Update README.md
Browse files
README.md
CHANGED
@@ -68,6 +68,11 @@ mut_info = "V3A"
|
|
68 |
mut_value = model.predict_mut(seq, mut_info)
|
69 |
print(mut_value)
|
70 |
|
|
|
|
|
|
|
|
|
|
|
71 |
# Predict all effects of mutations at 3rd position
|
72 |
mut_pos = 3
|
73 |
mut_dict = model.predict_pos_mut(seq, mut_pos)
|
@@ -77,15 +82,6 @@ print(mut_dict)
|
|
77 |
mut_pos = 3
|
78 |
mut_dict = model.predict_pos_prob(seq, mut_pos)
|
79 |
print(mut_dict)
|
80 |
-
|
81 |
-
"""
|
82 |
-
0.7908501625061035
|
83 |
-
|
84 |
-
{'V3A': 0.7908501625061035, 'V3C': -0.9117952585220337, 'V3D': 2.7700226306915283, 'V3E': 2.3255627155303955, 'V3F': 0.2094242423772812, 'V3G': 2.699633836746216, 'V3H': 1.240191102027893, 'V3I': 0.10231903940439224, 'V3K': 1.804598093032837,
|
85 |
-
'V3L': 1.3324960470199585, 'V3M': -0.18938277661800385, 'V3N': 2.8249857425689697, 'V3P': 0.40185314416885376, 'V3Q': 1.8361762762069702, 'V3R': 1.1899691820144653, 'V3S': 2.2159857749938965, 'V3T': 0.8813426494598389, 'V3V': 0.0, 'V3W': 0.5853186249732971, 'V3Y': 0.17449656128883362}
|
86 |
-
|
87 |
-
{'A': 0.021275954321026802, 'C': 0.0038764977362006903, 'D': 0.15396881103515625, 'E': 0.0987202599644661, 'F': 0.011895398609340191, 'G': 0.14350374042987823, 'H': 0.03334535285830498, 'I': 0.010687196627259254, 'K': 0.058634623885154724, 'L': 0.03656982257962227, 'M': 0.00798324216157198, 'N': 0.16266827285289764, 'P': 0.014419485814869404, 'Q': 0.06051575019955635, 'R': 0.03171204403042793, 'S': 0.08847439289093018, 'T': 0.023291070014238358, 'V': 0.009647775441408157, 'W': 0.017323188483715057, 'Y': 0.011487090960144997}
|
88 |
-
"""
|
89 |
```
|
90 |
|
91 |
## Get protein embeddings
|
|
|
68 |
mut_value = model.predict_mut(seq, mut_info)
|
69 |
print(mut_value)
|
70 |
|
71 |
+
# Predict mutational effect of combinatorial mutations, e.g. mutating the 3rd amino acid to A and the 4th amino acid to M
|
72 |
+
mut_info = "V3A:Q4M"
|
73 |
+
mut_value = model.predict_mut(seq, mut_info)
|
74 |
+
print(mut_value)
|
75 |
+
|
76 |
# Predict all effects of mutations at 3rd position
|
77 |
mut_pos = 3
|
78 |
mut_dict = model.predict_pos_mut(seq, mut_pos)
|
|
|
82 |
mut_pos = 3
|
83 |
mut_dict = model.predict_pos_prob(seq, mut_pos)
|
84 |
print(mut_dict)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
```
|
86 |
|
87 |
## Get protein embeddings
|