waveydaveygravy
commited on
Commit
·
1dda0a5
1
Parent(s):
075c482
Upload vid2pose_v2.ipynb
Browse files- vid2pose_v2.ipynb +411 -0
vid2pose_v2.ipynb
ADDED
@@ -0,0 +1,411 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"nbformat": 4,
|
3 |
+
"nbformat_minor": 0,
|
4 |
+
"metadata": {
|
5 |
+
"colab": {
|
6 |
+
"provenance": [],
|
7 |
+
"gpuType": "T4"
|
8 |
+
},
|
9 |
+
"kernelspec": {
|
10 |
+
"name": "python3",
|
11 |
+
"display_name": "Python 3"
|
12 |
+
},
|
13 |
+
"language_info": {
|
14 |
+
"name": "python"
|
15 |
+
},
|
16 |
+
"accelerator": "GPU"
|
17 |
+
},
|
18 |
+
"cells": [
|
19 |
+
{
|
20 |
+
"cell_type": "code",
|
21 |
+
"execution_count": null,
|
22 |
+
"metadata": {
|
23 |
+
"id": "qbM01EucvW58"
|
24 |
+
},
|
25 |
+
"outputs": [],
|
26 |
+
"source": [
|
27 |
+
"!pip install controlnet-aux==0.0.7\n",
|
28 |
+
"!pip install -U openmim\n",
|
29 |
+
"!pip install cog\n",
|
30 |
+
"!pip install mediapipe\n",
|
31 |
+
"!mim install mmengine\n",
|
32 |
+
"!mim install \"mmcv>=2.0.1\"\n",
|
33 |
+
"!mim install \"mmdet>=3.1.0\"\n",
|
34 |
+
"!mim install \"mmpose>=1.1.0\""
|
35 |
+
]
|
36 |
+
},
|
37 |
+
{
|
38 |
+
"cell_type": "code",
|
39 |
+
"source": [
|
40 |
+
"from google.colab import files\n",
|
41 |
+
"uploaded = files.upload()"
|
42 |
+
],
|
43 |
+
"metadata": {
|
44 |
+
"id": "rvxvKxkiR8ih"
|
45 |
+
},
|
46 |
+
"execution_count": null,
|
47 |
+
"outputs": []
|
48 |
+
},
|
49 |
+
{
|
50 |
+
"cell_type": "code",
|
51 |
+
"source": [
|
52 |
+
"#@title break video down into frames\n",
|
53 |
+
"import cv2\n",
|
54 |
+
"\n",
|
55 |
+
"# Open the video file\n",
|
56 |
+
"cap = cv2.VideoCapture('/content/a.mp4')\n",
|
57 |
+
"\n",
|
58 |
+
"i = 0\n",
|
59 |
+
"while(cap.isOpened()):\n",
|
60 |
+
" ret, frame = cap.read()\n",
|
61 |
+
"\n",
|
62 |
+
" if ret == False:\n",
|
63 |
+
" break\n",
|
64 |
+
"\n",
|
65 |
+
" # Save each frame of the video\n",
|
66 |
+
" cv2.imwrite('/content/frames/frame_' + str(i) + '.jpg', frame)\n",
|
67 |
+
"\n",
|
68 |
+
" i += 1\n",
|
69 |
+
"\n",
|
70 |
+
"cap.release()\n",
|
71 |
+
"cv2.destroyAllWindows()"
|
72 |
+
],
|
73 |
+
"metadata": {
|
74 |
+
"id": "Kw0hIeYnvjLV"
|
75 |
+
},
|
76 |
+
"execution_count": null,
|
77 |
+
"outputs": []
|
78 |
+
},
|
79 |
+
{
|
80 |
+
"cell_type": "code",
|
81 |
+
"source": [
|
82 |
+
"#==========Interpolate the pose frames==========\n",
|
83 |
+
"!pip install moviepy"
|
84 |
+
],
|
85 |
+
"metadata": {
|
86 |
+
"id": "jTIwuo4ESGBw"
|
87 |
+
},
|
88 |
+
"execution_count": null,
|
89 |
+
"outputs": []
|
90 |
+
},
|
91 |
+
{
|
92 |
+
"cell_type": "code",
|
93 |
+
"source": [
|
94 |
+
"#@title interpolate processed frames (best to keep fps same as input video)\n",
|
95 |
+
"!ffmpeg -r 8 -i /content/test/frame_%d.jpg -c:v libx264 -vf \"fps=8,format=yuv420p\" testpose.mp4\n"
|
96 |
+
],
|
97 |
+
"metadata": {
|
98 |
+
"id": "8kUk-kFPwzmq"
|
99 |
+
},
|
100 |
+
"execution_count": null,
|
101 |
+
"outputs": []
|
102 |
+
},
|
103 |
+
{
|
104 |
+
"cell_type": "code",
|
105 |
+
"source": [
|
106 |
+
"#=======AVAILABLE PROCESSORS========\n",
|
107 |
+
"# load processor from processor_id\n",
|
108 |
+
"# options are:\n",
|
109 |
+
"# [\"canny\", \"depth_leres\", \"depth_leres++\", \"depth_midas\", \"depth_zoe\", \"lineart_anime\",\n",
|
110 |
+
"# \"lineart_coarse\", \"lineart_realistic\", \"mediapipe_face\", \"mlsd\", \"normal_bae\", \"normal_midas\",\n",
|
111 |
+
"# \"openpose\", \"openpose_face\", \"openpose_faceonly\", \"openpose_full\", \"openpose_hand\",\n",
|
112 |
+
"# \"scribble_hed, \"scribble_pidinet\", \"shuffle\", \"softedge_hed\", \"softedge_hedsafe\",\n",
|
113 |
+
"# \"softedge_pidinet\", \"softedge_pidsafe\", \"dwpose\"]"
|
114 |
+
],
|
115 |
+
"metadata": {
|
116 |
+
"id": "l5aAanvtyMz9"
|
117 |
+
},
|
118 |
+
"execution_count": null,
|
119 |
+
"outputs": []
|
120 |
+
},
|
121 |
+
{
|
122 |
+
"cell_type": "code",
|
123 |
+
"source": [
|
124 |
+
"#@title simply change the processor under 'processor' at the bottom, may need to add if not available, see above (goto v1 notebook if errors start)\n",
|
125 |
+
"#=======AVAILABLE PROCESSORS========\n",
|
126 |
+
"# load processor from processor_id\n",
|
127 |
+
"# options are:\n",
|
128 |
+
"# [\"canny\", \"depth_leres\", \"depth_leres++\", \"depth_midas\", \"depth_zoe\", \"lineart_anime\",\n",
|
129 |
+
"# \"lineart_coarse\", \"lineart_realistic\", \"mediapipe_face\", \"mlsd\", \"normal_bae\", \"normal_midas\",\n",
|
130 |
+
"# \"openpose\", \"openpose_face\", \"openpose_faceonly\", \"openpose_full\", \"openpose_hand\",\n",
|
131 |
+
"# \"scribble_hed, \"scribble_pidinet\", \"shuffle\", \"softedge_hed\", \"softedge_hedsafe\",\n",
|
132 |
+
"# \"softedge_pidinet\", \"softedge_pidsafe\", \"dwpose\"]\n",
|
133 |
+
"import torch\n",
|
134 |
+
"import os\n",
|
135 |
+
"from typing import List\n",
|
136 |
+
"from cog import BasePredictor, Input, Path\n",
|
137 |
+
"from PIL import Image\n",
|
138 |
+
"from io import BytesIO\n",
|
139 |
+
"import time\n",
|
140 |
+
"from tqdm import tqdm\n",
|
141 |
+
"from controlnet_aux.processor import Processor\n",
|
142 |
+
"from controlnet_aux import (\n",
|
143 |
+
" HEDdetector,\n",
|
144 |
+
" MidasDetector,\n",
|
145 |
+
" MLSDdetector,\n",
|
146 |
+
" OpenposeDetector,\n",
|
147 |
+
" PidiNetDetector,\n",
|
148 |
+
" NormalBaeDetector,\n",
|
149 |
+
" LineartDetector,\n",
|
150 |
+
" LineartAnimeDetector,\n",
|
151 |
+
" CannyDetector,\n",
|
152 |
+
" ContentShuffleDetector,\n",
|
153 |
+
" ZoeDetector,\n",
|
154 |
+
" MediapipeFaceDetector,\n",
|
155 |
+
" SamDetector,\n",
|
156 |
+
" LeresDetector,\n",
|
157 |
+
" DWposeDetector,\n",
|
158 |
+
")\n",
|
159 |
+
"\n",
|
160 |
+
"#Processor = processor\n",
|
161 |
+
"image_dir = '/content/frames'\n",
|
162 |
+
"\n",
|
163 |
+
"class Predictor(BasePredictor):\n",
|
164 |
+
" def setup(self) -> None:\n",
|
165 |
+
" \"\"\"Load the model into memory to make running multiple predictions efficient\"\"\"\n",
|
166 |
+
"\n",
|
167 |
+
" self.annotators = {\n",
|
168 |
+
" \"canny\": CannyDetector(),\n",
|
169 |
+
" \"content\": ContentShuffleDetector(),\n",
|
170 |
+
" \"face_detector\": MediapipeFaceDetector(),\n",
|
171 |
+
" \"hed\": self.initialize_detector(HEDdetector),\n",
|
172 |
+
" \"midas\": self.initialize_detector(MidasDetector),\n",
|
173 |
+
" \"mlsd\": self.initialize_detector(MLSDdetector),\n",
|
174 |
+
" \"open_pose\": self.initialize_detector(OpenposeDetector),\n",
|
175 |
+
" \"pidi\": self.initialize_detector(PidiNetDetector),\n",
|
176 |
+
" \"normal_bae\": self.initialize_detector(NormalBaeDetector),\n",
|
177 |
+
" \"lineart\": self.initialize_detector(LineartDetector),\n",
|
178 |
+
" \"lineart_anime\": self.initialize_detector(LineartAnimeDetector),\n",
|
179 |
+
" # \"zoe\": self.initialize_detector(ZoeDetector),\n",
|
180 |
+
"\n",
|
181 |
+
"\n",
|
182 |
+
" # \"mobile_sam\": self.initialize_detector(\n",
|
183 |
+
" # SamDetector,\n",
|
184 |
+
" # model_name=\"dhkim2810/MobileSAM\",\n",
|
185 |
+
" # model_type=\"vit_t\",\n",
|
186 |
+
" # filename=\"mobile_sam.pt\",\n",
|
187 |
+
" # ),\n",
|
188 |
+
" \"leres\": self.initialize_detector(LeresDetector),\n",
|
189 |
+
" }\n",
|
190 |
+
"\n",
|
191 |
+
" torch.device(\"cuda\")\n",
|
192 |
+
"\n",
|
193 |
+
" def initialize_detector(\n",
|
194 |
+
" self, detector_class, model_name=\"lllyasviel/Annotators\", **kwargs\n",
|
195 |
+
" ):\n",
|
196 |
+
" return detector_class.from_pretrained(\n",
|
197 |
+
" model_name,\n",
|
198 |
+
" cache_dir=\"model_cache\",\n",
|
199 |
+
" **kwargs,\n",
|
200 |
+
" )\n",
|
201 |
+
"\n",
|
202 |
+
" def process_images(self, image_dir: str) -> List[Path]:\n",
|
203 |
+
" # Start time for overall processing\n",
|
204 |
+
" start_time = time.time()\n",
|
205 |
+
"\n",
|
206 |
+
" # Load all images into memory\n",
|
207 |
+
" images = [Image.open(os.path.join(image_dir, image_name)).convert(\"RGB\").resize((512, 512)) for image_name in os.listdir(image_dir)]\n",
|
208 |
+
"\n",
|
209 |
+
" paths = []\n",
|
210 |
+
"\n",
|
211 |
+
" def predict(\n",
|
212 |
+
" self,\n",
|
213 |
+
" image_dir: str = Input(\n",
|
214 |
+
" default=\"/content/frames\",\n",
|
215 |
+
" description=\"Directory containing the images to be processed\"\n",
|
216 |
+
" )\n",
|
217 |
+
"):\n",
|
218 |
+
"\n",
|
219 |
+
" canny: bool = Input(\n",
|
220 |
+
" default=True,\n",
|
221 |
+
" description=\"Run canny edge detection\",\n",
|
222 |
+
" ),\n",
|
223 |
+
" content: bool = Input(\n",
|
224 |
+
" default=True,\n",
|
225 |
+
" description=\"Run content shuffle detection\",\n",
|
226 |
+
" ),\n",
|
227 |
+
" face_detector: bool = Input(\n",
|
228 |
+
" default=True,\n",
|
229 |
+
" description=\"Run face detection\",\n",
|
230 |
+
" ),\n",
|
231 |
+
" hed: bool = Input(\n",
|
232 |
+
" default=True,\n",
|
233 |
+
" description=\"Run HED detection\",\n",
|
234 |
+
" ),\n",
|
235 |
+
" midas: bool = Input(\n",
|
236 |
+
" default=True,\n",
|
237 |
+
" description=\"Run Midas detection\",\n",
|
238 |
+
" ),\n",
|
239 |
+
" mlsd: bool = Input(\n",
|
240 |
+
" default=True,\n",
|
241 |
+
" description=\"Run MLSD detection\",\n",
|
242 |
+
" ),\n",
|
243 |
+
" open_pose: bool = Input(\n",
|
244 |
+
" default=True,\n",
|
245 |
+
" description=\"Run Openpose detection\",\n",
|
246 |
+
" ),\n",
|
247 |
+
" pidi: bool = Input(\n",
|
248 |
+
" default=True,\n",
|
249 |
+
" description=\"Run PidiNet detection\",\n",
|
250 |
+
" ),\n",
|
251 |
+
" normal_bae: bool = Input(\n",
|
252 |
+
" default=True,\n",
|
253 |
+
" description=\"Run NormalBae detection\",\n",
|
254 |
+
" ),\n",
|
255 |
+
" lineart: bool = Input(\n",
|
256 |
+
" default=True,\n",
|
257 |
+
" description=\"Run Lineart detection\",\n",
|
258 |
+
" ),\n",
|
259 |
+
" lineart_anime: bool = Input(\n",
|
260 |
+
" default=True,\n",
|
261 |
+
" description=\"Run LineartAnime detection\",\n",
|
262 |
+
"\n",
|
263 |
+
" ),\n",
|
264 |
+
" leres: bool = Input(\n",
|
265 |
+
" default=True,\n",
|
266 |
+
" description=\"Run Leres detection\",\n",
|
267 |
+
" ),\n",
|
268 |
+
"\n",
|
269 |
+
"\n",
|
270 |
+
" # Load image\n",
|
271 |
+
" # Load all images into memory\n",
|
272 |
+
" start_time = time.time() # Start time for overall processing\n",
|
273 |
+
" images = [Image.open(os.path.join(image_dir, image_name)).convert(\"RGB\").resize((512, 512)) for image_name in os.listdir(image_dir)]\n",
|
274 |
+
"\n",
|
275 |
+
" paths = []\n",
|
276 |
+
" annotator_inputs = {\n",
|
277 |
+
" \"canny\": canny,\n",
|
278 |
+
" \"content\": content,\n",
|
279 |
+
" \"face_detector\": face_detector,\n",
|
280 |
+
" \"hed\": hed,\n",
|
281 |
+
" \"midas\": midas,\n",
|
282 |
+
" \"mlsd\": mlsd,\n",
|
283 |
+
" \"open_pose\": open_pose,\n",
|
284 |
+
" \"pidi\": pidi,\n",
|
285 |
+
" \"normal_bae\": normal_bae,\n",
|
286 |
+
" \"lineart\": lineart,\n",
|
287 |
+
" \"lineart_anime\": lineart_anime, \"openpose_full\": openpose_full,\n",
|
288 |
+
"\n",
|
289 |
+
" \"leres\": leres,\n",
|
290 |
+
" }\n",
|
291 |
+
" for annotator, run_annotator in annotator_inputs.items():\n",
|
292 |
+
" if run_annotator:\n",
|
293 |
+
" processed_image = self.process_image(image, annotator)\n",
|
294 |
+
" #processed_image.save(f\"/tmp/{annotator}.png\")\n",
|
295 |
+
" processed_path = f'/content/test1/{image_name}'\n",
|
296 |
+
"\n",
|
297 |
+
" return paths\n",
|
298 |
+
"\n",
|
299 |
+
"import time\n",
|
300 |
+
"from tqdm import tqdm\n",
|
301 |
+
"\n",
|
302 |
+
"# Load images and paths\n",
|
303 |
+
"images = []\n",
|
304 |
+
"image_paths = []\n",
|
305 |
+
"for name in os.listdir(image_dir):\n",
|
306 |
+
" path = os.path.join(image_dir, name)\n",
|
307 |
+
" image = Image.open(path)\n",
|
308 |
+
"\n",
|
309 |
+
" images.append(image)\n",
|
310 |
+
" image_paths.append(path)\n",
|
311 |
+
"\n",
|
312 |
+
"# Process images\n",
|
313 |
+
"processed = [\n",
|
314 |
+
" Processor(\"openpose_full\") for path in tqdm(image_paths)\n",
|
315 |
+
"]\n",
|
316 |
+
"\n",
|
317 |
+
"# Save processed\n",
|
318 |
+
"import os\n",
|
319 |
+
"from PIL import Image\n",
|
320 |
+
"\n",
|
321 |
+
"# Get a list of filenames in /content/frames\n",
|
322 |
+
"filenames = os.listdir('/content/frames')\n",
|
323 |
+
"\n",
|
324 |
+
"# Save processed\n",
|
325 |
+
"for filename in filenames:\n",
|
326 |
+
"\n",
|
327 |
+
" # Get the full path of the image file\n",
|
328 |
+
" image_path = os.path.join('/content/frames', filename)\n",
|
329 |
+
"\n",
|
330 |
+
" # Load the image\n",
|
331 |
+
" image = Image.open(image_path)\n",
|
332 |
+
"\n",
|
333 |
+
" # Process image\n",
|
334 |
+
" # Process all images with progress bar\n",
|
335 |
+
" processed_image = processor(image, to_pil=True)\n",
|
336 |
+
"\n",
|
337 |
+
" # Extract original name\n",
|
338 |
+
" original_name = filename.split('.')[0]\n",
|
339 |
+
"\n",
|
340 |
+
" # Save image\n",
|
341 |
+
" processed_path = f'/content/test2/{original_name}.png'\n",
|
342 |
+
" processed_image.save(processed_path)\n",
|
343 |
+
"\n"
|
344 |
+
],
|
345 |
+
"metadata": {
|
346 |
+
"id": "qgKAWKrBL5d2"
|
347 |
+
},
|
348 |
+
"execution_count": null,
|
349 |
+
"outputs": []
|
350 |
+
},
|
351 |
+
{
|
352 |
+
"cell_type": "code",
|
353 |
+
"source": [
|
354 |
+
"@#title for seeing whats in controlnet_aux\n",
|
355 |
+
"dir(controlnet_aux)"
|
356 |
+
],
|
357 |
+
"metadata": {
|
358 |
+
"id": "X08c_PPKTQiq"
|
359 |
+
},
|
360 |
+
"execution_count": null,
|
361 |
+
"outputs": []
|
362 |
+
},
|
363 |
+
{
|
364 |
+
"cell_type": "code",
|
365 |
+
"source": [
|
366 |
+
"!zip -r nameof.zip <location of files and folder>"
|
367 |
+
],
|
368 |
+
"metadata": {
|
369 |
+
"id": "Oax1BHwYTZog"
|
370 |
+
},
|
371 |
+
"execution_count": null,
|
372 |
+
"outputs": []
|
373 |
+
},
|
374 |
+
{
|
375 |
+
"cell_type": "code",
|
376 |
+
"execution_count": null,
|
377 |
+
"metadata": {
|
378 |
+
"id": "FaF3RdKdaFa8"
|
379 |
+
},
|
380 |
+
"outputs": [],
|
381 |
+
"source": [
|
382 |
+
"#@title Login to HuggingFace 🤗\n",
|
383 |
+
"\n",
|
384 |
+
"#@markdown You need to accept the model license before downloading or using the Stable Diffusion weights. Please, visit the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5), read the license and tick the checkbox if you agree. You have to be a registered user in 🤗 Hugging Face Hub, and you'll also need to use an access token for the code to work.\n",
|
385 |
+
"# https://huggingface.co/settings/tokens\n",
|
386 |
+
"!mkdir -p ~/.huggingface\n",
|
387 |
+
"HUGGINGFACE_TOKEN = \"\" #@param {type:\"string\"}\n",
|
388 |
+
"!echo -n \"{HUGGINGFACE_TOKEN}\" > ~/.huggingface/token"
|
389 |
+
]
|
390 |
+
},
|
391 |
+
{
|
392 |
+
"cell_type": "code",
|
393 |
+
"execution_count": null,
|
394 |
+
"metadata": {
|
395 |
+
"id": "aEJZoFQ2YHIb"
|
396 |
+
},
|
397 |
+
"outputs": [],
|
398 |
+
"source": [
|
399 |
+
"@#title upload to Huggingface\n",
|
400 |
+
"from huggingface_hub import HfApi\n",
|
401 |
+
"api = HfApi()\n",
|
402 |
+
"api.upload_file(\n",
|
403 |
+
" path_or_fileobj=\"\",\n",
|
404 |
+
" path_in_repo=\"name.zip\",\n",
|
405 |
+
" repo_id=\"\",\n",
|
406 |
+
" repo_type=\"dataset\",\n",
|
407 |
+
")"
|
408 |
+
]
|
409 |
+
}
|
410 |
+
]
|
411 |
+
}
|