TemporalNet2 / temporalvideo_hf.py
Hans
Diffusers-compatible TemporalNet2 checkpoint and inference script
96e9589
raw
history blame
5.36 kB
import argparse
import warnings
from pathlib import Path
import torch
from diffusers import ControlNetModel, DPMSolverMultistepScheduler, StableDiffusionControlNetImg2ImgPipeline
from torch import Tensor
from torchvision.io.video import read_video, write_video
from torchvision.models.optical_flow import Raft_Large_Weights, raft_large
from torchvision.transforms.functional import resize
from torchvision.utils import flow_to_image
from tqdm import trange
raft_transform = Raft_Large_Weights.DEFAULT.transforms()
@torch.inference_mode()
def stylize_video(
input_video: Tensor,
prompt: str,
strength: float = 0.7,
num_steps: int = 20,
guidance_scale: float = 7.5,
controlnet_scale: float = 1.0,
batch_size: int = 4,
height: int = 512,
width: int = 512,
device: str = "cuda",
) -> Tensor:
"""
Stylize a video with temporal coherence (less flickering!) using HuggingFace's Stable Diffusion ControlNet pipeline.
Args:
input_video (Tensor): Input video tensor of shape (T, C, H, W) and range [0, 1].
prompt (str): Text prompt to condition the diffusion process.
strength (float, optional): How heavily stylization affects the image.
num_steps (int, optional): Number of diffusion steps (tradeoff between quality and speed).
guidance_scale (float, optional): Scale of the text guidance loss (how closely to adhere to text prompt).
controlnet_scale (float, optional): Scale of the ControlNet conditioning (strength of temporal coherence).
batch_size (int, optional): Number of frames to diffuse at once (faster but more memory intensive).
height (int, optional): Height of the output video.
width (int, optional): Width of the output video.
device (str, optional): Device to run stylization process on.
Returns:
Tensor: Output video tensor of shape (T, C, H, W) and range [0, 1].
"""
with warnings.catch_warnings():
warnings.simplefilter("ignore") # silence annoying TypedStorage warnings
pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
controlnet=ControlNetModel.from_pretrained("wav/TemporalNet2", torch_dtype=torch.float16),
safety_checker=None,
torch_dtype=torch.float16,
).to(device)
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
pipe.enable_xformers_memory_efficient_attention()
pipe._progress_bar_config = dict(disable=True)
raft = raft_large(weights=Raft_Large_Weights.DEFAULT, progress=True).eval().to(device)
output_video = []
for i in trange(1, len(input_video), batch_size, desc="Diffusing...", unit="frame", unit_scale=batch_size):
prev = resize(input_video[i - 1 : i - 1 + batch_size], (height, width), antialias=True).to(device)
curr = resize(input_video[i : i + batch_size], (height, width), antialias=True).to(device)
prev = prev[: curr.shape[0]] # make sure prev and curr have the same batch size (for the last batch)
flow_img = flow_to_image(raft.forward(*raft_transform(prev, curr))[-1]).div(255)
control_img = torch.cat((prev, flow_img), dim=1)
output, _ = pipe(
prompt=[prompt] * curr.shape[0],
image=curr,
control_image=control_img,
height=height,
width=width,
strength=strength,
num_inference_steps=num_steps,
guidance_scale=guidance_scale,
controlnet_conditioning_scale=controlnet_scale,
output_type="pt",
return_dict=False,
)
output_video.append(output.permute(0, 2, 3, 1).cpu())
return torch.cat(output_video)
if __name__ == "__main__":
parser = argparse.ArgumentParser(usage=stylize_video.__doc__)
parser.add_argument("-i", "--in-file", type=str, required=True)
parser.add_argument("-p", "--prompt", type=str, required=True)
parser.add_argument("-o", "--out-file", type=str, default=None)
parser.add_argument("-s", "--strength", type=float, default=0.7)
parser.add_argument("-S", "--num-steps", type=int, default=20)
parser.add_argument("-g", "--guidance-scale", type=float, default=7.5)
parser.add_argument("-c", "--controlnet-scale", type=float, default=1.0)
parser.add_argument("-b", "--batch_size", type=int, default=4)
parser.add_argument("-H", "--height", type=int, default=512)
parser.add_argument("-W", "--width", type=int, default=512)
parser.add_argument("-d", "--device", type=str, default="cuda")
args = parser.parse_args()
input_video, _, info = read_video(args.in_file, pts_unit="sec", output_format="TCHW")
input_video = input_video.div(255)
output_video = stylize_video(
input_video=input_video,
prompt=args.prompt,
strength=args.strength,
num_steps=args.num_steps,
guidance_scale=args.guidance_scale,
controlnet_scale=args.controlnet_scale,
height=args.height,
width=args.width,
device=args.device,
batch_size=args.batch_size,
)
out_file = f"{Path(args.in_file).stem} | {args.prompt}.mp4" if args.out_file is None else args.out_file
write_video(out_file, output_video.mul(255), fps=info["video_fps"])