--- language: - mn license: apache-2.0 base_model: openai/whisper-large-v3 tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_16_1 - google/fleurs metrics: - wer model-index: - name: Whisper Large MN - Ankhbayasgalan Davaadorj results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 16.1 & FLEURS type: mozilla-foundation/common_voice_16_1 config: mn split: None args: 'config: mn, split: test+validation' metrics: - name: Wer type: wer value: 56.63604862218799 --- # Whisper Large MN - Ankhbayasgalan Davaadorj This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on the Common Voice 16.1 & FLEURS dataset. It achieves the following results on the evaluation set: - Loss: 0.5084 - Wer: 56.6360 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 10 - training_steps: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.3906 | 0.6 | 100 | 0.5084 | 56.6360 | ### Framework versions - Transformers 4.37.2 - Pytorch 1.12.1+cu116 - Datasets 2.17.0 - Tokenizers 0.15.2