waveydaveygravy commited on
Commit
aa5be73
·
verified ·
1 Parent(s): 986d1d9

Upload 4 files

Browse files
.gitattributes CHANGED
@@ -34,3 +34,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
  cattest.mp4 filter=lfs diff=lfs merge=lfs -text
 
 
 
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
  cattest.mp4 filter=lfs diff=lfs merge=lfs -text
37
+ boxermulti.mp4 filter=lfs diff=lfs merge=lfs -text
38
+ boxermulti1.mp4 filter=lfs diff=lfs merge=lfs -text
boxermulti.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2ce2f7ae79a213c39daee16b41b776f4955bffd059644615c8638c8c1843190e
3
+ size 2253626
boxermulti1.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b63200a14e79e7b4d1d6be15acc7fd8f939304eef5b464242a0f1a65b2fb0b04
3
+ size 2602088
boxermulticontrolnet.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e0bf14f913c01a6fcd5b35feb1da99290087eb9e0dff416e73bf80835cd965df
3
+ size 969015
pipeline_controlnet.py ADDED
@@ -0,0 +1,1285 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2023 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+
16
+ import inspect
17
+ from typing import Any, Callable, Dict, List, Optional, Tuple, Union
18
+
19
+ import numpy as np
20
+ import PIL.Image
21
+ import torch
22
+ import torch.nn.functional as F
23
+ from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection
24
+
25
+ from ...image_processor import PipelineImageInput, VaeImageProcessor
26
+ from ...loaders import FromSingleFileMixin, IPAdapterMixin, LoraLoaderMixin, TextualInversionLoaderMixin
27
+ from ...models import AutoencoderKL, ControlNetModel, ImageProjection, UNet2DConditionModel
28
+ from ...models.lora import adjust_lora_scale_text_encoder
29
+ from ...schedulers import KarrasDiffusionSchedulers
30
+ from ...utils import (
31
+ USE_PEFT_BACKEND,
32
+ deprecate,
33
+ logging,
34
+ replace_example_docstring,
35
+ scale_lora_layers,
36
+ unscale_lora_layers,
37
+ )
38
+ from ...utils.torch_utils import is_compiled_module, is_torch_version, randn_tensor
39
+ from ..pipeline_utils import DiffusionPipeline
40
+ from ..stable_diffusion.pipeline_output import StableDiffusionPipelineOutput
41
+ from ..stable_diffusion.safety_checker import StableDiffusionSafetyChecker
42
+ from .multicontrolnet import MultiControlNetModel
43
+
44
+
45
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
46
+
47
+
48
+ EXAMPLE_DOC_STRING = """
49
+ Examples:
50
+ ```py
51
+ >>> # !pip install opencv-python transformers accelerate
52
+ >>> from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler
53
+ >>> from diffusers.utils import load_image
54
+ >>> import numpy as np
55
+ >>> import torch
56
+
57
+ >>> import cv2
58
+ >>> from PIL import Image
59
+
60
+ >>> # download an image
61
+ >>> image = load_image(
62
+ ... "https://hf.co/datasets/huggingface/documentation-images/resolve/main/diffusers/input_image_vermeer.png"
63
+ ... )
64
+ >>> image = np.array(image)
65
+
66
+ >>> # get canny image
67
+ >>> image = cv2.Canny(image, 100, 200)
68
+ >>> image = image[:, :, None]
69
+ >>> image = np.concatenate([image, image, image], axis=2)
70
+ >>> canny_image = Image.fromarray(image)
71
+
72
+ >>> # load control net and stable diffusion v1-5
73
+ >>> controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=torch.float16)
74
+ >>> pipe = StableDiffusionControlNetPipeline.from_pretrained(
75
+ ... "runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16
76
+ ... )
77
+
78
+ >>> # speed up diffusion process with faster scheduler and memory optimization
79
+ >>> pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
80
+ >>> # remove following line if xformers is not installed
81
+ >>> pipe.enable_xformers_memory_efficient_attention()
82
+
83
+ >>> pipe.enable_model_cpu_offload()
84
+
85
+ >>> # generate image
86
+ >>> generator = torch.manual_seed(0)
87
+ >>> image = pipe(
88
+ ... "futuristic-looking woman", num_inference_steps=20, generator=generator, image=canny_image
89
+ ... ).images[0]
90
+ ```
91
+ """
92
+
93
+
94
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
95
+ def retrieve_timesteps(
96
+ scheduler,
97
+ num_inference_steps: Optional[int] = None,
98
+ device: Optional[Union[str, torch.device]] = None,
99
+ timesteps: Optional[List[int]] = None,
100
+ **kwargs,
101
+ ):
102
+ """
103
+ Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
104
+ custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
105
+
106
+ Args:
107
+ scheduler (`SchedulerMixin`):
108
+ The scheduler to get timesteps from.
109
+ num_inference_steps (`int`):
110
+ The number of diffusion steps used when generating samples with a pre-trained model. If used,
111
+ `timesteps` must be `None`.
112
+ device (`str` or `torch.device`, *optional*):
113
+ The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
114
+ timesteps (`List[int]`, *optional*):
115
+ Custom timesteps used to support arbitrary spacing between timesteps. If `None`, then the default
116
+ timestep spacing strategy of the scheduler is used. If `timesteps` is passed, `num_inference_steps`
117
+ must be `None`.
118
+
119
+ Returns:
120
+ `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
121
+ second element is the number of inference steps.
122
+ """
123
+ if timesteps is not None:
124
+ accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
125
+ if not accepts_timesteps:
126
+ raise ValueError(
127
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
128
+ f" timestep schedules. Please check whether you are using the correct scheduler."
129
+ )
130
+ scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
131
+ timesteps = scheduler.timesteps
132
+ num_inference_steps = len(timesteps)
133
+ else:
134
+ scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
135
+ timesteps = scheduler.timesteps
136
+ return timesteps, num_inference_steps
137
+
138
+
139
+ class StableDiffusionControlNetPipeline(
140
+ DiffusionPipeline, TextualInversionLoaderMixin, LoraLoaderMixin, IPAdapterMixin, FromSingleFileMixin
141
+ ):
142
+ r"""
143
+ Pipeline for text-to-image generation using Stable Diffusion with ControlNet guidance.
144
+
145
+ This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
146
+ implemented for all pipelines (downloading, saving, running on a particular device, etc.).
147
+
148
+ The pipeline also inherits the following loading methods:
149
+ - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
150
+ - [`~loaders.LoraLoaderMixin.load_lora_weights`] for loading LoRA weights
151
+ - [`~loaders.LoraLoaderMixin.save_lora_weights`] for saving LoRA weights
152
+ - [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
153
+ - [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
154
+
155
+ Args:
156
+ vae ([`AutoencoderKL`]):
157
+ Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
158
+ text_encoder ([`~transformers.CLIPTextModel`]):
159
+ Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)).
160
+ tokenizer ([`~transformers.CLIPTokenizer`]):
161
+ A `CLIPTokenizer` to tokenize text.
162
+ unet ([`UNet2DConditionModel`]):
163
+ A `UNet2DConditionModel` to denoise the encoded image latents.
164
+ controlnet ([`ControlNetModel`] or `List[ControlNetModel]`):
165
+ Provides additional conditioning to the `unet` during the denoising process. If you set multiple
166
+ ControlNets as a list, the outputs from each ControlNet are added together to create one combined
167
+ additional conditioning.
168
+ scheduler ([`SchedulerMixin`]):
169
+ A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
170
+ [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
171
+ safety_checker ([`StableDiffusionSafetyChecker`]):
172
+ Classification module that estimates whether generated images could be considered offensive or harmful.
173
+ Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details
174
+ about a model's potential harms.
175
+ feature_extractor ([`~transformers.CLIPImageProcessor`]):
176
+ A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
177
+ """
178
+
179
+ model_cpu_offload_seq = "text_encoder->image_encoder->unet->vae"
180
+ _optional_components = ["safety_checker", "feature_extractor", "image_encoder"]
181
+ _exclude_from_cpu_offload = ["safety_checker"]
182
+ _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]
183
+
184
+ def __init__(
185
+ self,
186
+ vae: AutoencoderKL,
187
+ text_encoder: CLIPTextModel,
188
+ tokenizer: CLIPTokenizer,
189
+ unet: UNet2DConditionModel,
190
+ controlnet: Union[ControlNetModel, List[ControlNetModel], Tuple[ControlNetModel], MultiControlNetModel],
191
+ scheduler: KarrasDiffusionSchedulers,
192
+ safety_checker: StableDiffusionSafetyChecker,
193
+ feature_extractor: CLIPImageProcessor,
194
+ image_encoder: CLIPVisionModelWithProjection = None,
195
+ requires_safety_checker: bool = True,
196
+ ):
197
+ super().__init__()
198
+
199
+ if safety_checker is None and requires_safety_checker:
200
+ logger.warning(
201
+ f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
202
+ " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
203
+ " results in services or applications open to the public. Both the diffusers team and Hugging Face"
204
+ " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
205
+ " it only for use-cases that involve analyzing network behavior or auditing its results. For more"
206
+ " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
207
+ )
208
+
209
+ if safety_checker is not None and feature_extractor is None:
210
+ raise ValueError(
211
+ "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
212
+ " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
213
+ )
214
+
215
+ if isinstance(controlnet, (list, tuple)):
216
+ controlnet = MultiControlNetModel(controlnet)
217
+
218
+ self.register_modules(
219
+ vae=vae,
220
+ text_encoder=text_encoder,
221
+ tokenizer=tokenizer,
222
+ unet=unet,
223
+ controlnet=controlnet,
224
+ scheduler=scheduler,
225
+ safety_checker=safety_checker,
226
+ feature_extractor=feature_extractor,
227
+ image_encoder=image_encoder,
228
+ )
229
+ self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
230
+ self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True)
231
+ self.control_image_processor = VaeImageProcessor(
232
+ vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True, do_normalize=False
233
+ )
234
+ self.register_to_config(requires_safety_checker=requires_safety_checker)
235
+
236
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_slicing
237
+ def enable_vae_slicing(self):
238
+ r"""
239
+ Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
240
+ compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
241
+ """
242
+ self.vae.enable_slicing()
243
+
244
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_slicing
245
+ def disable_vae_slicing(self):
246
+ r"""
247
+ Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
248
+ computing decoding in one step.
249
+ """
250
+ self.vae.disable_slicing()
251
+
252
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_tiling
253
+ def enable_vae_tiling(self):
254
+ r"""
255
+ Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
256
+ compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
257
+ processing larger images.
258
+ """
259
+ self.vae.enable_tiling()
260
+
261
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_tiling
262
+ def disable_vae_tiling(self):
263
+ r"""
264
+ Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
265
+ computing decoding in one step.
266
+ """
267
+ self.vae.disable_tiling()
268
+
269
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._encode_prompt
270
+ def _encode_prompt(
271
+ self,
272
+ prompt,
273
+ device,
274
+ num_images_per_prompt,
275
+ do_classifier_free_guidance,
276
+ negative_prompt=None,
277
+ prompt_embeds: Optional[torch.FloatTensor] = None,
278
+ negative_prompt_embeds: Optional[torch.FloatTensor] = None,
279
+ lora_scale: Optional[float] = None,
280
+ **kwargs,
281
+ ):
282
+ deprecation_message = "`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple."
283
+ deprecate("_encode_prompt()", "1.0.0", deprecation_message, standard_warn=False)
284
+
285
+ prompt_embeds_tuple = self.encode_prompt(
286
+ prompt=prompt,
287
+ device=device,
288
+ num_images_per_prompt=num_images_per_prompt,
289
+ do_classifier_free_guidance=do_classifier_free_guidance,
290
+ negative_prompt=negative_prompt,
291
+ prompt_embeds=prompt_embeds,
292
+ negative_prompt_embeds=negative_prompt_embeds,
293
+ lora_scale=lora_scale,
294
+ **kwargs,
295
+ )
296
+
297
+ # concatenate for backwards comp
298
+ prompt_embeds = torch.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]])
299
+
300
+ return prompt_embeds
301
+
302
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_prompt
303
+ def encode_prompt(
304
+ self,
305
+ prompt,
306
+ device,
307
+ num_images_per_prompt,
308
+ do_classifier_free_guidance,
309
+ negative_prompt=None,
310
+ prompt_embeds: Optional[torch.FloatTensor] = None,
311
+ negative_prompt_embeds: Optional[torch.FloatTensor] = None,
312
+ lora_scale: Optional[float] = None,
313
+ clip_skip: Optional[int] = None,
314
+ ):
315
+ r"""
316
+ Encodes the prompt into text encoder hidden states.
317
+
318
+ Args:
319
+ prompt (`str` or `List[str]`, *optional*):
320
+ prompt to be encoded
321
+ device: (`torch.device`):
322
+ torch device
323
+ num_images_per_prompt (`int`):
324
+ number of images that should be generated per prompt
325
+ do_classifier_free_guidance (`bool`):
326
+ whether to use classifier free guidance or not
327
+ negative_prompt (`str` or `List[str]`, *optional*):
328
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
329
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
330
+ less than `1`).
331
+ prompt_embeds (`torch.FloatTensor`, *optional*):
332
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
333
+ provided, text embeddings will be generated from `prompt` input argument.
334
+ negative_prompt_embeds (`torch.FloatTensor`, *optional*):
335
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
336
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
337
+ argument.
338
+ lora_scale (`float`, *optional*):
339
+ A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
340
+ clip_skip (`int`, *optional*):
341
+ Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
342
+ the output of the pre-final layer will be used for computing the prompt embeddings.
343
+ """
344
+ # set lora scale so that monkey patched LoRA
345
+ # function of text encoder can correctly access it
346
+ if lora_scale is not None and isinstance(self, LoraLoaderMixin):
347
+ self._lora_scale = lora_scale
348
+
349
+ # dynamically adjust the LoRA scale
350
+ if not USE_PEFT_BACKEND:
351
+ adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
352
+ else:
353
+ scale_lora_layers(self.text_encoder, lora_scale)
354
+
355
+ if prompt is not None and isinstance(prompt, str):
356
+ batch_size = 1
357
+ elif prompt is not None and isinstance(prompt, list):
358
+ batch_size = len(prompt)
359
+ else:
360
+ batch_size = prompt_embeds.shape[0]
361
+
362
+ if prompt_embeds is None:
363
+ # textual inversion: procecss multi-vector tokens if necessary
364
+ if isinstance(self, TextualInversionLoaderMixin):
365
+ prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
366
+
367
+ text_inputs = self.tokenizer(
368
+ prompt,
369
+ padding="max_length",
370
+ max_length=self.tokenizer.model_max_length,
371
+ truncation=True,
372
+ return_tensors="pt",
373
+ )
374
+ text_input_ids = text_inputs.input_ids
375
+ untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
376
+
377
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
378
+ text_input_ids, untruncated_ids
379
+ ):
380
+ removed_text = self.tokenizer.batch_decode(
381
+ untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
382
+ )
383
+ logger.warning(
384
+ "The following part of your input was truncated because CLIP can only handle sequences up to"
385
+ f" {self.tokenizer.model_max_length} tokens: {removed_text}"
386
+ )
387
+
388
+ if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
389
+ attention_mask = text_inputs.attention_mask.to(device)
390
+ else:
391
+ attention_mask = None
392
+
393
+ if clip_skip is None:
394
+ prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask)
395
+ prompt_embeds = prompt_embeds[0]
396
+ else:
397
+ prompt_embeds = self.text_encoder(
398
+ text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True
399
+ )
400
+ # Access the `hidden_states` first, that contains a tuple of
401
+ # all the hidden states from the encoder layers. Then index into
402
+ # the tuple to access the hidden states from the desired layer.
403
+ prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)]
404
+ # We also need to apply the final LayerNorm here to not mess with the
405
+ # representations. The `last_hidden_states` that we typically use for
406
+ # obtaining the final prompt representations passes through the LayerNorm
407
+ # layer.
408
+ prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds)
409
+
410
+ if self.text_encoder is not None:
411
+ prompt_embeds_dtype = self.text_encoder.dtype
412
+ elif self.unet is not None:
413
+ prompt_embeds_dtype = self.unet.dtype
414
+ else:
415
+ prompt_embeds_dtype = prompt_embeds.dtype
416
+
417
+ prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
418
+
419
+ bs_embed, seq_len, _ = prompt_embeds.shape
420
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
421
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
422
+ prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
423
+
424
+ # get unconditional embeddings for classifier free guidance
425
+ if do_classifier_free_guidance and negative_prompt_embeds is None:
426
+ uncond_tokens: List[str]
427
+ if negative_prompt is None:
428
+ uncond_tokens = [""] * batch_size
429
+ elif prompt is not None and type(prompt) is not type(negative_prompt):
430
+ raise TypeError(
431
+ f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
432
+ f" {type(prompt)}."
433
+ )
434
+ elif isinstance(negative_prompt, str):
435
+ uncond_tokens = [negative_prompt]
436
+ elif batch_size != len(negative_prompt):
437
+ raise ValueError(
438
+ f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
439
+ f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
440
+ " the batch size of `prompt`."
441
+ )
442
+ else:
443
+ uncond_tokens = negative_prompt
444
+
445
+ # textual inversion: procecss multi-vector tokens if necessary
446
+ if isinstance(self, TextualInversionLoaderMixin):
447
+ uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)
448
+
449
+ max_length = prompt_embeds.shape[1]
450
+ uncond_input = self.tokenizer(
451
+ uncond_tokens,
452
+ padding="max_length",
453
+ max_length=max_length,
454
+ truncation=True,
455
+ return_tensors="pt",
456
+ )
457
+
458
+ if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
459
+ attention_mask = uncond_input.attention_mask.to(device)
460
+ else:
461
+ attention_mask = None
462
+
463
+ negative_prompt_embeds = self.text_encoder(
464
+ uncond_input.input_ids.to(device),
465
+ attention_mask=attention_mask,
466
+ )
467
+ negative_prompt_embeds = negative_prompt_embeds[0]
468
+
469
+ if do_classifier_free_guidance:
470
+ # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
471
+ seq_len = negative_prompt_embeds.shape[1]
472
+
473
+ negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
474
+
475
+ negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
476
+ negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
477
+
478
+ if isinstance(self, LoraLoaderMixin) and USE_PEFT_BACKEND:
479
+ # Retrieve the original scale by scaling back the LoRA layers
480
+ unscale_lora_layers(self.text_encoder, lora_scale)
481
+
482
+ return prompt_embeds, negative_prompt_embeds
483
+
484
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image
485
+ def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None):
486
+ dtype = next(self.image_encoder.parameters()).dtype
487
+
488
+ if not isinstance(image, torch.Tensor):
489
+ image = self.feature_extractor(image, return_tensors="pt").pixel_values
490
+
491
+ image = image.to(device=device, dtype=dtype)
492
+ if output_hidden_states:
493
+ image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2]
494
+ image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
495
+ uncond_image_enc_hidden_states = self.image_encoder(
496
+ torch.zeros_like(image), output_hidden_states=True
497
+ ).hidden_states[-2]
498
+ uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(
499
+ num_images_per_prompt, dim=0
500
+ )
501
+ return image_enc_hidden_states, uncond_image_enc_hidden_states
502
+ else:
503
+ image_embeds = self.image_encoder(image).image_embeds
504
+ image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
505
+ uncond_image_embeds = torch.zeros_like(image_embeds)
506
+
507
+ return image_embeds, uncond_image_embeds
508
+
509
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker
510
+ def run_safety_checker(self, image, device, dtype):
511
+ if self.safety_checker is None:
512
+ has_nsfw_concept = None
513
+ else:
514
+ if torch.is_tensor(image):
515
+ feature_extractor_input = self.image_processor.postprocess(image, output_type="pil")
516
+ else:
517
+ feature_extractor_input = self.image_processor.numpy_to_pil(image)
518
+ safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device)
519
+ image, has_nsfw_concept = self.safety_checker(
520
+ images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
521
+ )
522
+ return image, has_nsfw_concept
523
+
524
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents
525
+ def decode_latents(self, latents):
526
+ deprecation_message = "The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead"
527
+ deprecate("decode_latents", "1.0.0", deprecation_message, standard_warn=False)
528
+
529
+ latents = 1 / self.vae.config.scaling_factor * latents
530
+ image = self.vae.decode(latents, return_dict=False)[0]
531
+ image = (image / 2 + 0.5).clamp(0, 1)
532
+ # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
533
+ image = image.cpu().permute(0, 2, 3, 1).float().numpy()
534
+ return image
535
+
536
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
537
+ def prepare_extra_step_kwargs(self, generator, eta):
538
+ # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
539
+ # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
540
+ # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
541
+ # and should be between [0, 1]
542
+
543
+ accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
544
+ extra_step_kwargs = {}
545
+ if accepts_eta:
546
+ extra_step_kwargs["eta"] = eta
547
+
548
+ # check if the scheduler accepts generator
549
+ accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
550
+ if accepts_generator:
551
+ extra_step_kwargs["generator"] = generator
552
+ return extra_step_kwargs
553
+
554
+ def check_inputs(
555
+ self,
556
+ prompt,
557
+ image,
558
+ callback_steps,
559
+ negative_prompt=None,
560
+ prompt_embeds=None,
561
+ negative_prompt_embeds=None,
562
+ controlnet_conditioning_scale=1.0,
563
+ control_guidance_start=0.0,
564
+ control_guidance_end=1.0,
565
+ callback_on_step_end_tensor_inputs=None,
566
+ ):
567
+ if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0):
568
+ raise ValueError(
569
+ f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
570
+ f" {type(callback_steps)}."
571
+ )
572
+
573
+ if callback_on_step_end_tensor_inputs is not None and not all(
574
+ k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
575
+ ):
576
+ raise ValueError(
577
+ f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
578
+ )
579
+
580
+ if prompt is not None and prompt_embeds is not None:
581
+ raise ValueError(
582
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
583
+ " only forward one of the two."
584
+ )
585
+ elif prompt is None and prompt_embeds is None:
586
+ raise ValueError(
587
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
588
+ )
589
+ elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
590
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
591
+
592
+ if negative_prompt is not None and negative_prompt_embeds is not None:
593
+ raise ValueError(
594
+ f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
595
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
596
+ )
597
+
598
+ if prompt_embeds is not None and negative_prompt_embeds is not None:
599
+ if prompt_embeds.shape != negative_prompt_embeds.shape:
600
+ raise ValueError(
601
+ "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
602
+ f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
603
+ f" {negative_prompt_embeds.shape}."
604
+ )
605
+
606
+ # `prompt` needs more sophisticated handling when there are multiple
607
+ # conditionings.
608
+ if isinstance(self.controlnet, MultiControlNetModel):
609
+ if isinstance(prompt, list):
610
+ logger.warning(
611
+ f"You have {len(self.controlnet.nets)} ControlNets and you have passed {len(prompt)}"
612
+ " prompts. The conditionings will be fixed across the prompts."
613
+ )
614
+
615
+ # Check `image`
616
+ is_compiled = hasattr(F, "scaled_dot_product_attention") and isinstance(
617
+ self.controlnet, torch._dynamo.eval_frame.OptimizedModule
618
+ )
619
+ if (
620
+ isinstance(self.controlnet, ControlNetModel)
621
+ or is_compiled
622
+ and isinstance(self.controlnet._orig_mod, ControlNetModel)
623
+ ):
624
+ self.check_image(image, prompt, prompt_embeds)
625
+ elif (
626
+ isinstance(self.controlnet, MultiControlNetModel)
627
+ or is_compiled
628
+ and isinstance(self.controlnet._orig_mod, MultiControlNetModel)
629
+ ):
630
+ if not isinstance(image, list):
631
+ raise TypeError("For multiple controlnets: `image` must be type `list`")
632
+
633
+ # When `image` is a nested list:
634
+ # (e.g. [[canny_image_1, pose_image_1], [canny_image_2, pose_image_2]])
635
+ elif any(isinstance(i, list) for i in image):
636
+ raise ValueError("A single batch of multiple conditionings is not supported at the moment.")
637
+ elif len(image) != len(self.controlnet.nets):
638
+ raise ValueError(
639
+ f"For multiple controlnets: `image` must have the same length as the number of controlnets, but got {len(image)} images and {len(self.controlnet.nets)} ControlNets."
640
+ )
641
+
642
+ for image_ in image:
643
+ self.check_image(image_, prompt, prompt_embeds)
644
+ else:
645
+ assert False
646
+
647
+ # Check `controlnet_conditioning_scale`
648
+ if (
649
+ isinstance(self.controlnet, ControlNetModel)
650
+ or is_compiled
651
+ and isinstance(self.controlnet._orig_mod, ControlNetModel)
652
+ ):
653
+ if not isinstance(controlnet_conditioning_scale, float):
654
+ raise TypeError("For single controlnet: `controlnet_conditioning_scale` must be type `float`.")
655
+ elif (
656
+ isinstance(self.controlnet, MultiControlNetModel)
657
+ or is_compiled
658
+ and isinstance(self.controlnet._orig_mod, MultiControlNetModel)
659
+ ):
660
+ if isinstance(controlnet_conditioning_scale, list):
661
+ if any(isinstance(i, list) for i in controlnet_conditioning_scale):
662
+ raise ValueError("A single batch of multiple conditionings is not supported at the moment.")
663
+ elif isinstance(controlnet_conditioning_scale, list) and len(controlnet_conditioning_scale) != len(
664
+ self.controlnet.nets
665
+ ):
666
+ raise ValueError(
667
+ "For multiple controlnets: When `controlnet_conditioning_scale` is specified as `list`, it must have"
668
+ " the same length as the number of controlnets"
669
+ )
670
+ else:
671
+ assert False
672
+
673
+ if not isinstance(control_guidance_start, (tuple, list)):
674
+ control_guidance_start = [control_guidance_start]
675
+
676
+ if not isinstance(control_guidance_end, (tuple, list)):
677
+ control_guidance_end = [control_guidance_end]
678
+
679
+ if len(control_guidance_start) != len(control_guidance_end):
680
+ raise ValueError(
681
+ f"`control_guidance_start` has {len(control_guidance_start)} elements, but `control_guidance_end` has {len(control_guidance_end)} elements. Make sure to provide the same number of elements to each list."
682
+ )
683
+
684
+ if isinstance(self.controlnet, MultiControlNetModel):
685
+ if len(control_guidance_start) != len(self.controlnet.nets):
686
+ raise ValueError(
687
+ f"`control_guidance_start`: {control_guidance_start} has {len(control_guidance_start)} elements but there are {len(self.controlnet.nets)} controlnets available. Make sure to provide {len(self.controlnet.nets)}."
688
+ )
689
+
690
+ for start, end in zip(control_guidance_start, control_guidance_end):
691
+ if start >= end:
692
+ raise ValueError(
693
+ f"control guidance start: {start} cannot be larger or equal to control guidance end: {end}."
694
+ )
695
+ if start < 0.0:
696
+ raise ValueError(f"control guidance start: {start} can't be smaller than 0.")
697
+ if end > 1.0:
698
+ raise ValueError(f"control guidance end: {end} can't be larger than 1.0.")
699
+
700
+ def check_image(self, image, prompt, prompt_embeds):
701
+ image_is_pil = isinstance(image, PIL.Image.Image)
702
+ image_is_tensor = isinstance(image, torch.Tensor)
703
+ image_is_np = isinstance(image, np.ndarray)
704
+ image_is_pil_list = isinstance(image, list) and isinstance(image[0], PIL.Image.Image)
705
+ image_is_tensor_list = isinstance(image, list) and isinstance(image[0], torch.Tensor)
706
+ image_is_np_list = isinstance(image, list) and isinstance(image[0], np.ndarray)
707
+
708
+ if (
709
+ not image_is_pil
710
+ and not image_is_tensor
711
+ and not image_is_np
712
+ and not image_is_pil_list
713
+ and not image_is_tensor_list
714
+ and not image_is_np_list
715
+ ):
716
+ raise TypeError(
717
+ f"image must be passed and be one of PIL image, numpy array, torch tensor, list of PIL images, list of numpy arrays or list of torch tensors, but is {type(image)}"
718
+ )
719
+
720
+ if image_is_pil:
721
+ image_batch_size = 1
722
+ else:
723
+ image_batch_size = len(image)
724
+
725
+ if prompt is not None and isinstance(prompt, str):
726
+ prompt_batch_size = 1
727
+ elif prompt is not None and isinstance(prompt, list):
728
+ prompt_batch_size = len(prompt)
729
+ elif prompt_embeds is not None:
730
+ prompt_batch_size = prompt_embeds.shape[0]
731
+
732
+ if image_batch_size != 1 and image_batch_size != prompt_batch_size:
733
+ raise ValueError(
734
+ f"If image batch size is not 1, image batch size must be same as prompt batch size. image batch size: {image_batch_size}, prompt batch size: {prompt_batch_size}"
735
+ )
736
+
737
+ def prepare_image(
738
+ self,
739
+ image,
740
+ width,
741
+ height,
742
+ batch_size,
743
+ num_images_per_prompt,
744
+ device,
745
+ dtype,
746
+ do_classifier_free_guidance=False,
747
+ guess_mode=False,
748
+ ):
749
+ image = self.control_image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32)
750
+ image_batch_size = image.shape[0]
751
+
752
+ if image_batch_size == 1:
753
+ repeat_by = batch_size
754
+ else:
755
+ # image batch size is the same as prompt batch size
756
+ repeat_by = num_images_per_prompt
757
+
758
+ image = image.repeat_interleave(repeat_by, dim=0)
759
+
760
+ image = image.to(device=device, dtype=dtype)
761
+
762
+ if do_classifier_free_guidance and not guess_mode:
763
+ image = torch.cat([image] * 2)
764
+
765
+ return image
766
+
767
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
768
+ def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
769
+ shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
770
+ if isinstance(generator, list) and len(generator) != batch_size:
771
+ raise ValueError(
772
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
773
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
774
+ )
775
+
776
+ if latents is None:
777
+ latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
778
+ else:
779
+ latents = latents.to(device)
780
+
781
+ # scale the initial noise by the standard deviation required by the scheduler
782
+ latents = latents * self.scheduler.init_noise_sigma
783
+ return latents
784
+
785
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_freeu
786
+ def enable_freeu(self, s1: float, s2: float, b1: float, b2: float):
787
+ r"""Enables the FreeU mechanism as in https://arxiv.org/abs/2309.11497.
788
+
789
+ The suffixes after the scaling factors represent the stages where they are being applied.
790
+
791
+ Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of the values
792
+ that are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL.
793
+
794
+ Args:
795
+ s1 (`float`):
796
+ Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to
797
+ mitigate "oversmoothing effect" in the enhanced denoising process.
798
+ s2 (`float`):
799
+ Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to
800
+ mitigate "oversmoothing effect" in the enhanced denoising process.
801
+ b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features.
802
+ b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features.
803
+ """
804
+ if not hasattr(self, "unet"):
805
+ raise ValueError("The pipeline must have `unet` for using FreeU.")
806
+ self.unet.enable_freeu(s1=s1, s2=s2, b1=b1, b2=b2)
807
+
808
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_freeu
809
+ def disable_freeu(self):
810
+ """Disables the FreeU mechanism if enabled."""
811
+ self.unet.disable_freeu()
812
+
813
+ # Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
814
+ def get_guidance_scale_embedding(self, w, embedding_dim=512, dtype=torch.float32):
815
+ """
816
+ See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
817
+
818
+ Args:
819
+ timesteps (`torch.Tensor`):
820
+ generate embedding vectors at these timesteps
821
+ embedding_dim (`int`, *optional*, defaults to 512):
822
+ dimension of the embeddings to generate
823
+ dtype:
824
+ data type of the generated embeddings
825
+
826
+ Returns:
827
+ `torch.FloatTensor`: Embedding vectors with shape `(len(timesteps), embedding_dim)`
828
+ """
829
+ assert len(w.shape) == 1
830
+ w = w * 1000.0
831
+
832
+ half_dim = embedding_dim // 2
833
+ emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
834
+ emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
835
+ emb = w.to(dtype)[:, None] * emb[None, :]
836
+ emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
837
+ if embedding_dim % 2 == 1: # zero pad
838
+ emb = torch.nn.functional.pad(emb, (0, 1))
839
+ assert emb.shape == (w.shape[0], embedding_dim)
840
+ return emb
841
+
842
+ @property
843
+ def guidance_scale(self):
844
+ return self._guidance_scale
845
+
846
+ @property
847
+ def clip_skip(self):
848
+ return self._clip_skip
849
+
850
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
851
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
852
+ # corresponds to doing no classifier free guidance.
853
+ @property
854
+ def do_classifier_free_guidance(self):
855
+ return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None
856
+
857
+ @property
858
+ def cross_attention_kwargs(self):
859
+ return self._cross_attention_kwargs
860
+
861
+ @property
862
+ def num_timesteps(self):
863
+ return self._num_timesteps
864
+
865
+ @torch.no_grad()
866
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
867
+ def __call__(
868
+ self,
869
+ prompt: Union[str, List[str]] = None,
870
+ image: PipelineImageInput = None,
871
+ height: Optional[int] = None,
872
+ width: Optional[int] = None,
873
+ num_inference_steps: int = 50,
874
+ timesteps: List[int] = None,
875
+ guidance_scale: float = 7.5,
876
+ negative_prompt: Optional[Union[str, List[str]]] = None,
877
+ num_images_per_prompt: Optional[int] = 1,
878
+ eta: float = 0.0,
879
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
880
+ latents: Optional[torch.FloatTensor] = None,
881
+ prompt_embeds: Optional[torch.FloatTensor] = None,
882
+ negative_prompt_embeds: Optional[torch.FloatTensor] = None,
883
+ ip_adapter_image: Optional[PipelineImageInput] = None,
884
+ output_type: Optional[str] = "pil",
885
+ return_dict: bool = True,
886
+ cross_attention_kwargs: Optional[Dict[str, Any]] = None,
887
+ controlnet_conditioning_scale: Union[float, List[float]] = 1.0,
888
+ guess_mode: bool = False,
889
+ control_guidance_start: Union[float, List[float]] = 0.0,
890
+ control_guidance_end: Union[float, List[float]] = 1.0,
891
+ clip_skip: Optional[int] = None,
892
+ callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
893
+ callback_on_step_end_tensor_inputs: List[str] = ["latents"],
894
+ **kwargs,
895
+ ):
896
+ r"""
897
+ The call function to the pipeline for generation.
898
+
899
+ Args:
900
+ prompt (`str` or `List[str]`, *optional*):
901
+ The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
902
+ image (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,:
903
+ `List[List[torch.FloatTensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`):
904
+ The ControlNet input condition to provide guidance to the `unet` for generation. If the type is
905
+ specified as `torch.FloatTensor`, it is passed to ControlNet as is. `PIL.Image.Image` can also be
906
+ accepted as an image. The dimensions of the output image defaults to `image`'s dimensions. If height
907
+ and/or width are passed, `image` is resized accordingly. If multiple ControlNets are specified in
908
+ `init`, images must be passed as a list such that each element of the list can be correctly batched for
909
+ input to a single ControlNet.
910
+ height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
911
+ The height in pixels of the generated image.
912
+ width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
913
+ The width in pixels of the generated image.
914
+ num_inference_steps (`int`, *optional*, defaults to 50):
915
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
916
+ expense of slower inference.
917
+ timesteps (`List[int]`, *optional*):
918
+ Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
919
+ in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
920
+ passed will be used. Must be in descending order.
921
+ guidance_scale (`float`, *optional*, defaults to 7.5):
922
+ A higher guidance scale value encourages the model to generate images closely linked to the text
923
+ `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
924
+ negative_prompt (`str` or `List[str]`, *optional*):
925
+ The prompt or prompts to guide what to not include in image generation. If not defined, you need to
926
+ pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
927
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
928
+ The number of images to generate per prompt.
929
+ eta (`float`, *optional*, defaults to 0.0):
930
+ Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
931
+ to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
932
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
933
+ A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
934
+ generation deterministic.
935
+ latents (`torch.FloatTensor`, *optional*):
936
+ Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
937
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
938
+ tensor is generated by sampling using the supplied random `generator`.
939
+ prompt_embeds (`torch.FloatTensor`, *optional*):
940
+ Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
941
+ provided, text embeddings are generated from the `prompt` input argument.
942
+ negative_prompt_embeds (`torch.FloatTensor`, *optional*):
943
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
944
+ not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
945
+ ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
946
+ output_type (`str`, *optional*, defaults to `"pil"`):
947
+ The output format of the generated image. Choose between `PIL.Image` or `np.array`.
948
+ return_dict (`bool`, *optional*, defaults to `True`):
949
+ Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
950
+ plain tuple.
951
+ callback (`Callable`, *optional*):
952
+ A function that calls every `callback_steps` steps during inference. The function is called with the
953
+ following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
954
+ callback_steps (`int`, *optional*, defaults to 1):
955
+ The frequency at which the `callback` function is called. If not specified, the callback is called at
956
+ every step.
957
+ cross_attention_kwargs (`dict`, *optional*):
958
+ A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
959
+ [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
960
+ controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0):
961
+ The outputs of the ControlNet are multiplied by `controlnet_conditioning_scale` before they are added
962
+ to the residual in the original `unet`. If multiple ControlNets are specified in `init`, you can set
963
+ the corresponding scale as a list.
964
+ guess_mode (`bool`, *optional*, defaults to `False`):
965
+ The ControlNet encoder tries to recognize the content of the input image even if you remove all
966
+ prompts. A `guidance_scale` value between 3.0 and 5.0 is recommended.
967
+ control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0):
968
+ The percentage of total steps at which the ControlNet starts applying.
969
+ control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0):
970
+ The percentage of total steps at which the ControlNet stops applying.
971
+ clip_skip (`int`, *optional*):
972
+ Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
973
+ the output of the pre-final layer will be used for computing the prompt embeddings.
974
+ callback_on_step_end (`Callable`, *optional*):
975
+ A function that calls at the end of each denoising steps during the inference. The function is called
976
+ with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
977
+ callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
978
+ `callback_on_step_end_tensor_inputs`.
979
+ callback_on_step_end_tensor_inputs (`List`, *optional*):
980
+ The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
981
+ will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
982
+ `._callback_tensor_inputs` attribute of your pipeine class.
983
+
984
+ Examples:
985
+
986
+ Returns:
987
+ [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
988
+ If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
989
+ otherwise a `tuple` is returned where the first element is a list with the generated images and the
990
+ second element is a list of `bool`s indicating whether the corresponding generated image contains
991
+ "not-safe-for-work" (nsfw) content.
992
+ """
993
+
994
+ callback = kwargs.pop("callback", None)
995
+ callback_steps = kwargs.pop("callback_steps", None)
996
+
997
+ if callback is not None:
998
+ deprecate(
999
+ "callback",
1000
+ "1.0.0",
1001
+ "Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
1002
+ )
1003
+ if callback_steps is not None:
1004
+ deprecate(
1005
+ "callback_steps",
1006
+ "1.0.0",
1007
+ "Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
1008
+ )
1009
+
1010
+ controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet
1011
+
1012
+ # align format for control guidance
1013
+ if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list):
1014
+ control_guidance_start = len(control_guidance_end) * [control_guidance_start]
1015
+ elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list):
1016
+ control_guidance_end = len(control_guidance_start) * [control_guidance_end]
1017
+ elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list):
1018
+ mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1
1019
+ control_guidance_start, control_guidance_end = (
1020
+ mult * [control_guidance_start],
1021
+ mult * [control_guidance_end],
1022
+ )
1023
+
1024
+ # 1. Check inputs. Raise error if not correct
1025
+ self.check_inputs(
1026
+ prompt,
1027
+ image,
1028
+ callback_steps,
1029
+ negative_prompt,
1030
+ prompt_embeds,
1031
+ negative_prompt_embeds,
1032
+ controlnet_conditioning_scale,
1033
+ control_guidance_start,
1034
+ control_guidance_end,
1035
+ callback_on_step_end_tensor_inputs,
1036
+ )
1037
+
1038
+ self._guidance_scale = guidance_scale
1039
+ self._clip_skip = clip_skip
1040
+ self._cross_attention_kwargs = cross_attention_kwargs
1041
+
1042
+ # 2. Define call parameters
1043
+ if prompt is not None and isinstance(prompt, str):
1044
+ batch_size = 1
1045
+ elif prompt is not None and isinstance(prompt, list):
1046
+ batch_size = len(prompt)
1047
+ else:
1048
+ batch_size = prompt_embeds.shape[0]
1049
+
1050
+ device = self._execution_device
1051
+
1052
+ if isinstance(controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float):
1053
+ controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(controlnet.nets)
1054
+
1055
+ global_pool_conditions = (
1056
+ controlnet.config.global_pool_conditions
1057
+ if isinstance(controlnet, ControlNetModel)
1058
+ else controlnet.nets[0].config.global_pool_conditions
1059
+ )
1060
+ guess_mode = guess_mode or global_pool_conditions
1061
+
1062
+ # 3. Encode input prompt
1063
+ text_encoder_lora_scale = (
1064
+ self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
1065
+ )
1066
+ prompt_embeds, negative_prompt_embeds = self.encode_prompt(
1067
+ prompt,
1068
+ device,
1069
+ num_images_per_prompt,
1070
+ self.do_classifier_free_guidance,
1071
+ negative_prompt,
1072
+ prompt_embeds=prompt_embeds,
1073
+ negative_prompt_embeds=negative_prompt_embeds,
1074
+ lora_scale=text_encoder_lora_scale,
1075
+ clip_skip=self.clip_skip,
1076
+ )
1077
+ # For classifier free guidance, we need to do two forward passes.
1078
+ # Here we concatenate the unconditional and text embeddings into a single batch
1079
+ # to avoid doing two forward passes
1080
+ if self.do_classifier_free_guidance:
1081
+ prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
1082
+
1083
+ if ip_adapter_image is not None:
1084
+ output_hidden_state = False if isinstance(self.unet.encoder_hid_proj, ImageProjection) else True
1085
+ image_embeds, negative_image_embeds = self.encode_image(
1086
+ ip_adapter_image, device, num_images_per_prompt, output_hidden_state
1087
+ )
1088
+ if self.do_classifier_free_guidance:
1089
+ image_embeds = torch.cat([negative_image_embeds, image_embeds])
1090
+
1091
+ # 4. Prepare image
1092
+ if isinstance(controlnet, ControlNetModel):
1093
+ image = self.prepare_image(
1094
+ image=image,
1095
+ width=width,
1096
+ height=height,
1097
+ batch_size=batch_size * num_images_per_prompt,
1098
+ num_images_per_prompt=num_images_per_prompt,
1099
+ device=device,
1100
+ dtype=controlnet.dtype,
1101
+ do_classifier_free_guidance=self.do_classifier_free_guidance,
1102
+ guess_mode=guess_mode,
1103
+ )
1104
+ height, width = image.shape[-2:]
1105
+ elif isinstance(controlnet, MultiControlNetModel):
1106
+ images = []
1107
+
1108
+ for image_ in image:
1109
+ image_ = self.prepare_image(
1110
+ image=image_,
1111
+ width=width,
1112
+ height=height,
1113
+ batch_size=batch_size * num_images_per_prompt,
1114
+ num_images_per_prompt=num_images_per_prompt,
1115
+ device=device,
1116
+ dtype=controlnet.dtype,
1117
+ do_classifier_free_guidance=self.do_classifier_free_guidance,
1118
+ guess_mode=guess_mode,
1119
+ )
1120
+
1121
+ images.append(image_)
1122
+
1123
+ image = images
1124
+ height, width = image[0].shape[-2:]
1125
+ else:
1126
+ assert False
1127
+
1128
+ # 5. Prepare timesteps
1129
+ timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
1130
+ self._num_timesteps = len(timesteps)
1131
+
1132
+ # 6. Prepare latent variables
1133
+ num_channels_latents = self.unet.config.in_channels
1134
+ latents = self.prepare_latents(
1135
+ batch_size * num_images_per_prompt,
1136
+ num_channels_latents,
1137
+ height,
1138
+ width,
1139
+ prompt_embeds.dtype,
1140
+ device,
1141
+ generator,
1142
+ latents,
1143
+ )
1144
+
1145
+ # 6.5 Optionally get Guidance Scale Embedding
1146
+ timestep_cond = None
1147
+ if self.unet.config.time_cond_proj_dim is not None:
1148
+ guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt)
1149
+ timestep_cond = self.get_guidance_scale_embedding(
1150
+ guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
1151
+ ).to(device=device, dtype=latents.dtype)
1152
+
1153
+ # 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
1154
+ extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
1155
+
1156
+ # 7.1 Add image embeds for IP-Adapter
1157
+ added_cond_kwargs = {"image_embeds": image_embeds} if ip_adapter_image is not None else None
1158
+
1159
+ # 7.2 Create tensor stating which controlnets to keep
1160
+ controlnet_keep = []
1161
+ for i in range(len(timesteps)):
1162
+ keeps = [
1163
+ 1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e)
1164
+ for s, e in zip(control_guidance_start, control_guidance_end)
1165
+ ]
1166
+ controlnet_keep.append(keeps[0] if isinstance(controlnet, ControlNetModel) else keeps)
1167
+
1168
+ # 8. Denoising loop
1169
+ num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
1170
+ is_unet_compiled = is_compiled_module(self.unet)
1171
+ is_controlnet_compiled = is_compiled_module(self.controlnet)
1172
+ is_torch_higher_equal_2_1 = is_torch_version(">=", "2.1")
1173
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
1174
+ for i, t in enumerate(timesteps):
1175
+ # Relevant thread:
1176
+ # https://dev-discuss.pytorch.org/t/cudagraphs-in-pytorch-2-0/1428
1177
+ if (is_unet_compiled and is_controlnet_compiled) and is_torch_higher_equal_2_1:
1178
+ torch._inductor.cudagraph_mark_step_begin()
1179
+ # expand the latents if we are doing classifier free guidance
1180
+ latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
1181
+ latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
1182
+
1183
+ # controlnet(s) inference
1184
+ if guess_mode and self.do_classifier_free_guidance:
1185
+ # Infer ControlNet only for the conditional batch.
1186
+ control_model_input = latents
1187
+ control_model_input = self.scheduler.scale_model_input(control_model_input, t)
1188
+ controlnet_prompt_embeds = prompt_embeds.chunk(2)[1]
1189
+ else:
1190
+ control_model_input = latent_model_input
1191
+ controlnet_prompt_embeds = prompt_embeds
1192
+
1193
+ if isinstance(controlnet_keep[i], list):
1194
+ cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])]
1195
+ else:
1196
+ controlnet_cond_scale = controlnet_conditioning_scale
1197
+ if isinstance(controlnet_cond_scale, list):
1198
+ controlnet_cond_scale = controlnet_cond_scale[0]
1199
+ cond_scale = controlnet_cond_scale * controlnet_keep[i]
1200
+
1201
+ down_block_res_samples, mid_block_res_sample = self.controlnet(
1202
+ control_model_input,
1203
+ t,
1204
+ encoder_hidden_states=controlnet_prompt_embeds,
1205
+ controlnet_cond=image,
1206
+ conditioning_scale=cond_scale,
1207
+ guess_mode=guess_mode,
1208
+ return_dict=False,
1209
+ )
1210
+
1211
+ if guess_mode and self.do_classifier_free_guidance:
1212
+ # Infered ControlNet only for the conditional batch.
1213
+ # To apply the output of ControlNet to both the unconditional and conditional batches,
1214
+ # add 0 to the unconditional batch to keep it unchanged.
1215
+ down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples]
1216
+ mid_block_res_sample = torch.cat([torch.zeros_like(mid_block_res_sample), mid_block_res_sample])
1217
+
1218
+ # predict the noise residual
1219
+ noise_pred = self.unet(
1220
+ latent_model_input,
1221
+ t,
1222
+ encoder_hidden_states=prompt_embeds,
1223
+ timestep_cond=timestep_cond,
1224
+ cross_attention_kwargs=self.cross_attention_kwargs,
1225
+ down_block_additional_residuals=down_block_res_samples,
1226
+ mid_block_additional_residual=mid_block_res_sample,
1227
+ added_cond_kwargs=added_cond_kwargs,
1228
+ return_dict=False,
1229
+ )[0]
1230
+
1231
+ # perform guidance
1232
+ if self.do_classifier_free_guidance:
1233
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
1234
+ noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
1235
+
1236
+ # compute the previous noisy sample x_t -> x_t-1
1237
+ latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
1238
+
1239
+ if callback_on_step_end is not None:
1240
+ callback_kwargs = {}
1241
+ for k in callback_on_step_end_tensor_inputs:
1242
+ callback_kwargs[k] = locals()[k]
1243
+ callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
1244
+
1245
+ latents = callback_outputs.pop("latents", latents)
1246
+ prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
1247
+ negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
1248
+
1249
+ # call the callback, if provided
1250
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
1251
+ progress_bar.update()
1252
+ if callback is not None and i % callback_steps == 0:
1253
+ step_idx = i // getattr(self.scheduler, "order", 1)
1254
+ callback(step_idx, t, latents)
1255
+
1256
+ # If we do sequential model offloading, let's offload unet and controlnet
1257
+ # manually for max memory savings
1258
+ if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
1259
+ self.unet.to("cpu")
1260
+ self.controlnet.to("cpu")
1261
+ torch.cuda.empty_cache()
1262
+
1263
+ if not output_type == "latent":
1264
+ image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False, generator=generator)[
1265
+ 0
1266
+ ]
1267
+ image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
1268
+ else:
1269
+ image = latents
1270
+ has_nsfw_concept = None
1271
+
1272
+ if has_nsfw_concept is None:
1273
+ do_denormalize = [True] * image.shape[0]
1274
+ else:
1275
+ do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
1276
+
1277
+ image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
1278
+
1279
+ # Offload all models
1280
+ self.maybe_free_model_hooks()
1281
+
1282
+ if not return_dict:
1283
+ return (image, has_nsfw_concept)
1284
+
1285
+ return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)