--- library_name: transformers language: - en base_model: - google/gemma-2-9b-it pipeline_tag: text-classification --- # Model Card for Model ID Given a (Query, ModelAAnswer, ModelBAnswer) This model gives a vector in 3D like lMSYS (ModelAWin Proba), (ModelBWin Proba), (Tie Proba) ## Model Details ### Model Description This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** @sayoulala (Yang Zhou) - **Model type:** Gemma for Sentence Classification - **Language(s) (NLP):** English Only ### Model Sources [optional] - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses Mimic human preference given a query and 2 different answers. ### Direct Use ```python import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss, BCEWithLogitsLoss from transformers import Gemma2PreTrainedModel,Gemma2Model, Cache, AutoTokenizer from transformers.modeling_outputs import SequenceClassifierOutputWithPast from typing import Optional, List, Union, Tuple from dataclasses import dataclass @dataclass class Config: gemma_dir = 'wath5/kgl_lmsys_pref_classif' max_length = 2000 batch_size = 8 device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") cfg = Config() class Gemma2ForSequenceClassificationV1(Gemma2PreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.model = Gemma2Model(config) self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.model.embed_tokens def set_input_embeddings(self, value): self.model.embed_tokens = value def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, SequenceClassifierOutputWithPast]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict transformer_outputs = self.model( input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = transformer_outputs[0] # logits = self.score(hidden_states) if input_ids is not None: batch_size = input_ids.shape[0] else: batch_size = inputs_embeds.shape[0] if self.config.pad_token_id is None and batch_size != 1: raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.") if self.config.pad_token_id is None: sequence_lengths = -1 else: if input_ids is not None: # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1 sequence_lengths = sequence_lengths % input_ids.shape[-1] sequence_lengths = sequence_lengths.to(hidden_states.device) else: sequence_lengths = -1 hidden_states = hidden_states[ torch.arange(batch_size, device=hidden_states.device), sequence_lengths] # eos pooled_logits = self.score(hidden_states) return pooled_logits tokenizer = AutoTokenizer.from_pretrained("/kaggle/input/v7-dpo-16bit-01234-8bit-all/v7_dpo_16bit_01234_8bit_all") model = Gemma2ForSequenceClassificationV1.from_pretrained( cfg.gemma_dir, num_labels=3, device_map=cfg.device, use_cache=False, ) model.config.pad_token_id = tokenizer.pad_token_id ``` ## How to Get Started with the Model ```python from transformers.data.data_collator import pad_without_fast_tokenizer_warning @torch.no_grad() def single_prompt_inference(prompt, model, device, max_length=cfg.max_length): """ Perform inference on a single prompt. Args: prompt (str): The input prompt for inference. model (torch.nn.Module): The model used for inference. device (torch.device): The device to run inference on. tokenizer (Tokenizer): Tokenizer for preprocessing input text. max_length (int): Maximum sequence length for tokenization. Returns: dict: Probabilities for "a_win", "b_win", and "tie". """ # Tokenize the input prompt input_ids = tokenizer(prompt, truncation=True, max_length=max_length)['input_ids'] input_ids.append(tokenizer.eos_token_id) # Add EOS token if needed # Prepare inputs inputs = pad_without_fast_tokenizer_warning( tokenizer, {"input_ids": [input_ids]}, # Wrap in a list for compatibility padding="max_length", pad_to_multiple_of=None, max_length=max_length, return_tensors="pt", ) # Move inputs to the appropriate device inputs = inputs.to(device) # Run the model outputs = model(**inputs) # Get probabilities using softmax proba = outputs.softmax(-1).cpu().squeeze() return { "winner_model_a": proba[0].item(), "winner_model_b": proba[1].item(), "tie": proba[2].item(), } def create_rounds(query: str, answer_a: str, answer_b: str) -> str: prompt =f"""User question: \"""{query}\""" Answer A: \"""{answer_a}\""" Answer B: \"""{answer_b}\""" """ return prompt query = "Hello, what is the height of the reassembled blind product?" answer_a = "Vous pouvez trouver toutes les informations techniques, y compris la hauteur du produit store remonté, directement sur la fiche produit de notre site. Cliquez sur l'onglet 'Produits' dnas la barre de navigation ou utilisez le moteur de recherche pour accéder au produit recherché. Avez vous une autre question ?" answer_b = "The height of the aluminum Venetian blind is 130 cm." prompt_direct = create_rounds(query, answer_a, answer_b) single_prompt_inference(prompt_direct, model=model, device=cfg.device) ``` ## Training Details https://github.com/shyoulala/LMSYS_BlackPearl