File size: 12,901 Bytes
a0f7847
2844b2c
a0f7847
7af6005
8b13d5b
7af6005
8b13d5b
2844b2c
 
 
cf32f97
a433c21
7af6005
c02def3
eb3397f
7af6005
 
 
eb3397f
e60ca2e
0625bed
4c3379d
0625bed
4c3379d
 
 
0625bed
dc16eed
0625bed
7af6005
 
45c074c
7af6005
403cc63
 
 
 
4f301cb
 
403cc63
7af6005
321524b
cf32f97
321524b
cf32f97
 
0625bed
cf32f97
321524b
45c074c
cf32f97
 
 
5a2107a
321524b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e60ca2e
7af6005
 
 
e60ca2e
 
7af6005
 
 
 
e60ca2e
 
 
 
7af6005
 
e60ca2e
7af6005
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0625bed
7af6005
 
 
 
 
 
 
 
 
 
 
 
c02def3
7af6005
2400fab
7af6005
 
 
c9b8c63
7af6005
ef66875
7af6005
ef66875
499034b
 
 
 
 
 
 
 
 
198ceae
499034b
0625bed
198ceae
 
 
 
 
499034b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
---
license: other
---


<div align="center">
  <img src="https://github.com/wenge-research/YAYI2/blob/main/assets/yayi_dark_small.png" alt="YAYI" style="width: 30%; display: block; margin: auto;">
<h1>
  YAYI 2
</h1>
<!-- <br> -->
</div>

<div align="center">
<a href="https://github.com/wenge-research/YAYI2" target="_blank">GitHub</a> | <a href="https://yayi.wenge.com" target="_blank">雅意大模型</a> 
</div>



## 介绍/Introduction
YAYI 2 是中科闻歌研发的开源大语言模型,包括 Base 和 Chat 版本,参数规模为 30B。YAYI2-30B 是基于 Transformer 的大语言模型,采用了 2.65 万亿 Tokens 的高质量、多语言语料进行预训练。针对通用和特定领域的应用场景,我们采用了百万级指令进行微调,同时借助人类反馈强化学习方法,以更好地使模型与人类价值观对齐。

本次开源的模型为 YAYI2-30B Base 模型。如果您想了解更多关于 YAYI 2 模型的细节,我们建议您参阅 [GitHub](https://github.com/wenge-research/YAYI2) 仓库。更多技术细节,敬请期待我们的技术报告🔥。



YAYI 2 is a collection of open-source large language models launched by Wenge Technology. YAYI2-30B is a Transformer-based large language model, and has been pretrained for 2.65 trillion tokens of multilingual data with high quality. The base model is aligned with human values through supervised fine-tuning with millions of instructions and reinforcement learning from human feedback (RLHF). 

We opensource the pre-trained language model in this release, namely **YAYI2-30B**. For more details about the YAYI 2, please refer to our  [GitHub](https://github.com/wenge-research/YAYI2)  repository. Stay tuned for more technical details in our upcoming technical report! 🔥


## 模型细节/Model Details

| Hyperparameter| Value  | 
|:----------|:----------:| 
| n_layers | 64    | 
| n_heads | 64    | 
| hidden_size | 7168    | 
| vocab_size | 81920    | 
| sequence length | 4096    | 


## 要求/Requirements

* python 3.8及以上版本
* pytorch 2.0.1 及以上版本
* 建议使用 CUDA 11.7 及以上版本
* 运行 BF16 或 FP16 模型需要至少80GB显存(例如1xA100)


* python 3.8 and above
* pytorch 2.0.1 and above
* CUDA 11.7 and above are recommended
* To run YAYI2-30B in bf16/fp16, at least 80B GPU memory is required (e.g., 1xA100-80G)


## 快速开始/Quick Start

```python
>>> from transformers import AutoModelForCausalLM, AutoTokenizer
>>> tokenizer = AutoTokenizer.from_pretrained("wenge-research/yayi2-30b", trust_remote_code=True)
>>> model = AutoModelForCausalLM.from_pretrained("wenge-research/yayi2-30b", device_map="auto", trust_remote_code=True)
>>> inputs = tokenizer('The winter in Beijing is', return_tensors='pt')
>>> inputs = inputs.to('cuda')
>>> pred = model.generate(
        **inputs, 
        max_new_tokens=256, 
        eos_token_id=tokenizer.eos_token_id, 
        do_sample=True,
        repetition_penalty=1.2,
        temperature=0.4, 
        top_k=100, 
        top_p=0.8
        )
>>> print(tokenizer.decode(pred.cpu()[0], skip_special_tokens=True))
```


## 评测结果/Evaluation

我们在多个基准数据集上进行了评测,包括 C-Eval、MMLU、 CMMLU、AGIEval、GAOKAO-Bench、GSM8K、MATH、BBH、HumanEval 以及 MBPP。我们考察了模型在语言理解、学科知识、数学推理、逻辑推理以及代码生成方面的表现。YAYI 2 模型在与其规模相近的开源模型中展现出了显著的性能提升。

We evaluate our model on standard benchmarks, including C-Eval, MMLU, CMMLU, AGIEval, GAOKAO-Bench, GSM8K, MATH, BBH, HumanEval, and MBPP. Our goal is to assess the model's performance in language comprehension, knowledge comprehension, mathematical reasoning, logical reasoning, and code generation.  YAYI 2 has demonstrated exceptional performance across models with similar size.

<table id="myTable">
  <!-- Table header -->
  <tr>
        <th></th>
        <th colspan="5" style="text-align: center;">Knowledge</th>
        <th colspan="2" style="text-align: center;">Math</th>
        <th colspan="1" style="text-align: center;">Logic reasonning</th>
        <th colspan="2" style="text-align: center;">Code</th>
  </tr>
  <tr>
        <th style="text-align: left;">Model</th>
        <th>C-Eval(val)</th>
        <th>MMLU</th>
        <th>AGIEval</th>
        <th>CMMLU</th>
        <th>GAOKAO-Bench</th>
        <th>GSM8K</th>
        <th>MATH</th>
        <th>BBH</th>
        <th>HumanEval</th>
        <th>MBPP</th>
  </tr>
  <tr>
        <td></td>
        <td style="text-align: center;">5-shot</td>
        <td style="text-align: center;">5-shot</td>
        <td style="text-align: center;">3/0-shot</td>
        <td style="text-align: center;">5-shot</td>
        <td style="text-align: center;">0-shot</td>
        <td style="text-align: center;">8/4-shot</td>
        <td style="text-align: center;">4-shot</td>
        <td style="text-align: center;">3-shot</td>
        <td style="text-align: center;">0-shot</td>
        <td style="text-align: center;">3-shot</td>
        </tr>
        <tr>
        <td><strong>MPT-30B</strong></td>
        <td style="text-align: center;">-</td>
        <td style="text-align: center;">46.9</td>
        <td style="text-align: center;">33.8</td>
        <td style="text-align: center;">-</td>
        <td style="text-align: center;">-</td>
        <td style="text-align: center;">15.2</td>
        <td style="text-align: center;">3.1</td>
        <td style="text-align: center;">38.0</td>
        <td style="text-align: center;">25.0</td>
        <td style="text-align: center;">32.8</td>
  </tr>
  <tr>
        <td><strong>Falcon-40B</strong></td>
        <td style="text-align: center;">-</td>
        <td style="text-align: center;">55.4</td>
        <td style="text-align: center;">37.0</td>
        <td style="text-align: center;">-</td>
        <td style="text-align: center;">-</td>
        <td style="text-align: center;">19.6</td>
        <td style="text-align: center;">5.5</td>
        <td style="text-align: center;">37.1</td>
        <td style="text-align: center;">0.6</td>
        <td style="text-align: center;">29.8</td>
  </tr>
  <tr>
        <td><strong>LLaMA2-34B</strong></td>
        <td style="text-align: center;">-</td>
        <td style="text-align: center;">62.6</td>
        <td style="text-align: center;">43.4</td>
        <td style="text-align: center;">-</td>
        <td style="text-align: center;">-</td>
        <td style="text-align: center;">42.2</td>
        <td style="text-align: center;">6.2</td>
        <td style="text-align: center;">44.1</td>
        <td style="text-align: center;">22.6</td>
        <td style="text-align: center;">33.0</td>
  </tr>
  <tr>
        <td><strong>Baichuan2-13B</strong></td>
        <td style="text-align: center;">59.0</td>
        <td style="text-align: center;">59.5</td>
        <td style="text-align: center;">37.4</td>
        <td style="text-align: center;">61.3</td>
        <td style="text-align: center;">45.6</td>
        <td style="text-align: center;">52.6</td>
        <td style="text-align: center;">10.1</td>
        <td style="text-align: center;">49.0</td>
        <td style="text-align: center;">17.1</td>
        <td style="text-align: center;">30.8</td>
  </tr>
  <tr>
        <td><strong>Qwen-14B</strong></td>
        <td style="text-align: center;">71.7</td>
        <td style="text-align: center;">67.9</td>
        <td style="text-align: center;">51.9</td>
        <td style="text-align: center;">70.2</td>
        <td style="text-align: center;">62.5</td>
        <td style="text-align: center;">61.6</td>
        <td style="text-align: center;">25.2</td>
        <td style="text-align: center;">53.7</td>
        <td style="text-align: center;">32.3</td>
        <td style="text-align: center;">39.8</td>
  </tr>
  <tr>
        <td><strong>InternLM-20B</strong></td>
        <td style="text-align: center;">58.8</td>
        <td style="text-align: center;">62.1</td>
        <td style="text-align: center;">44.6</td>
        <td style="text-align: center;">59.0</td>
        <td style="text-align: center;">45.5</td>
        <td style="text-align: center;">52.6</td>
        <td style="text-align: center;">7.9</td>
        <td style="text-align: center;">52.5</td>
        <td style="text-align: center;">25.6</td>
        <td style="text-align: center;">35.6</td>
  </tr>
  <tr>
        <td><strong>Aquila2-34B</strong></td>
        <td style="text-align: center;">98.5</td>
        <td style="text-align: center;">76.0</td>
        <td style="text-align: center;">43.8</td>
        <td style="text-align: center;">78.5</td>
        <td style="text-align: center;">37.8</td>
        <td style="text-align: center;">50.0</td>
        <td style="text-align: center;">17.8</td>
        <td style="text-align: center;">42.5</td>
        <td style="text-align: center;">0.0</td>
        <td style="text-align: center;">41.0</td>
  </tr>
  <tr>
        <td><strong>Yi-34B</strong></td>
        <td style="text-align: center;">81.8</td>
        <td style="text-align: center;">76.3</td>
        <td style="text-align: center;">56.5</td>
        <td style="text-align: center;">82.6</td>
        <td style="text-align: center;">68.3</td>
        <td style="text-align: center;">67.6</td>
        <td style="text-align: center;">15.9</td>
        <td style="text-align: center;">66.4</td>
        <td style="text-align: center;">26.2</td>
        <td style="text-align: center;">38.2</td>
  </tr>
  <tr>
        <td><strong>YAYI2-30B</strong></td>
        <td style="text-align: center;">80.9</td>
        <td style="text-align: center;"><b>80.5</b></td>
        <td style="text-align: center;"><b>62.0</b></td>
        <td style="text-align: center;"><b>84.0</b></td>
        <td style="text-align: center;">64.4</td>
        <td style="text-align: center;"><b>71.2</b></td>
        <td style="text-align: center;">14.8</td>
        <td style="text-align: center;">54.5</td>
        <td style="text-align: center;"><b>53.1</b></td>
        <td style="text-align: center;"><b>45.8</b></td>
  </tr>
</table>


我们使用 [OpenCompass Github 仓库](https://github.com/open-compass/opencompass) 提供的源代码进行了评测。对于对比模型,我们列出了他们在 [OpenCompass](https://opencompass.org.cn) 榜单上的评测结果,截止日期为 2023年12月15日。对于其他尚未在 [OpenCompass](https://opencompass.org.cn/leaderboard-llm) 平台参与评测的模型,包括 MPT、Falcon 和 LLaMa 2,我们采用了 [LLaMA 2](https://arxiv.org/abs/2307.09288) 报告的结果。

We evaluate our model using the source code from the [OpenCompass Github repository](https://github.com/open-compass/opencompass). If available, we report results for comparative models assessed by OpenCompass with the evaluation reference date set to Dec. 15th, 2013. For MPT, Falcon, and Llama, which have not been evaluated by OpenCompass, we use the results reported in the [LLaMA 2](https://arxiv.org/abs/2307.09288) paper.



## 协议/License

本项目中的代码依照 [Apache-2.0](https://github.com/wenge-research/YAYI2/blob/main/LICENSE) 协议开源,社区使用 YAYI 2 模型和数据需要遵循[雅意YAYI 2 模型社区许可协议](https://github.com/wenge-research/YAYI2/blob/main/COMMUNITY_LICENSE)。若您需要将雅意 YAYI 2系列模型或其衍生品用作商业用途,请根据[《雅意 YAYI 2 模型商用许可协议》](https://github.com/wenge-research/YAYI2/blob/main/COMMERCIAL_LICENSE)将商用许可申请登记信息发送至指定邮箱 yayi@wenge.com。审核通过后,雅意将授予您商用版权许可,请遵循协议中的商业许可限制。

The code in this project is open-sourced under the [Apache-2.0](https://github.com/wenge-research/YAYI2/blob/main/LICENSE) license. The use of YaYi series model weights and data must adhere to the [YAYI 2 Community License](https://github.com/wenge-research/YAYI2/blob/main/COMMUNITY_LICENSE). If you intend to use the YAYI 2 series models or their derivatives for commercial purposes, please submit your commercial license application and registration information to yayi@wenge.com, following the [YAYI 2 Commercial License](https://github.com/wenge-research/YAYI2/blob/main/COMMERCIAL_LICENSE). Upon approval, YAYI will grant you a commercial copyright license, subject to the commercial license restrictions outlined in the agreement.



## 引用/Citation

如果您在工作中使用了我们的模型,请引用我们的论文。

If you are using the resource for your work, please cite our paper.

```
@article{YAYI 2,
  author    = {Yin Luo, Qingchao Kong, Nan Xu, et.al.},
  title     = {YAYI 2: Multilingual Open Source Large Language Models},
  journal   = {arXiv preprint arXiv},
  year      = {2023}
}
```