Update README.md
Browse files
README.md
CHANGED
@@ -4,23 +4,36 @@ language:
|
|
4 |
- ja
|
5 |
- en
|
6 |
---
|
7 |
-
# webbigdata/ALMA-7B-Ja-GPTQ-Ja-En
|
8 |
|
9 |
-
|
|
|
10 |
|
11 |
-
|
12 |
|
13 |
-
|
14 |
-
And translation ability for languages other than Japanese and English has deteriorated significantly.
|
15 |
|
16 |
[Free Colab Sample](https://github.com/webbigdata-jp/python_sample/blob/main/ALMA_7B_Ja_V2_GPTQ_Ja_En_Free_Colab_sample.ipynb)
|
17 |
|
|
|
18 |
If you want to translate the entire file at once, try Colab below.
|
19 |
[ALMA_7B_Ja_V2_GPTQ_Ja_En_batch_translation_sample](https://github.com/webbigdata-jp/python_sample/blob/main/ALMA_7B_Ja_V2_GPTQ_Ja_En_batch_translation_sample.ipynb)
|
20 |
|
21 |
-
|
|
|
|
|
22 |
```RuntimeError: probability tensor contains either `inf`, `nan` or element < 0```
|
|
|
23 |
It's mean your memory is not enough. decrease your num_beams or token size.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
|
26 |
**ALMA** (**A**dvanced **L**anguage **M**odel-based tr**A**nslator) is an LLM-based translation model, which adopts a new translation model paradigm: it begins with fine-tuning on monolingual data and is further optimized using high-quality parallel data. This two-step fine-tuning process ensures strong translation performance.
|
@@ -34,7 +47,4 @@ Please find more details in their [paper](https://arxiv.org/abs/2309.11674).
|
|
34 |
archivePrefix={arXiv},
|
35 |
primaryClass={cs.CL}
|
36 |
}
|
37 |
-
```
|
38 |
-
|
39 |
-
## about this work
|
40 |
-
- **This work was done by :** [webbigdata](https://webbigdata.jp/).
|
|
|
4 |
- ja
|
5 |
- en
|
6 |
---
|
7 |
+
# webbigdata/ALMA-7B-Ja-V2-GPTQ-Ja-En
|
8 |
|
9 |
+
ALMA-7B-Ja-V2-GPTQ-Ja-Enは日本語から英語、英語から日本語への機械翻訳を行うモデルです。
|
10 |
+
ALMA-7B-Ja-V2-GPTQ-Ja-En is a machine translation model that uses ALMA's learning method to translate Japanese to English.
|
11 |
|
12 |
+
## サンプルコード
|
13 |
|
14 |
+
Googleアカウントをお持ちの方は以下のColabを使用して動かす事が出来ます。
|
|
|
15 |
|
16 |
[Free Colab Sample](https://github.com/webbigdata-jp/python_sample/blob/main/ALMA_7B_Ja_V2_GPTQ_Ja_En_Free_Colab_sample.ipynb)
|
17 |
|
18 |
+
テキストファイル全体を一気に翻訳したい方は、以下のColabをお試しください。
|
19 |
If you want to translate the entire file at once, try Colab below.
|
20 |
[ALMA_7B_Ja_V2_GPTQ_Ja_En_batch_translation_sample](https://github.com/webbigdata-jp/python_sample/blob/main/ALMA_7B_Ja_V2_GPTQ_Ja_En_batch_translation_sample.ipynb)
|
21 |
|
22 |
+
以下のようなエラーが発生した場合は
|
23 |
+
if you enconter error below.
|
24 |
+
|
25 |
```RuntimeError: probability tensor contains either `inf`, `nan` or element < 0```
|
26 |
+
|
27 |
It's mean your memory is not enough. decrease your num_beams or token size.
|
28 |
+
これはメモリ不足を意味します。num_beamsかtoken sizeを減らしてください。
|
29 |
+
|
30 |
+
## その他の版 Other Version
|
31 |
+
|
32 |
+
- None quantized model [ALMA-7B-Ja-V2](https://huggingface.co/webbigdata/ALMA-7B-Ja-V2).
|
33 |
+
|
34 |
+
## 本作業について about this work
|
35 |
+
- ** 本作業は[webbigdata](https://webbigdata.jp/)によって行われました **
|
36 |
+
- **This work was done by :** [webbigdata](https://webbigdata.jp/).
|
37 |
|
38 |
|
39 |
**ALMA** (**A**dvanced **L**anguage **M**odel-based tr**A**nslator) is an LLM-based translation model, which adopts a new translation model paradigm: it begins with fine-tuning on monolingual data and is further optimized using high-quality parallel data. This two-step fine-tuning process ensures strong translation performance.
|
|
|
47 |
archivePrefix={arXiv},
|
48 |
primaryClass={cs.CL}
|
49 |
}
|
50 |
+
```
|
|
|
|
|
|