File size: 5,914 Bytes
1a0f94f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import itertools
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.utils import rnn


def duplicate(output, mask, lens, act_sizes):
    """
    Duplicate the output based on the action sizes.
    """
    output = torch.cat([output[i:i+1].repeat(j, 1, 1) for i, j in enumerate(act_sizes)], dim=0)
    mask = torch.cat([mask[i:i+1].repeat(j, 1) for i, j in enumerate(act_sizes)], dim=0)
    lens = list(itertools.chain.from_iterable([lens[i:i+1] * j for i, j in enumerate(act_sizes)]))
    return output, mask, lens


def get_aggregated(output, lens, method):
    """
    Get the aggregated hidden state of the encoder.
    B x D
    """
    if method == 'mean':
        return torch.stack([output[i, :j, :].mean(0) for i, j in enumerate(lens)], dim=0)
    elif method == 'last':
        return torch.stack([output[i, j-1, :] for i, j in enumerate(lens)], dim=0)
    elif method == 'first':
        return output[:, 0, :]


class EncoderRNN(nn.Module):
    def __init__(self, input_size, num_units, nlayers, concat,
                 bidir, layernorm, return_last):
        super().__init__()
        self.layernorm = (layernorm == 'layer')
        if layernorm:
            self.norm = nn.LayerNorm(input_size)

        self.rnns = []
        for i in range(nlayers):
            if i == 0:
                input_size_ = input_size
                output_size_ = num_units
            else:
                input_size_ = num_units if not bidir else num_units * 2
                output_size_ = num_units
            self.rnns.append(
                nn.GRU(input_size_, output_size_, 1,
                       bidirectional=bidir, batch_first=True))

        self.rnns = nn.ModuleList(self.rnns)
        self.init_hidden = nn.ParameterList(
            [nn.Parameter(
                torch.zeros(size=(2 if bidir else 1, 1, num_units)),
                requires_grad=True) for _ in range(nlayers)])
        self.concat = concat
        self.nlayers = nlayers
        self.return_last = return_last

        self.reset_parameters()

    def reset_parameters(self):
        with torch.no_grad():
            for rnn_layer in self.rnns:
                for name, p in rnn_layer.named_parameters():
                    if 'weight_ih' in name:
                        torch.nn.init.xavier_uniform_(p.data)
                    elif 'weight_hh' in name:
                        torch.nn.init.orthogonal_(p.data)
                    elif 'bias' in name:
                        p.data.fill_(0.0)
                    else:
                        p.data.normal_(std=0.1)

    def get_init(self, bsz, i):
        return self.init_hidden[i].expand(-1, bsz, -1).contiguous()

    def forward(self, inputs, input_lengths=None):
        bsz, slen = inputs.size(0), inputs.size(1)
        if self.layernorm:
            inputs = self.norm(inputs)
        output = inputs
        outputs = []
        lens = 0
        if input_lengths is not None:
            lens = input_lengths  # .data.cpu().numpy()
        for i in range(self.nlayers):
            hidden = self.get_init(bsz, i)
            # output = self.dropout(output)
            if input_lengths is not None:
                output = rnn.pack_padded_sequence(output, lens,
                                                  batch_first=True,
                                                  enforce_sorted=False)
            output, hidden = self.rnns[i](output, hidden)
            if input_lengths is not None:
                output, _ = rnn.pad_packed_sequence(output, batch_first=True)
                if output.size(1) < slen:
                    # used for parallel
                    # padding = Variable(output.data.new(1, 1, 1).zero_())
                    padding = torch.zeros(
                        size=(1, 1, 1), dtype=output.type(),
                        device=output.device())
                    output = torch.cat(
                        [output,
                         padding.expand(
                             output.size(0),
                             slen - output.size(1),
                             output.size(2))
                         ], dim=1)
            if self.return_last:
                outputs.append(
                    hidden.permute(1, 0, 2).contiguous().view(bsz, -1))
            else:
                outputs.append(output)
        if self.concat:
            return torch.cat(outputs, dim=2)
        return outputs[-1]


class BiAttention(nn.Module):
    def __init__(self, input_size, dropout):
        super().__init__()
        self.dropout = nn.Dropout(dropout)
        self.input_linear = nn.Linear(input_size, 1, bias=False)
        self.memory_linear = nn.Linear(input_size, 1, bias=False)
        self.dot_scale = nn.Parameter(
            torch.zeros(size=(input_size,)).uniform_(1. / (input_size ** 0.5)),
            requires_grad=True)
        self.init_parameters()

    def init_parameters(self):
        return

    def forward(self, context, memory, mask):
        bsz, input_len = context.size(0), context.size(1)
        memory_len = memory.size(1)
        context = self.dropout(context)
        memory = self.dropout(memory)

        input_dot = self.input_linear(context)
        memory_dot = self.memory_linear(memory).view(bsz, 1, memory_len)
        cross_dot = torch.bmm(
            context * self.dot_scale,
            memory.permute(0, 2, 1).contiguous())
        att = input_dot + memory_dot + cross_dot
        att = att - 1e30 * (1 - mask[:, None])

        weight_one = F.softmax(att, dim=-1)
        output_one = torch.bmm(weight_one, memory)
        weight_two = (F.softmax(att.max(dim=-1)[0], dim=-1)
                      .view(bsz, 1, input_len))
        output_two = torch.bmm(weight_two, context)
        return torch.cat(
            [context, output_one, context * output_one,
             output_two * output_one],
            dim=-1)