.0363, "accuracy": 1.0, "learning_rate": 2.6173760102469743e-09, "epoch": 3.831963470319635, "percentage": 95.85, "elapsed_time": "14:16:57", "remaining_time": "0:37:05"} +{"current_steps": 5246, "total_steps": 5472, "loss": 0.0347, "accuracy": 1.0, "learning_rate": 2.594406103928276e-09, "epoch": 3.8326940639269407, "percentage": 95.87, "elapsed_time": "14:17:05", "remaining_time": "0:36:55"} +{"current_steps": 5247, "total_steps": 5472, "loss": 0.0167, "accuracy": 1.0, "learning_rate": 2.571536907739702e-09, "epoch": 3.8334246575342465, "percentage": 95.89, "elapsed_time": "14:17:14", "remaining_time": "0:36:45"} +{"current_steps": 5248, "total_steps": 5472, "loss": 0.0804, "accuracy": 1.0, "learning_rate": 2.5487684309905e-09, "epoch": 3.8341552511415524, "percentage": 95.91, "elapsed_time": "14:17:24", "remaining_time": "0:36:35"} +{"current_steps": 5249, "total_steps": 5472, "loss": 0.0284, "accuracy": 1.0, "learning_rate": 2.526100682948895e-09, "epoch": 3.8348858447488583, "percentage": 95.92, "elapsed_time": "14:17:33", "remaining_time": "0:36:25"} +{"current_steps": 5250, "total_steps": 5472, "loss": 0.0396, "accuracy": 1.0, "learning_rate": 2.5035336728421177e-09, "epoch": 3.8356164383561646, "percentage": 95.94, "elapsed_time": "14:17:43", "remaining_time": "0:36:16"} +{"current_steps": 5251, "total_steps": 5472, "loss": 0.0506, "accuracy": 1.0, "learning_rate": 2.48106740985643e-09, "epoch": 3.83634703196347, "percentage": 95.96, "elapsed_time": "14:17:51", "remaining_time": "0:36:06"} +{"current_steps": 5252, "total_steps": 5472, "loss": 0.035, "accuracy": 1.0, "learning_rate": 2.4587019031370725e-09, "epoch": 3.8370776255707764, "percentage": 95.98, "elapsed_time": "14:18:02", "remaining_time": "0:35:56"} +{"current_steps": 5253, "total_steps": 5472, "loss": 0.0067, "accuracy": 1.0, "learning_rate": 2.436437161788235e-09, "epoch": 3.8378082191780822, "percentage": 96.0, "elapsed_time": "14:18:10", "remaining_time": "0:35:46"} +{"current_steps": 5254, "total_steps": 5472, "loss": 0.0333, "accuracy": 1.0, "learning_rate": 2.414273194873112e-09, "epoch": 3.838538812785388, "percentage": 96.02, "elapsed_time": "14:18:20", "remaining_time": "0:35:36"} +{"current_steps": 5255, "total_steps": 5472, "loss": 0.038, "accuracy": 1.0, "learning_rate": 2.392210011413848e-09, "epoch": 3.839269406392694, "percentage": 96.03, "elapsed_time": "14:18:30", "remaining_time": "0:35:27"} +{"current_steps": 5256, "total_steps": 5472, "loss": 0.0204, "accuracy": 1.0, "learning_rate": 2.3702476203916745e-09, "epoch": 3.84, "percentage": 96.05, "elapsed_time": "14:18:41", "remaining_time": "0:35:17"} +{"current_steps": 5257, "total_steps": 5472, "loss": 0.0152, "accuracy": 1.0, "learning_rate": 2.348386030746635e-09, "epoch": 3.840730593607306, "percentage": 96.07, "elapsed_time": "14:18:51", "remaining_time": "0:35:07"} +{"current_steps": 5258, "total_steps": 5472, "loss": 0.0136, "accuracy": 1.0, "learning_rate": 2.326625251377806e-09, "epoch": 3.8414611872146116, "percentage": 96.09, "elapsed_time": "14:19:00", "remaining_time": "0:34:57"} +{"current_steps": 5259, "total_steps": 5472, "loss": 0.0109, "accuracy": 1.0, "learning_rate": 2.3049652911433237e-09, "epoch": 3.842191780821918, "percentage": 96.11, "elapsed_time": "14:19:10", "remaining_time": "0:34:47"} +{"current_steps": 5260, "total_steps": 5472, "loss": 0.0085, "accuracy": 1.0, "learning_rate": 2.2834061588600793e-09, "epoch": 3.842922374429224, "percentage": 96.13, "elapsed_time": "14:19:19", "remaining_time": "0:34:38"} +{"current_steps": 5261, "total_steps": 5472, "loss": 0.0344, "accuracy": 1.0, "learning_rate": 2.2619478633041643e-09, "epoch": 3.8436529680365297, "percentage": 96.14, "elapsed_time": "14:19:28", "remaining_time": "0:34:28"} +{"current_steps": 5262, "total_steps": 5472, "loss": 0.0338, "accuracy": 1.0, "learning_rate": 2.240590413210397e-09, "epoch": 3.8443835616438355, "percentage": 96.16, "elapsed_time": "14:19:38", "remaining_time": "0:34:18"} +{"current_steps": 5263, "total_steps": 5472, "loss": 0.0311, "accuracy": 1.0, "learning_rate": 2.219333817272684e-09, "epoch": 3.8451141552511414, "percentage": 96.18, "elapsed_time": "14:19:48", "remaining_time": "0:34:08"} +{"current_steps": 5264, "total_steps": 5472, "loss": 0.0363, "accuracy": 1.0, "learning_rate": 2.1981780841438536e-09, "epoch": 3.8458447488584477, "percentage": 96.2, "elapsed_time": "14:19:58", "remaining_time": "0:33:58"} +{"current_steps": 5265, "total_steps": 5472, "loss": 0.0468, "accuracy": 1.0, "learning_rate": 2.1771232224356282e-09, "epoch": 3.846575342465753, "percentage": 96.22, "elapsed_time": "14:20:08", "remaining_time": "0:33:49"} +{"current_steps": 5266, "total_steps": 5472, "loss": 0.0664, "accuracy": 0.875, "learning_rate": 2.156169240718736e-09, "epoch": 3.8473059360730595, "percentage": 96.24, "elapsed_time": "14:20:19", "remaining_time": "0:33:39"} +{"current_steps": 5267, "total_steps": 5472, "loss": 0.0364, "accuracy": 1.0, "learning_rate": 2.13531614752277e-09, "epoch": 3.8480365296803654, "percentage": 96.25, "elapsed_time": "14:20:28", "remaining_time": "0:33:29"} +{"current_steps": 5268, "total_steps": 5472, "loss": 0.0143, "accuracy": 1.0, "learning_rate": 2.114563951336329e-09, "epoch": 3.8487671232876712, "percentage": 96.27, "elapsed_time": "14:20:37", "remaining_time": "0:33:19"} +{"current_steps": 5269, "total_steps": 5472, "loss": 0.02, "accuracy": 1.0, "learning_rate": 2.093912660606878e-09, "epoch": 3.849497716894977, "percentage": 96.29, "elapsed_time": "14:20:47", "remaining_time": "0:33:09"} +{"current_steps": 5270, "total_steps": 5472, "loss": 0.0658, "accuracy": 1.0, "learning_rate": 2.073362283740859e-09, "epoch": 3.850228310502283, "percentage": 96.31, "elapsed_time": "14:20:57", "remaining_time": "0:33:00"} +{"current_steps": 5271, "total_steps": 5472, "loss": 0.0115, "accuracy": 1.0, "learning_rate": 2.0529128291036093e-09, "epoch": 3.8509589041095893, "percentage": 96.33, "elapsed_time": "14:21:06", "remaining_time": "0:32:50"} +{"current_steps": 5272, "total_steps": 5472, "loss": 0.016, "accuracy": 1.0, "learning_rate": 2.03256430501933e-09, "epoch": 3.8516894977168947, "percentage": 96.35, "elapsed_time": "14:21:15", "remaining_time": "0:32:40"} +{"current_steps": 5273, "total_steps": 5472, "loss": 0.0254, "accuracy": 1.0, "learning_rate": 2.012316719771229e-09, "epoch": 3.852420091324201, "percentage": 96.36, "elapsed_time": "14:21:26", "remaining_time": "0:32:30"} +{"current_steps": 5274, "total_steps": 5472, "loss": 0.0344, "accuracy": 1.0, "learning_rate": 1.9921700816013796e-09, "epoch": 3.853150684931507, "percentage": 96.38, "elapsed_time": "14:21:35", "remaining_time": "0:32:20"} +{"current_steps": 5275, "total_steps": 5472, "loss": 0.0154, "accuracy": 1.0, "learning_rate": 1.972124398710806e-09, "epoch": 3.853881278538813, "percentage": 96.4, "elapsed_time": "14:21:44", "remaining_time": "0:32:10"} +{"current_steps": 5276, "total_steps": 5472, "loss": 0.0241, "accuracy": 1.0, "learning_rate": 1.9521796792593694e-09, "epoch": 3.8546118721461187, "percentage": 96.42, "elapsed_time": "14:21:53", "remaining_time": "0:32:01"} +{"current_steps": 5277, "total_steps": 5472, "loss": 0.0281, "accuracy": 1.0, "learning_rate": 1.932335931365853e-09, "epoch": 3.8553424657534245, "percentage": 96.44, "elapsed_time": "14:22:05", "remaining_time": "0:31:51"} +{"current_steps": 5278, "total_steps": 5472, "loss": 0.0314, "accuracy": 1.0, "learning_rate": 1.9125931631079615e-09, "epoch": 3.856073059360731, "percentage": 96.45, "elapsed_time": "14:22:16", "remaining_time": "0:31:41"} +{"current_steps": 5279, "total_steps": 5472, "loss": 0.0308, "accuracy": 1.0, "learning_rate": 1.8929513825222955e-09, "epoch": 3.8568036529680363, "percentage": 96.47, "elapsed_time": "14:22:26", "remaining_time": "0:31:31"} +{"current_steps": 5280, "total_steps": 5472, "loss": 0.0137, "accuracy": 1.0, "learning_rate": 1.873410597604319e-09, "epoch": 3.8575342465753426, "percentage": 96.49, "elapsed_time": "14:22:36", "remaining_time": "0:31:22"} +{"current_steps": 5281, "total_steps": 5472, "loss": 0.0404, "accuracy": 1.0, "learning_rate": 1.85397081630842e-09, "epoch": 3.8582648401826485, "percentage": 96.51, "elapsed_time": "14:22:45", "remaining_time": "0:31:12"} +{"current_steps": 5282, "total_steps": 5472, "loss": 0.0579, "accuracy": 0.875, "learning_rate": 1.8346320465478237e-09, "epoch": 3.8589954337899544, "percentage": 96.53, "elapsed_time": "14:22:54", "remaining_time": "0:31:02"} +{"current_steps": 5283, "total_steps": 5472, "loss": 0.0184, "accuracy": 1.0, "learning_rate": 1.8153942961947055e-09, "epoch": 3.8597260273972602, "percentage": 96.55, "elapsed_time": "14:23:04", "remaining_time": "0:30:52"} +{"current_steps": 5284, "total_steps": 5472, "loss": 0.0159, "accuracy": 1.0, "learning_rate": 1.7962575730799955e-09, "epoch": 3.860456621004566, "percentage": 96.56, "elapsed_time": "14:23:14", "remaining_time": "0:30:42"} +{"current_steps": 5285, "total_steps": 5472, "loss": 0.0118, "accuracy": 1.0, "learning_rate": 1.777221884993685e-09, "epoch": 3.8611872146118724, "percentage": 96.58, "elapsed_time": "14:23:24", "remaining_time": "0:30:33"} +{"current_steps": 5286, "total_steps": 5472, "loss": 0.0153, "accuracy": 1.0, "learning_rate": 1.7582872396844362e-09, "epoch": 3.861917808219178, "percentage": 96.6, "elapsed_time": "14:23:33", "remaining_time": "0:30:23"} +{"current_steps": 5287, "total_steps": 5472, "loss": 0.0343, "accuracy": 1.0, "learning_rate": 1.7394536448599451e-09, "epoch": 3.862648401826484, "percentage": 96.62, "elapsed_time": "14:23:44", "remaining_time": "0:30:13"} +{"current_steps": 5288, "total_steps": 5472, "loss": 0.016, "accuracy": 1.0, "learning_rate": 1.720721108186718e-09, "epoch": 3.86337899543379, "percentage": 96.64, "elapsed_time": "14:23:55", "remaining_time": "0:30:03"} +{"current_steps": 5289, "total_steps": 5472, "loss": 0.0263, "accuracy": 1.0, "learning_rate": 1.702089637290044e-09, "epoch": 3.864109589041096, "percentage": 96.66, "elapsed_time": "14:24:04", "remaining_time": "0:29:53"} +{"current_steps": 5290, "total_steps": 5472, "loss": 0.0342, "accuracy": 1.0, "learning_rate": 1.6835592397542176e-09, "epoch": 3.864840182648402, "percentage": 96.67, "elapsed_time": "14:24:13", "remaining_time": "0:29:43"} +{"current_steps": 5291, "total_steps": 5472, "loss": 0.0538, "accuracy": 1.0, "learning_rate": 1.6651299231222326e-09, "epoch": 3.8655707762557077, "percentage": 96.69, "elapsed_time": "14:24:23", "remaining_time": "0:29:34"} +{"current_steps": 5292, "total_steps": 5472, "loss": 0.0287, "accuracy": 1.0, "learning_rate": 1.6468016948960883e-09, "epoch": 3.8663013698630135, "percentage": 96.71, "elapsed_time": "14:24:32", "remaining_time": "0:29:24"} +{"current_steps": 5293, "total_steps": 5472, "loss": 0.0352, "accuracy": 1.0, "learning_rate": 1.6285745625365387e-09, "epoch": 3.8670319634703194, "percentage": 96.73, "elapsed_time": "14:24:42", "remaining_time": "0:29:14"} +{"current_steps": 5294, "total_steps": 5472, "loss": 0.0391, "accuracy": 1.0, "learning_rate": 1.6104485334631767e-09, "epoch": 3.8677625570776257, "percentage": 96.75, "elapsed_time": "14:24:52", "remaining_time": "0:29:04"} +{"current_steps": 5295, "total_steps": 5472, "loss": 0.0249, "accuracy": 1.0, "learning_rate": 1.5924236150545445e-09, "epoch": 3.8684931506849316, "percentage": 96.77, "elapsed_time": "14:25:03", "remaining_time": "0:28:55"} +{"current_steps": 5296, "total_steps": 5472, "loss": 0.0338, "accuracy": 0.875, "learning_rate": 1.5744998146478839e-09, "epoch": 3.8692237442922375, "percentage": 96.78, "elapsed_time": "14:25:15", "remaining_time": "0:28:45"} +{"current_steps": 5297, "total_steps": 5472, "loss": 0.029, "accuracy": 1.0, "learning_rate": 1.5566771395393585e-09, "epoch": 3.8699543378995434, "percentage": 96.8, "elapsed_time": "14:25:25", "remaining_time": "0:28:35"} +{"current_steps": 5298, "total_steps": 5472, "loss": 0.0196, "accuracy": 1.0, "learning_rate": 1.5389555969839707e-09, "epoch": 3.8706849315068492, "percentage": 96.82, "elapsed_time": "14:25:34", "remaining_time": "0:28:25"} +{"current_steps": 5299, "total_steps": 5472, "loss": 0.0275, "accuracy": 1.0, "learning_rate": 1.5213351941955332e-09, "epoch": 3.871415525114155, "percentage": 96.84, "elapsed_time": "14:25:44", "remaining_time": "0:28:15"} +{"current_steps": 5300, "total_steps": 5472, "loss": 0.0233, "accuracy": 1.0, "learning_rate": 1.5038159383466976e-09, "epoch": 3.872146118721461, "percentage": 96.86, "elapsed_time": "14:25:52", "remaining_time": "0:28:06"} +{"current_steps": 5301, "total_steps": 5472, "loss": 0.0285, "accuracy": 1.0, "learning_rate": 1.4863978365689533e-09, "epoch": 3.8728767123287673, "percentage": 96.88, "elapsed_time": "14:26:01", "remaining_time": "0:27:56"} +{"current_steps": 5302, "total_steps": 5472, "loss": 0.0196, "accuracy": 1.0, "learning_rate": 1.4690808959525458e-09, "epoch": 3.873607305936073, "percentage": 96.89, "elapsed_time": "14:26:11", "remaining_time": "0:27:46"} +{"current_steps": 5303, "total_steps": 5472, "loss": 0.0224, "accuracy": 1.0, "learning_rate": 1.4518651235466418e-09, "epoch": 3.874337899543379, "percentage": 96.91, "elapsed_time": "14:26:21", "remaining_time": "0:27:36"} +{"current_steps": 5304, "total_steps": 5472, "loss": 0.0142, "accuracy": 1.0, "learning_rate": 1.4347505263591353e-09, "epoch": 3.875068493150685, "percentage": 96.93, "elapsed_time": "14:26:30", "remaining_time": "0:27:26"} +{"current_steps": 5305, "total_steps": 5472, "loss": 0.0438, "accuracy": 1.0, "learning_rate": 1.4177371113568426e-09, "epoch": 3.875799086757991, "percentage": 96.95, "elapsed_time": "14:26:39", "remaining_time": "0:27:16"} +{"current_steps": 5306, "total_steps": 5472, "loss": 0.0214, "accuracy": 1.0, "learning_rate": 1.4008248854652515e-09, "epoch": 3.8765296803652967, "percentage": 96.97, "elapsed_time": "14:26:49", "remaining_time": "0:27:07"} +{"current_steps": 5307, "total_steps": 5472, "loss": 0.0269, "accuracy": 1.0, "learning_rate": 1.3840138555687998e-09, "epoch": 3.8772602739726025, "percentage": 96.98, "elapsed_time": "14:26:59", "remaining_time": "0:26:57"} +{"current_steps": 5308, "total_steps": 5472, "loss": 0.0256, "accuracy": 1.0, "learning_rate": 1.367304028510624e-09, "epoch": 3.877990867579909, "percentage": 97.0, "elapsed_time": "14:27:09", "remaining_time": "0:26:47"} +{"current_steps": 5309, "total_steps": 5472, "loss": 0.0141, "accuracy": 1.0, "learning_rate": 1.350695411092756e-09, "epoch": 3.8787214611872147, "percentage": 97.02, "elapsed_time": "14:27:17", "remaining_time": "0:26:37"} +{"current_steps": 5310, "total_steps": 5472, "loss": 0.0154, "accuracy": 1.0, "learning_rate": 1.3341880100759262e-09, "epoch": 3.8794520547945206, "percentage": 97.04, "elapsed_time": "14:27:27", "remaining_time": "0:26:27"} +{"current_steps": 5311, "total_steps": 5472, "loss": 0.0269, "accuracy": 1.0, "learning_rate": 1.3177818321797318e-09, "epoch": 3.8801826484018265, "percentage": 97.06, "elapsed_time": "14:27:36", "remaining_time": "0:26:18"} +{"current_steps": 5312, "total_steps": 5472, "loss": 0.041, "accuracy": 1.0, "learning_rate": 1.301476884082553e-09, "epoch": 3.8809132420091323, "percentage": 97.08, "elapsed_time": "14:27:44", "remaining_time": "0:26:08"} +{"current_steps": 5313, "total_steps": 5472, "loss": 0.0268, "accuracy": 1.0, "learning_rate": 1.2852731724215805e-09, "epoch": 3.881643835616438, "percentage": 97.09, "elapsed_time": "14:27:55", "remaining_time": "0:25:58"} +{"current_steps": 5314, "total_steps": 5472, "loss": 0.0342, "accuracy": 1.0, "learning_rate": 1.2691707037927878e-09, "epoch": 3.882374429223744, "percentage": 97.11, "elapsed_time": "14:28:05", "remaining_time": "0:25:48"} +{"current_steps": 5315, "total_steps": 5472, "loss": 0.0364, "accuracy": 1.0, "learning_rate": 1.2531694847508768e-09, "epoch": 3.8831050228310504, "percentage": 97.13, "elapsed_time": "14:28:15", "remaining_time": "0:25:38"} +{"current_steps": 5316, "total_steps": 5472, "loss": 0.0456, "accuracy": 1.0, "learning_rate": 1.2372695218094143e-09, "epoch": 3.8838356164383563, "percentage": 97.15, "elapsed_time": "14:28:24", "remaining_time": "0:25:29"} +{"current_steps": 5317, "total_steps": 5472, "loss": 0.0273, "accuracy": 1.0, "learning_rate": 1.2214708214406956e-09, "epoch": 3.884566210045662, "percentage": 97.17, "elapsed_time": "14:28:33", "remaining_time": "0:25:19"} +{"current_steps": 5318, "total_steps": 5472, "loss": 0.0155, "accuracy": 1.0, "learning_rate": 1.2057733900758538e-09, "epoch": 3.885296803652968, "percentage": 97.19, "elapsed_time": "14:28:43", "remaining_time": "0:25:09"} +{"current_steps": 5319, "total_steps": 5472, "loss": 0.0205, "accuracy": 1.0, "learning_rate": 1.19017723410475e-09, "epoch": 3.886027397260274, "percentage": 97.2, "elapsed_time": "14:28:51", "remaining_time": "0:24:59"} +{"current_steps": 5320, "total_steps": 5472, "loss": 0.0377, "accuracy": 1.0, "learning_rate": 1.1746823598759726e-09, "epoch": 3.88675799086758, "percentage": 97.22, "elapsed_time": "14:29:00", "remaining_time": "0:24:49"} +{"current_steps": 5321, "total_steps": 5472, "loss": 0.0249, "accuracy": 1.0, "learning_rate": 1.1592887736970314e-09, "epoch": 3.8874885844748857, "percentage": 97.24, "elapsed_time": "14:29:10", "remaining_time": "0:24:39"} +{"current_steps": 5322, "total_steps": 5472, "loss": 0.022, "accuracy": 1.0, "learning_rate": 1.143996481834053e-09, "epoch": 3.888219178082192, "percentage": 97.26, "elapsed_time": "14:29:19", "remaining_time": "0:24:30"} +{"current_steps": 5323, "total_steps": 5472, "loss": 0.02, "accuracy": 1.0, "learning_rate": 1.1288054905120303e-09, "epoch": 3.888949771689498, "percentage": 97.28, "elapsed_time": "14:29:28", "remaining_time": "0:24:20"} +{"current_steps": 5324, "total_steps": 5472, "loss": 0.0286, "accuracy": 1.0, "learning_rate": 1.1137158059146556e-09, "epoch": 3.8896803652968037, "percentage": 97.3, "elapsed_time": "14:29:39", "remaining_time": "0:24:10"} +{"current_steps": 5325, "total_steps": 5472, "loss": 0.0343, "accuracy": 1.0, "learning_rate": 1.0987274341844043e-09, "epoch": 3.8904109589041096, "percentage": 97.31, "elapsed_time": "14:29:48", "remaining_time": "0:24:00"} +{"current_steps": 5326, "total_steps": 5472, "loss": 0.0179, "accuracy": 1.0, "learning_rate": 1.083840381422535e-09, "epoch": 3.8911415525114155, "percentage": 97.33, "elapsed_time": "14:29:58", "remaining_time": "0:23:50"} +{"current_steps": 5327, "total_steps": 5472, "loss": 0.0341, "accuracy": 1.0, "learning_rate": 1.0690546536890332e-09, "epoch": 3.8918721461187213, "percentage": 97.35, "elapsed_time": "14:30:14", "remaining_time": "0:23:41"} +{"current_steps": 5328, "total_steps": 5472, "loss": 0.0154, "accuracy": 1.0, "learning_rate": 1.0543702570026681e-09, "epoch": 3.892602739726027, "percentage": 97.37, "elapsed_time": "14:30:24", "remaining_time": "0:23:31"} +{"current_steps": 5329, "total_steps": 5472, "loss": 0.0427, "accuracy": 1.0, "learning_rate": 1.0397871973409356e-09, "epoch": 3.8933333333333335, "percentage": 97.39, "elapsed_time": "14:30:35", "remaining_time": "0:23:21"} +{"current_steps": 5330, "total_steps": 5472, "loss": 0.0366, "accuracy": 1.0, "learning_rate": 1.0253054806400597e-09, "epoch": 3.8940639269406394, "percentage": 97.4, "elapsed_time": "14:30:44", "remaining_time": "0:23:11"} +{"current_steps": 5331, "total_steps": 5472, "loss": 0.0552, "accuracy": 1.0, "learning_rate": 1.0109251127950746e-09, "epoch": 3.8947945205479453, "percentage": 97.42, "elapsed_time": "14:30:53", "remaining_time": "0:23:02"} +{"current_steps": 5332, "total_steps": 5472, "loss": 0.0393, "accuracy": 1.0, "learning_rate": 9.966460996597147e-10, "epoch": 3.895525114155251, "percentage": 97.44, "elapsed_time": "14:31:03", "remaining_time": "0:22:52"} +{"current_steps": 5333, "total_steps": 5472, "loss": 0.0256, "accuracy": 1.0, "learning_rate": 9.824684470464418e-10, "epoch": 3.896255707762557, "percentage": 97.46, "elapsed_time": "14:31:12", "remaining_time": "0:22:42"} +{"current_steps": 5334, "total_steps": 5472, "loss": 0.0738, "accuracy": 1.0, "learning_rate": 9.683921607265e-10, "epoch": 3.896986301369863, "percentage": 97.48, "elapsed_time": "14:31:23", "remaining_time": "0:22:32"} +{"current_steps": 5335, "total_steps": 5472, "loss": 0.0115, "accuracy": 1.0, "learning_rate": 9.544172464298616e-10, "epoch": 3.8977168949771688, "percentage": 97.5, "elapsed_time": "14:31:32", "remaining_time": "0:22:22"} +{"current_steps": 5336, "total_steps": 5472, "loss": 0.0175, "accuracy": 1.0, "learning_rate": 9.405437098451984e-10, "epoch": 3.898447488584475, "percentage": 97.51, "elapsed_time": "14:31:41", "remaining_time": "0:22:13"} +{"current_steps": 5337, "total_steps": 5472, "loss": 0.0269, "accuracy": 1.0, "learning_rate": 9.267715566199652e-10, "epoch": 3.899178082191781, "percentage": 97.53, "elapsed_time": "14:31:50", "remaining_time": "0:22:03"} +{"current_steps": 5338, "total_steps": 5472, "loss": 0.0128, "accuracy": 1.0, "learning_rate": 9.131007923602885e-10, "epoch": 3.899908675799087, "percentage": 97.55, "elapsed_time": "14:31:58", "remaining_time": "0:21:53"} +{"current_steps": 5339, "total_steps": 5472, "loss": 0.0369, "accuracy": 1.0, "learning_rate": 8.995314226311057e-10, "epoch": 3.9006392694063927, "percentage": 97.57, "elapsed_time": "14:32:07", "remaining_time": "0:21:43"} +{"current_steps": 5340, "total_steps": 5472, "loss": 0.0074, "accuracy": 1.0, "learning_rate": 8.860634529559708e-10, "epoch": 3.9013698630136986, "percentage": 97.59, "elapsed_time": "14:32:17", "remaining_time": "0:21:33"} +{"current_steps": 5341, "total_steps": 5472, "loss": 0.0367, "accuracy": 1.0, "learning_rate": 8.726968888172759e-10, "epoch": 3.9021004566210045, "percentage": 97.61, "elapsed_time": "14:32:26", "remaining_time": "0:21:23"} +{"current_steps": 5342, "total_steps": 5472, "loss": 0.0443, "accuracy": 0.875, "learning_rate": 8.594317356560299e-10, "epoch": 3.9028310502283103, "percentage": 97.62, "elapsed_time": "14:32:35", "remaining_time": "0:21:14"} +{"current_steps": 5343, "total_steps": 5472, "loss": 0.0405, "accuracy": 1.0, "learning_rate": 8.4626799887208e-10, "epoch": 3.9035616438356167, "percentage": 97.64, "elapsed_time": "14:32:45", "remaining_time": "0:21:04"} +{"current_steps": 5344, "total_steps": 5472, "loss": 0.0424, "accuracy": 1.0, "learning_rate": 8.332056838238343e-10, "epoch": 3.9042922374429225, "percentage": 97.66, "elapsed_time": "14:32:55", "remaining_time": "0:20:54"} +{"current_steps": 5345, "total_steps": 5472, "loss": 0.0133, "accuracy": 1.0, "learning_rate": 8.202447958285674e-10, "epoch": 3.9050228310502284, "percentage": 97.68, "elapsed_time": "14:33:03", "remaining_time": "0:20:44"} +{"current_steps": 5346, "total_steps": 5472, "loss": 0.0614, "accuracy": 1.0, "learning_rate": 8.073853401621978e-10, "epoch": 3.9057534246575343, "percentage": 97.7, "elapsed_time": "14:33:15", "remaining_time": "0:20:34"} +{"current_steps": 5347, "total_steps": 5472, "loss": 0.0231, "accuracy": 1.0, "learning_rate": 7.946273220593158e-10, "epoch": 3.90648401826484, "percentage": 97.72, "elapsed_time": "14:33:24", "remaining_time": "0:20:25"} +{"current_steps": 5348, "total_steps": 5472, "loss": 0.0388, "accuracy": 1.0, "learning_rate": 7.819707467132952e-10, "epoch": 3.907214611872146, "percentage": 97.73, "elapsed_time": "14:33:34", "remaining_time": "0:20:15"} +{"current_steps": 5349, "total_steps": 5472, "loss": 0.0085, "accuracy": 1.0, "learning_rate": 7.694156192761813e-10, "epoch": 3.907945205479452, "percentage": 97.75, "elapsed_time": "14:33:47", "remaining_time": "0:20:05"} +{"current_steps": 5350, "total_steps": 5472, "loss": 0.0372, "accuracy": 1.0, "learning_rate": 7.569619448587194e-10, "epoch": 3.908675799086758, "percentage": 97.77, "elapsed_time": "14:33:56", "remaining_time": "0:19:55"} +{"current_steps": 5351, "total_steps": 5472, "loss": 0.0176, "accuracy": 1.0, "learning_rate": 7.446097285303543e-10, "epoch": 3.909406392694064, "percentage": 97.79, "elapsed_time": "14:34:05", "remaining_time": "0:19:45"} +{"current_steps": 5352, "total_steps": 5472, "loss": 0.0218, "accuracy": 1.0, "learning_rate": 7.323589753192582e-10, "epoch": 3.91013698630137, "percentage": 97.81, "elapsed_time": "14:34:14", "remaining_time": "0:19:36"} +{"current_steps": 5353, "total_steps": 5472, "loss": 0.0327, "accuracy": 1.0, "learning_rate": 7.202096902122756e-10, "epoch": 3.910867579908676, "percentage": 97.83, "elapsed_time": "14:34:23", "remaining_time": "0:19:26"} +{"current_steps": 5354, "total_steps": 5472, "loss": 0.0249, "accuracy": 1.0, "learning_rate": 7.081618781549503e-10, "epoch": 3.9115981735159817, "percentage": 97.84, "elapsed_time": "14:34:34", "remaining_time": "0:19:16"} +{"current_steps": 5355, "total_steps": 5472, "loss": 0.0314, "accuracy": 1.0, "learning_rate": 6.962155440515261e-10, "epoch": 3.9123287671232876, "percentage": 97.86, "elapsed_time": "14:34:43", "remaining_time": "0:19:06"} +{"current_steps": 5356, "total_steps": 5472, "loss": 0.0161, "accuracy": 1.0, "learning_rate": 6.843706927649462e-10, "epoch": 3.9130593607305935, "percentage": 97.88, "elapsed_time": "14:34:52", "remaining_time": "0:18:56"} +{"current_steps": 5357, "total_steps": 5472, "loss": 0.0239, "accuracy": 1.0, "learning_rate": 6.726273291168261e-10, "epoch": 3.9137899543379, "percentage": 97.9, "elapsed_time": "14:35:01", "remaining_time": "0:18:47"} +{"current_steps": 5358, "total_steps": 5472, "loss": 0.0264, "accuracy": 1.0, "learning_rate": 6.609854578874529e-10, "epoch": 3.914520547945205, "percentage": 97.92, "elapsed_time": "14:35:10", "remaining_time": "0:18:37"} +{"current_steps": 5359, "total_steps": 5472, "loss": 0.0169, "accuracy": 1.0, "learning_rate": 6.494450838158416e-10, "epoch": 3.9152511415525115, "percentage": 97.93, "elapsed_time": "14:35:19", "remaining_time": "0:18:27"} +{"current_steps": 5360, "total_steps": 5472, "loss": 0.0245, "accuracy": 1.0, "learning_rate": 6.380062115997064e-10, "epoch": 3.9159817351598174, "percentage": 97.95, "elapsed_time": "14:35:30", "remaining_time": "0:18:17"} +{"current_steps": 5361, "total_steps": 5472, "loss": 0.0312, "accuracy": 1.0, "learning_rate": 6.266688458953506e-10, "epoch": 3.9167123287671233, "percentage": 97.97, "elapsed_time": "14:35:41", "remaining_time": "0:18:07"} +{"current_steps": 5362, "total_steps": 5472, "loss": 0.0248, "accuracy": 1.0, "learning_rate": 6.154329913178602e-10, "epoch": 3.917442922374429, "percentage": 97.99, "elapsed_time": "14:35:50", "remaining_time": "0:17:58"} +{"current_steps": 5363, "total_steps": 5472, "loss": 0.0222, "accuracy": 1.0, "learning_rate": 6.042986524409655e-10, "epoch": 3.918173515981735, "percentage": 98.01, "elapsed_time": "14:36:00", "remaining_time": "0:17:48"} +{"current_steps": 5364, "total_steps": 5472, "loss": 0.0159, "accuracy": 1.0, "learning_rate": 5.932658337970132e-10, "epoch": 3.9189041095890413, "percentage": 98.03, "elapsed_time": "14:36:09", "remaining_time": "0:17:38"} +{"current_steps": 5365, "total_steps": 5472, "loss": 0.0458, "accuracy": 1.0, "learning_rate": 5.823345398771329e-10, "epoch": 3.9196347031963468, "percentage": 98.04, "elapsed_time": "14:36:18", "remaining_time": "0:17:28"} +{"current_steps": 5366, "total_steps": 5472, "loss": 0.0082, "accuracy": 1.0, "learning_rate": 5.715047751310154e-10, "epoch": 3.920365296803653, "percentage": 98.06, "elapsed_time": "14:36:30", "remaining_time": "0:17:18"} +{"current_steps": 5367, "total_steps": 5472, "loss": 0.0126, "accuracy": 1.0, "learning_rate": 5.607765439671341e-10, "epoch": 3.921095890410959, "percentage": 98.08, "elapsed_time": "14:36:39", "remaining_time": "0:17:09"} +{"current_steps": 5368, "total_steps": 5472, "loss": 0.0403, "accuracy": 1.0, "learning_rate": 5.501498507525237e-10, "epoch": 3.921826484018265, "percentage": 98.1, "elapsed_time": "14:36:49", "remaining_time": "0:16:59"} +{"current_steps": 5369, "total_steps": 5472, "loss": 0.0245, "accuracy": 1.0, "learning_rate": 5.396246998129738e-10, "epoch": 3.9225570776255707, "percentage": 98.12, "elapsed_time": "14:36:59", "remaining_time": "0:16:49"} +{"current_steps": 5370, "total_steps": 5472, "loss": 0.0146, "accuracy": 1.0, "learning_rate": 5.292010954329184e-10, "epoch": 3.9232876712328766, "percentage": 98.14, "elapsed_time": "14:37:08", "remaining_time": "0:16:39"} +{"current_steps": 5371, "total_steps": 5472, "loss": 0.0196, "accuracy": 1.0, "learning_rate": 5.188790418553801e-10, "epoch": 3.924018264840183, "percentage": 98.15, "elapsed_time": "14:37:17", "remaining_time": "0:16:29"} +{"current_steps": 5372, "total_steps": 5472, "loss": 0.0314, "accuracy": 1.0, "learning_rate": 5.086585432821366e-10, "epoch": 3.9247488584474883, "percentage": 98.17, "elapsed_time": "14:37:29", "remaining_time": "0:16:20"} +{"current_steps": 5373, "total_steps": 5472, "loss": 0.0281, "accuracy": 1.0, "learning_rate": 4.985396038736101e-10, "epoch": 3.9254794520547946, "percentage": 98.19, "elapsed_time": "14:37:40", "remaining_time": "0:16:10"} +{"current_steps": 5374, "total_steps": 5472, "loss": 0.0213, "accuracy": 1.0, "learning_rate": 4.885222277488388e-10, "epoch": 3.9262100456621005, "percentage": 98.21, "elapsed_time": "14:37:48", "remaining_time": "0:16:00"} +{"current_steps": 5375, "total_steps": 5472, "loss": 0.0108, "accuracy": 1.0, "learning_rate": 4.786064189855888e-10, "epoch": 3.9269406392694064, "percentage": 98.23, "elapsed_time": "14:37:58", "remaining_time": "0:15:50"} +{"current_steps": 5376, "total_steps": 5472, "loss": 0.0309, "accuracy": 1.0, "learning_rate": 4.687921816201868e-10, "epoch": 3.9276712328767123, "percentage": 98.25, "elapsed_time": "14:38:06", "remaining_time": "0:15:40"} +{"current_steps": 5377, "total_steps": 5472, "loss": 0.0144, "accuracy": 1.0, "learning_rate": 4.590795196476871e-10, "epoch": 3.928401826484018, "percentage": 98.26, "elapsed_time": "14:38:16", "remaining_time": "0:15:31"} +{"current_steps": 5378, "total_steps": 5472, "loss": 0.0324, "accuracy": 1.0, "learning_rate": 4.4946843702176053e-10, "epoch": 3.9291324200913245, "percentage": 98.28, "elapsed_time": "14:38:27", "remaining_time": "0:15:21"} +{"current_steps": 5379, "total_steps": 5472, "loss": 0.0124, "accuracy": 1.0, "learning_rate": 4.399589376547497e-10, "epoch": 3.92986301369863, "percentage": 98.3, "elapsed_time": "14:38:35", "remaining_time": "0:15:11"} +{"current_steps": 5380, "total_steps": 5472, "loss": 0.0174, "accuracy": 1.0, "learning_rate": 4.305510254176692e-10, "epoch": 3.930593607305936, "percentage": 98.32, "elapsed_time": "14:38:44", "remaining_time": "0:15:01"} +{"current_steps": 5381, "total_steps": 5472, "loss": 0.0269, "accuracy": 1.0, "learning_rate": 4.2124470414009463e-10, "epoch": 3.931324200913242, "percentage": 98.34, "elapsed_time": "14:38:55", "remaining_time": "0:14:51"} +{"current_steps": 5382, "total_steps": 5472, "loss": 0.0174, "accuracy": 1.0, "learning_rate": 4.1203997761032895e-10, "epoch": 3.932054794520548, "percentage": 98.36, "elapsed_time": "14:39:03", "remaining_time": "0:14:42"} +{"current_steps": 5383, "total_steps": 5472, "loss": 0.0349, "accuracy": 1.0, "learning_rate": 4.029368495752916e-10, "epoch": 3.932785388127854, "percentage": 98.37, "elapsed_time": "14:39:13", "remaining_time": "0:14:32"} +{"current_steps": 5384, "total_steps": 5472, "loss": 0.0278, "accuracy": 1.0, "learning_rate": 3.9393532374054627e-10, "epoch": 3.9335159817351597, "percentage": 98.39, "elapsed_time": "14:39:22", "remaining_time": "0:14:22"} +{"current_steps": 5385, "total_steps": 5472, "loss": 0.0459, "accuracy": 1.0, "learning_rate": 3.8503540377030074e-10, "epoch": 3.934246575342466, "percentage": 98.41, "elapsed_time": "14:39:31", "remaining_time": "0:14:12"} +{"current_steps": 5386, "total_steps": 5472, "loss": 0.0339, "accuracy": 1.0, "learning_rate": 3.7623709328740704e-10, "epoch": 3.9349771689497715, "percentage": 98.43, "elapsed_time": "14:39:40", "remaining_time": "0:14:02"} +{"current_steps": 5387, "total_steps": 5472, "loss": 0.0253, "accuracy": 1.0, "learning_rate": 3.6754039587333363e-10, "epoch": 3.9357077625570778, "percentage": 98.45, "elapsed_time": "14:39:51", "remaining_time": "0:13:52"} +{"current_steps": 5388, "total_steps": 5472, "loss": 0.0306, "accuracy": 1.0, "learning_rate": 3.589453150682209e-10, "epoch": 3.9364383561643836, "percentage": 98.46, "elapsed_time": "14:40:02", "remaining_time": "0:13:43"} +{"current_steps": 5389, "total_steps": 5472, "loss": 0.015, "accuracy": 1.0, "learning_rate": 3.504518543707702e-10, "epoch": 3.9371689497716895, "percentage": 98.48, "elapsed_time": "14:40:12", "remaining_time": "0:13:33"} +{"current_steps": 5390, "total_steps": 5472, "loss": 0.0264, "accuracy": 1.0, "learning_rate": 3.4206001723843803e-10, "epoch": 3.9378995433789954, "percentage": 98.5, "elapsed_time": "14:40:22", "remaining_time": "0:13:23"} +{"current_steps": 5391, "total_steps": 5472, "loss": 0.0429, "accuracy": 1.0, "learning_rate": 3.337698070872141e-10, "epoch": 3.9386301369863013, "percentage": 98.52, "elapsed_time": "14:40:30", "remaining_time": "0:13:13"} +{"current_steps": 5392, "total_steps": 5472, "loss": 0.0169, "accuracy": 1.0, "learning_rate": 3.2558122729178795e-10, "epoch": 3.939360730593607, "percentage": 98.54, "elapsed_time": "14:40:39", "remaining_time": "0:13:03"} +{"current_steps": 5393, "total_steps": 5472, "loss": 0.0137, "accuracy": 1.0, "learning_rate": 3.1749428118535426e-10, "epoch": 3.940091324200913, "percentage": 98.56, "elapsed_time": "14:40:49", "remaining_time": "0:12:54"} +{"current_steps": 5394, "total_steps": 5472, "loss": 0.0261, "accuracy": 1.0, "learning_rate": 3.0950897205991864e-10, "epoch": 3.9408219178082193, "percentage": 98.57, "elapsed_time": "14:40:59", "remaining_time": "0:12:44"} +{"current_steps": 5395, "total_steps": 5472, "loss": 0.0198, "accuracy": 1.0, "learning_rate": 3.016253031659921e-10, "epoch": 3.941552511415525, "percentage": 98.59, "elapsed_time": "14:41:10", "remaining_time": "0:12:34"} +{"current_steps": 5396, "total_steps": 5472, "loss": 0.0413, "accuracy": 1.0, "learning_rate": 2.93843277712702e-10, "epoch": 3.942283105022831, "percentage": 98.61, "elapsed_time": "14:41:19", "remaining_time": "0:12:24"} +{"current_steps": 5397, "total_steps": 5472, "loss": 0.0188, "accuracy": 1.0, "learning_rate": 2.8616289886790326e-10, "epoch": 3.943013698630137, "percentage": 98.63, "elapsed_time": "14:41:29", "remaining_time": "0:12:14"} +{"current_steps": 5398, "total_steps": 5472, "loss": 0.0373, "accuracy": 1.0, "learning_rate": 2.7858416975792833e-10, "epoch": 3.943744292237443, "percentage": 98.65, "elapsed_time": "14:41:39", "remaining_time": "0:12:05"} +{"current_steps": 5399, "total_steps": 5472, "loss": 0.0172, "accuracy": 1.0, "learning_rate": 2.7110709346789275e-10, "epoch": 3.9444748858447487, "percentage": 98.67, "elapsed_time": "14:41:49", "remaining_time": "0:11:55"} +{"current_steps": 5400, "total_steps": 5472, "loss": 0.0159, "accuracy": 1.0, "learning_rate": 2.6373167304138964e-10, "epoch": 3.9452054794520546, "percentage": 98.68, "elapsed_time": "14:41:58", "remaining_time": "0:11:45"} +{"current_steps": 5401, "total_steps": 5472, "loss": 0.0388, "accuracy": 1.0, "learning_rate": 2.564579114807397e-10, "epoch": 3.945936073059361, "percentage": 98.7, "elapsed_time": "14:42:08", "remaining_time": "0:11:35"} +{"current_steps": 5402, "total_steps": 5472, "loss": 0.0205, "accuracy": 1.0, "learning_rate": 2.492858117467966e-10, "epoch": 3.9466666666666668, "percentage": 98.72, "elapsed_time": "14:42:17", "remaining_time": "0:11:25"} +{"current_steps": 5403, "total_steps": 5472, "loss": 0.0104, "accuracy": 1.0, "learning_rate": 2.4221537675911397e-10, "epoch": 3.9473972602739726, "percentage": 98.74, "elapsed_time": "14:42:28", "remaining_time": "0:11:16"} +{"current_steps": 5404, "total_steps": 5472, "loss": 0.0105, "accuracy": 1.0, "learning_rate": 2.3524660939577836e-10, "epoch": 3.9481278538812785, "percentage": 98.76, "elapsed_time": "14:42:37", "remaining_time": "0:11:06"} +{"current_steps": 5405, "total_steps": 5472, "loss": 0.0904, "accuracy": 1.0, "learning_rate": 2.283795124935206e-10, "epoch": 3.9488584474885844, "percentage": 98.78, "elapsed_time": "14:42:46", "remaining_time": "0:10:56"} +{"current_steps": 5406, "total_steps": 5472, "loss": 0.0315, "accuracy": 1.0, "learning_rate": 2.2161408884774358e-10, "epoch": 3.9495890410958903, "percentage": 98.79, "elapsed_time": "14:42:54", "remaining_time": "0:10:46"} +{"current_steps": 5407, "total_steps": 5472, "loss": 0.0532, "accuracy": 1.0, "learning_rate": 2.149503412123832e-10, "epoch": 3.950319634703196, "percentage": 98.81, "elapsed_time": "14:43:03", "remaining_time": "0:10:36"} +{"current_steps": 5408, "total_steps": 5472, "loss": 0.0201, "accuracy": 1.0, "learning_rate": 2.0838827230001965e-10, "epoch": 3.9510502283105025, "percentage": 98.83, "elapsed_time": "14:43:12", "remaining_time": "0:10:27"} +{"current_steps": 5409, "total_steps": 5472, "loss": 0.0383, "accuracy": 1.0, "learning_rate": 2.0192788478184953e-10, "epoch": 3.9517808219178083, "percentage": 98.85, "elapsed_time": "14:43:23", "remaining_time": "0:10:17"} +{"current_steps": 5410, "total_steps": 5472, "loss": 0.0357, "accuracy": 1.0, "learning_rate": 1.955691812876581e-10, "epoch": 3.952511415525114, "percentage": 98.87, "elapsed_time": "14:43:32", "remaining_time": "0:10:07"} +{"current_steps": 5411, "total_steps": 5472, "loss": 0.0304, "accuracy": 1.0, "learning_rate": 1.8931216440587483e-10, "epoch": 3.95324200913242, "percentage": 98.89, "elapsed_time": "14:43:43", "remaining_time": "0:09:57"} +{"current_steps": 5412, "total_steps": 5472, "loss": 0.0156, "accuracy": 1.0, "learning_rate": 1.8315683668346238e-10, "epoch": 3.953972602739726, "percentage": 98.9, "elapsed_time": "14:43:52", "remaining_time": "0:09:47"} +{"current_steps": 5413, "total_steps": 5472, "loss": 0.0266, "accuracy": 1.0, "learning_rate": 1.7710320062608308e-10, "epoch": 3.954703196347032, "percentage": 98.92, "elapsed_time": "14:44:02", "remaining_time": "0:09:38"} +{"current_steps": 5414, "total_steps": 5472, "loss": 0.0153, "accuracy": 1.0, "learning_rate": 1.711512586979602e-10, "epoch": 3.9554337899543377, "percentage": 98.94, "elapsed_time": "14:44:11", "remaining_time": "0:09:28"} +{"current_steps": 5415, "total_steps": 5472, "loss": 0.0501, "accuracy": 1.0, "learning_rate": 1.6530101332187795e-10, "epoch": 3.956164383561644, "percentage": 98.96, "elapsed_time": "14:44:19", "remaining_time": "0:09:18"} +{"current_steps": 5416, "total_steps": 5472, "loss": 0.0183, "accuracy": 1.0, "learning_rate": 1.5955246687929247e-10, "epoch": 3.95689497716895, "percentage": 98.98, "elapsed_time": "14:44:29", "remaining_time": "0:09:08"} +{"current_steps": 5417, "total_steps": 5472, "loss": 0.0333, "accuracy": 1.0, "learning_rate": 1.5390562171024857e-10, "epoch": 3.9576255707762558, "percentage": 98.99, "elapsed_time": "14:44:41", "remaining_time": "0:08:58"} +{"current_steps": 5418, "total_steps": 5472, "loss": 0.0398, "accuracy": 1.0, "learning_rate": 1.4836048011337977e-10, "epoch": 3.9583561643835616, "percentage": 99.01, "elapsed_time": "14:44:50", "remaining_time": "0:08:49"} +{"current_steps": 5419, "total_steps": 5472, "loss": 0.0354, "accuracy": 1.0, "learning_rate": 1.429170443458805e-10, "epoch": 3.9590867579908675, "percentage": 99.03, "elapsed_time": "14:45:00", "remaining_time": "0:08:39"} +{"current_steps": 5420, "total_steps": 5472, "loss": 0.0222, "accuracy": 1.0, "learning_rate": 1.375753166236171e-10, "epoch": 3.9598173515981734, "percentage": 99.05, "elapsed_time": "14:45:11", "remaining_time": "0:08:29"} +{"current_steps": 5421, "total_steps": 5472, "loss": 0.0543, "accuracy": 1.0, "learning_rate": 1.3233529912101692e-10, "epoch": 3.9605479452054793, "percentage": 99.07, "elapsed_time": "14:45:20", "remaining_time": "0:08:19"} +{"current_steps": 5422, "total_steps": 5472, "loss": 0.02, "accuracy": 1.0, "learning_rate": 1.2719699397109595e-10, "epoch": 3.9612785388127856, "percentage": 99.09, "elapsed_time": "14:45:29", "remaining_time": "0:08:09"} +{"current_steps": 5423, "total_steps": 5472, "loss": 0.0517, "accuracy": 1.0, "learning_rate": 1.2216040326545886e-10, "epoch": 3.9620091324200915, "percentage": 99.1, "elapsed_time": "14:45:39", "remaining_time": "0:08:00"} +{"current_steps": 5424, "total_steps": 5472, "loss": 0.0144, "accuracy": 1.0, "learning_rate": 1.172255290543822e-10, "epoch": 3.9627397260273973, "percentage": 99.12, "elapsed_time": "14:45:48", "remaining_time": "0:07:50"} +{"current_steps": 5425, "total_steps": 5472, "loss": 0.0209, "accuracy": 1.0, "learning_rate": 1.1239237334662033e-10, "epoch": 3.963470319634703, "percentage": 99.14, "elapsed_time": "14:45:58", "remaining_time": "0:07:40"} +{"current_steps": 5426, "total_steps": 5472, "loss": 0.0343, "accuracy": 1.0, "learning_rate": 1.0766093810959942e-10, "epoch": 3.964200913242009, "percentage": 99.16, "elapsed_time": "14:46:07", "remaining_time": "0:07:30"} +{"current_steps": 5427, "total_steps": 5472, "loss": 0.0164, "accuracy": 1.0, "learning_rate": 1.0303122526933438e-10, "epoch": 3.964931506849315, "percentage": 99.18, "elapsed_time": "14:46:17", "remaining_time": "0:07:20"} +{"current_steps": 5428, "total_steps": 5472, "loss": 0.0276, "accuracy": 1.0, "learning_rate": 9.850323671042882e-11, "epoch": 3.965662100456621, "percentage": 99.2, "elapsed_time": "14:46:27", "remaining_time": "0:07:11"} +{"current_steps": 5429, "total_steps": 5472, "loss": 0.0225, "accuracy": 1.0, "learning_rate": 9.407697427601947e-11, "epoch": 3.966392694063927, "percentage": 99.21, "elapsed_time": "14:46:37", "remaining_time": "0:07:01"} +{"current_steps": 5430, "total_steps": 5472, "loss": 0.014, "accuracy": 1.0, "learning_rate": 8.975243976794278e-11, "epoch": 3.967123287671233, "percentage": 99.23, "elapsed_time": "14:46:46", "remaining_time": "0:06:51"} +{"current_steps": 5431, "total_steps": 5472, "loss": 0.0289, "accuracy": 1.0, "learning_rate": 8.552963494651289e-11, "epoch": 3.967853881278539, "percentage": 99.25, "elapsed_time": "14:46:57", "remaining_time": "0:06:41"} +{"current_steps": 5432, "total_steps": 5472, "loss": 0.0309, "accuracy": 1.0, "learning_rate": 8.140856153071585e-11, "epoch": 3.9685844748858448, "percentage": 99.27, "elapsed_time": "14:47:06", "remaining_time": "0:06:31"} +{"current_steps": 5433, "total_steps": 5472, "loss": 0.0691, "accuracy": 1.0, "learning_rate": 7.738922119809865e-11, "epoch": 3.9693150684931506, "percentage": 99.29, "elapsed_time": "14:47:16", "remaining_time": "0:06:22"} +{"current_steps": 5434, "total_steps": 5472, "loss": 0.0249, "accuracy": 1.0, "learning_rate": 7.347161558476922e-11, "epoch": 3.9700456621004565, "percentage": 99.31, "elapsed_time": "14:47:26", "remaining_time": "0:06:12"} +{"current_steps": 5435, "total_steps": 5472, "loss": 0.0366, "accuracy": 1.0, "learning_rate": 6.965574628547966e-11, "epoch": 3.9707762557077624, "percentage": 99.32, "elapsed_time": "14:47:37", "remaining_time": "0:06:02"} +{"current_steps": 5436, "total_steps": 5472, "loss": 0.0592, "accuracy": 1.0, "learning_rate": 6.594161485348748e-11, "epoch": 3.9715068493150687, "percentage": 99.34, "elapsed_time": "14:47:46", "remaining_time": "0:05:52"} +{"current_steps": 5437, "total_steps": 5472, "loss": 0.0231, "accuracy": 1.0, "learning_rate": 6.232922280072216e-11, "epoch": 3.9722374429223746, "percentage": 99.36, "elapsed_time": "14:47:56", "remaining_time": "0:05:42"} +{"current_steps": 5438, "total_steps": 5472, "loss": 0.0349, "accuracy": 1.0, "learning_rate": 5.881857159767411e-11, "epoch": 3.9729680365296804, "percentage": 99.38, "elapsed_time": "14:48:05", "remaining_time": "0:05:33"} +{"current_steps": 5439, "total_steps": 5472, "loss": 0.0176, "accuracy": 1.0, "learning_rate": 5.5409662673366886e-11, "epoch": 3.9736986301369863, "percentage": 99.4, "elapsed_time": "14:48:14", "remaining_time": "0:05:23"} +{"current_steps": 5440, "total_steps": 5472, "loss": 0.0141, "accuracy": 1.0, "learning_rate": 5.210249741546824e-11, "epoch": 3.974429223744292, "percentage": 99.42, "elapsed_time": "14:48:25", "remaining_time": "0:05:13"} +{"current_steps": 5441, "total_steps": 5472, "loss": 0.0247, "accuracy": 1.0, "learning_rate": 4.889707717023461e-11, "epoch": 3.975159817351598, "percentage": 99.43, "elapsed_time": "14:48:35", "remaining_time": "0:05:03"} +{"current_steps": 5442, "total_steps": 5472, "loss": 0.0324, "accuracy": 1.0, "learning_rate": 4.579340324242786e-11, "epoch": 3.975890410958904, "percentage": 99.45, "elapsed_time": "14:48:46", "remaining_time": "0:04:53"} +{"current_steps": 5443, "total_steps": 5472, "loss": 0.0197, "accuracy": 1.0, "learning_rate": 4.2791476895481795e-11, "epoch": 3.9766210045662103, "percentage": 99.47, "elapsed_time": "14:48:56", "remaining_time": "0:04:44"} +{"current_steps": 5444, "total_steps": 5472, "loss": 0.029, "accuracy": 1.0, "learning_rate": 3.9891299351363374e-11, "epoch": 3.977351598173516, "percentage": 99.49, "elapsed_time": "14:49:06", "remaining_time": "0:04:34"} +{"current_steps": 5445, "total_steps": 5472, "loss": 0.0241, "accuracy": 1.0, "learning_rate": 3.709287179062825e-11, "epoch": 3.978082191780822, "percentage": 99.51, "elapsed_time": "14:49:17", "remaining_time": "0:04:24"} +{"current_steps": 5446, "total_steps": 5472, "loss": 0.0187, "accuracy": 1.0, "learning_rate": 3.439619535242078e-11, "epoch": 3.978812785388128, "percentage": 99.52, "elapsed_time": "14:49:27", "remaining_time": "0:04:14"} +{"current_steps": 5447, "total_steps": 5472, "loss": 0.0292, "accuracy": 1.0, "learning_rate": 3.180127113447395e-11, "epoch": 3.9795433789954338, "percentage": 99.54, "elapsed_time": "14:49:36", "remaining_time": "0:04:04"} +{"current_steps": 5448, "total_steps": 5472, "loss": 0.0163, "accuracy": 1.0, "learning_rate": 2.9308100193053966e-11, "epoch": 3.9802739726027396, "percentage": 99.56, "elapsed_time": "14:49:46", "remaining_time": "0:03:55"} +{"current_steps": 5449, "total_steps": 5472, "loss": 0.0134, "accuracy": 1.0, "learning_rate": 2.691668354309895e-11, "epoch": 3.9810045662100455, "percentage": 99.58, "elapsed_time": "14:49:56", "remaining_time": "0:03:45"} +{"current_steps": 5450, "total_steps": 5472, "loss": 0.0222, "accuracy": 1.0, "learning_rate": 2.4627022158052456e-11, "epoch": 3.981735159817352, "percentage": 99.6, "elapsed_time": "14:50:06", "remaining_time": "0:03:35"} +{"current_steps": 5451, "total_steps": 5472, "loss": 0.0109, "accuracy": 1.0, "learning_rate": 2.243911696991896e-11, "epoch": 3.9824657534246577, "percentage": 99.62, "elapsed_time": "14:50:16", "remaining_time": "0:03:25"} +{"current_steps": 5452, "total_steps": 5472, "loss": 0.0102, "accuracy": 1.0, "learning_rate": 2.0352968869374876e-11, "epoch": 3.9831963470319636, "percentage": 99.63, "elapsed_time": "14:50:25", "remaining_time": "0:03:15"} +{"current_steps": 5453, "total_steps": 5472, "loss": 0.0218, "accuracy": 1.0, "learning_rate": 1.836857870557429e-11, "epoch": 3.9839269406392694, "percentage": 99.65, "elapsed_time": "14:50:34", "remaining_time": "0:03:06"} +{"current_steps": 5454, "total_steps": 5472, "loss": 0.0182, "accuracy": 1.0, "learning_rate": 1.6485947286287716e-11, "epoch": 3.9846575342465753, "percentage": 99.67, "elapsed_time": "14:50:45", "remaining_time": "0:02:56"} +{"current_steps": 5455, "total_steps": 5472, "loss": 0.0411, "accuracy": 1.0, "learning_rate": 1.470507537790211e-11, "epoch": 3.985388127853881, "percentage": 99.69, "elapsed_time": "14:50:54", "remaining_time": "0:02:46"} +{"current_steps": 5456, "total_steps": 5472, "loss": 0.0217, "accuracy": 1.0, "learning_rate": 1.3025963705337595e-11, "epoch": 3.986118721461187, "percentage": 99.71, "elapsed_time": "14:51:05", "remaining_time": "0:02:36"} +{"current_steps": 5457, "total_steps": 5472, "loss": 0.0444, "accuracy": 1.0, "learning_rate": 1.144861295207522e-11, "epoch": 3.9868493150684934, "percentage": 99.73, "elapsed_time": "14:51:14", "remaining_time": "0:02:26"} +{"current_steps": 5458, "total_steps": 5472, "loss": 0.0119, "accuracy": 1.0, "learning_rate": 9.973023760240229e-12, "epoch": 3.987579908675799, "percentage": 99.74, "elapsed_time": "14:51:25", "remaining_time": "0:02:17"} +{"current_steps": 5459, "total_steps": 5472, "loss": 0.0187, "accuracy": 1.0, "learning_rate": 8.599196730463276e-12, "epoch": 3.988310502283105, "percentage": 99.76, "elapsed_time": "14:51:33", "remaining_time": "0:02:07"} +{"current_steps": 5460, "total_steps": 5472, "loss": 0.0162, "accuracy": 1.0, "learning_rate": 7.327132422019211e-12, "epoch": 3.989041095890411, "percentage": 99.78, "elapsed_time": "14:51:43", "remaining_time": "0:01:57"} +{"current_steps": 5461, "total_steps": 5472, "loss": 0.0242, "accuracy": 1.0, "learning_rate": 6.156831352660541e-12, "epoch": 3.989771689497717, "percentage": 99.8, "elapsed_time": "14:51:51", "remaining_time": "0:01:47"} +{"current_steps": 5462, "total_steps": 5472, "loss": 0.0273, "accuracy": 1.0, "learning_rate": 5.088293998811721e-12, "epoch": 3.9905022831050228, "percentage": 99.82, "elapsed_time": "14:52:01", "remaining_time": "0:01:37"} +{"current_steps": 5463, "total_steps": 5472, "loss": 0.0256, "accuracy": 1.0, "learning_rate": 4.121520795430377e-12, "epoch": 3.9912328767123286, "percentage": 99.84, "elapsed_time": "14:52:10", "remaining_time": "0:01:28"} +{"current_steps": 5464, "total_steps": 5472, "loss": 0.0142, "accuracy": 1.0, "learning_rate": 3.2565121360628167e-12, "epoch": 3.991963470319635, "percentage": 99.85, "elapsed_time": "14:52:19", "remaining_time": "0:01:18"} +{"current_steps": 5465, "total_steps": 5472, "loss": 0.0156, "accuracy": 1.0, "learning_rate": 2.4932683728440262e-12, "epoch": 3.9926940639269404, "percentage": 99.87, "elapsed_time": "14:52:28", "remaining_time": "0:01:08"} +{"current_steps": 5466, "total_steps": 5472, "loss": 0.0281, "accuracy": 1.0, "learning_rate": 1.8317898164144086e-12, "epoch": 3.9934246575342467, "percentage": 99.89, "elapsed_time": "14:52:37", "remaining_time": "0:00:58"} +{"current_steps": 5467, "total_steps": 5472, "loss": 0.0164, "accuracy": 1.0, "learning_rate": 1.2720767360585583e-12, "epoch": 3.9941552511415526, "percentage": 99.91, "elapsed_time": "14:52:46", "remaining_time": "0:00:48"} +{"current_steps": 5468, "total_steps": 5472, "loss": 0.0324, "accuracy": 1.0, "learning_rate": 8.141293596219956e-13, "epoch": 3.9948858447488584, "percentage": 99.93, "elapsed_time": "14:52:56", "remaining_time": "0:00:39"} +{"current_steps": 5469, "total_steps": 5472, "loss": 0.0497, "accuracy": 1.0, "learning_rate": 4.579478735389219e-13, "epoch": 3.9956164383561643, "percentage": 99.95, "elapsed_time": "14:53:05", "remaining_time": "0:00:29"} +{"current_steps": 5470, "total_steps": 5472, "loss": 0.0316, "accuracy": 1.0, "learning_rate": 2.0353242274895322e-13, "epoch": 3.99634703196347, "percentage": 99.96, "elapsed_time": "14:53:14", "remaining_time": "0:00:19"} +{"current_steps": 5471, "total_steps": 5472, "loss": 0.018, "accuracy": 1.0, "learning_rate": 5.0883110863653157e-14, "epoch": 3.9970776255707765, "percentage": 99.98, "elapsed_time": "14:53:24", "remaining_time": "0:00:09"} +{"current_steps": 5472, "total_steps": 5472, "loss": 0.0124, "accuracy": 1.0, "learning_rate": 0.0, "epoch": 3.997808219178082, "percentage": 100.0, "elapsed_time": "14:53:34", "remaining_time": "0:00:00"} +{"current_steps": 5472, "total_steps": 5472, "eval_loss": 0.40534183382987976, "epoch": 3.997808219178082, "percentage": 100.0, "elapsed_time": "14:54:13", "remaining_time": "0:00:00"} +{"current_steps": 5472, "total_steps": 5472, "epoch": 3.997808219178082, "percentage": 100.0, "elapsed_time": "14:58:01", "remaining_time": "0:00:00"}