wennycooper commited on
Commit
fffdaf1
·
verified ·
1 Parent(s): 1e60211

End of training

Browse files
Files changed (5) hide show
  1. README.md +34 -2
  2. all_results.json +17 -0
  3. eval_results.json +12 -0
  4. train_results.json +8 -0
  5. trainer_state.json +88 -0
README.md CHANGED
@@ -3,9 +3,35 @@ license: apache-2.0
3
  base_model: bert-base-uncased
4
  tags:
5
  - generated_from_trainer
 
 
 
 
 
 
 
6
  model-index:
7
  - name: token-classification-bert-base-uncased
8
- results: []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
  ---
10
 
11
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -13,7 +39,13 @@ should probably proofread and complete it, then remove this comment. -->
13
 
14
  # token-classification-bert-base-uncased
15
 
16
- This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
 
 
 
 
 
 
17
 
18
  ## Model description
19
 
 
3
  base_model: bert-base-uncased
4
  tags:
5
  - generated_from_trainer
6
+ datasets:
7
+ - conll2003
8
+ metrics:
9
+ - precision
10
+ - recall
11
+ - f1
12
+ - accuracy
13
  model-index:
14
  - name: token-classification-bert-base-uncased
15
+ results:
16
+ - task:
17
+ name: Token Classification
18
+ type: token-classification
19
+ dataset:
20
+ name: conll2003
21
+ type: conll2003
22
+ metrics:
23
+ - name: Precision
24
+ type: precision
25
+ value: 0.9465865464863963
26
+ - name: Recall
27
+ type: recall
28
+ value: 0.9543924604510265
29
+ - name: F1
30
+ type: f1
31
+ value: 0.9504734769127628
32
+ - name: Accuracy
33
+ type: accuracy
34
+ value: 0.9898757836532845
35
  ---
36
 
37
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
39
 
40
  # token-classification-bert-base-uncased
41
 
42
+ This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the conll2003 dataset.
43
+ It achieves the following results on the evaluation set:
44
+ - Loss: 0.0480
45
+ - Precision: 0.9466
46
+ - Recall: 0.9544
47
+ - F1: 0.9505
48
+ - Accuracy: 0.9899
49
 
50
  ## Model description
51
 
all_results.json ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 3.0,
3
+ "eval_accuracy": 0.9898757836532845,
4
+ "eval_f1": 0.9504734769127628,
5
+ "eval_loss": 0.04797038435935974,
6
+ "eval_precision": 0.9465865464863963,
7
+ "eval_recall": 0.9543924604510265,
8
+ "eval_runtime": 10.3106,
9
+ "eval_samples": 3250,
10
+ "eval_samples_per_second": 315.208,
11
+ "eval_steps_per_second": 39.474,
12
+ "train_loss": 0.043311251413668296,
13
+ "train_runtime": 605.4597,
14
+ "train_samples": 14041,
15
+ "train_samples_per_second": 69.572,
16
+ "train_steps_per_second": 8.701
17
+ }
eval_results.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 3.0,
3
+ "eval_accuracy": 0.9898757836532845,
4
+ "eval_f1": 0.9504734769127628,
5
+ "eval_loss": 0.04797038435935974,
6
+ "eval_precision": 0.9465865464863963,
7
+ "eval_recall": 0.9543924604510265,
8
+ "eval_runtime": 10.3106,
9
+ "eval_samples": 3250,
10
+ "eval_samples_per_second": 315.208,
11
+ "eval_steps_per_second": 39.474
12
+ }
train_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 3.0,
3
+ "train_loss": 0.043311251413668296,
4
+ "train_runtime": 605.4597,
5
+ "train_samples": 14041,
6
+ "train_samples_per_second": 69.572,
7
+ "train_steps_per_second": 8.701
8
+ }
trainer_state.json ADDED
@@ -0,0 +1,88 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 3.0,
5
+ "eval_steps": 500,
6
+ "global_step": 5268,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.28,
13
+ "learning_rate": 4.525436598329537e-05,
14
+ "loss": 0.154,
15
+ "step": 500
16
+ },
17
+ {
18
+ "epoch": 0.57,
19
+ "learning_rate": 4.050873196659074e-05,
20
+ "loss": 0.0783,
21
+ "step": 1000
22
+ },
23
+ {
24
+ "epoch": 0.85,
25
+ "learning_rate": 3.5763097949886106e-05,
26
+ "loss": 0.0625,
27
+ "step": 1500
28
+ },
29
+ {
30
+ "epoch": 1.14,
31
+ "learning_rate": 3.1017463933181475e-05,
32
+ "loss": 0.0427,
33
+ "step": 2000
34
+ },
35
+ {
36
+ "epoch": 1.42,
37
+ "learning_rate": 2.6271829916476843e-05,
38
+ "loss": 0.0245,
39
+ "step": 2500
40
+ },
41
+ {
42
+ "epoch": 1.71,
43
+ "learning_rate": 2.152619589977221e-05,
44
+ "loss": 0.0296,
45
+ "step": 3000
46
+ },
47
+ {
48
+ "epoch": 1.99,
49
+ "learning_rate": 1.678056188306758e-05,
50
+ "loss": 0.0264,
51
+ "step": 3500
52
+ },
53
+ {
54
+ "epoch": 2.28,
55
+ "learning_rate": 1.2034927866362947e-05,
56
+ "loss": 0.0115,
57
+ "step": 4000
58
+ },
59
+ {
60
+ "epoch": 2.56,
61
+ "learning_rate": 7.289293849658315e-06,
62
+ "loss": 0.0108,
63
+ "step": 4500
64
+ },
65
+ {
66
+ "epoch": 2.85,
67
+ "learning_rate": 2.5436598329536827e-06,
68
+ "loss": 0.0103,
69
+ "step": 5000
70
+ },
71
+ {
72
+ "epoch": 3.0,
73
+ "step": 5268,
74
+ "total_flos": 895156246626660.0,
75
+ "train_loss": 0.043311251413668296,
76
+ "train_runtime": 605.4597,
77
+ "train_samples_per_second": 69.572,
78
+ "train_steps_per_second": 8.701
79
+ }
80
+ ],
81
+ "logging_steps": 500,
82
+ "max_steps": 5268,
83
+ "num_train_epochs": 3,
84
+ "save_steps": 500,
85
+ "total_flos": 895156246626660.0,
86
+ "trial_name": null,
87
+ "trial_params": null
88
+ }