Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- it
|
4 |
+
license: apache-2.0
|
5 |
+
tags:
|
6 |
+
- hf-asr-leaderboard
|
7 |
+
- generated_from_trainer
|
8 |
+
datasets:
|
9 |
+
- mozilla-foundation/common_voice_11_0
|
10 |
+
metrics:
|
11 |
+
- wer
|
12 |
+
model-index:
|
13 |
+
- name: Whisper Small Italian
|
14 |
+
results:
|
15 |
+
- task:
|
16 |
+
name: Automatic Speech Recognition
|
17 |
+
type: automatic-speech-recognition
|
18 |
+
dataset:
|
19 |
+
name: Common Voice 11.0
|
20 |
+
type: mozilla-foundation/common_voice_11_0
|
21 |
+
args: 'config: it, split: test'
|
22 |
+
metrics:
|
23 |
+
- name: Wer
|
24 |
+
type: wer
|
25 |
+
value: 17.37085955328124
|
26 |
+
---
|
27 |
+
|
28 |
+
# Whisper Small Italian
|
29 |
+
|
30 |
+
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset.
|
31 |
+
It achieves the following results on the evaluation set:
|
32 |
+
|
33 |
+
- Loss: 0.2421
|
34 |
+
- Wer: 17.3709
|
35 |
+
|
36 |
+
## Model description
|
37 |
+
|
38 |
+
More information needed
|
39 |
+
|
40 |
+
## Intended uses & limitations
|
41 |
+
|
42 |
+
More information needed
|
43 |
+
|
44 |
+
## Training and evaluation data
|
45 |
+
|
46 |
+
More information needed
|
47 |
+
|
48 |
+
## Training procedure
|
49 |
+
|
50 |
+
### Training hyperparameters
|
51 |
+
|
52 |
+
The following hyperparameters were used during training:
|
53 |
+
|
54 |
+
- learning_rate: 1e-05
|
55 |
+
- train_batch_size: 16
|
56 |
+
- eval_batch_size: 8
|
57 |
+
- seed: 42
|
58 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
59 |
+
- lr_scheduler_type: linear
|
60 |
+
- lr_scheduler_warmup_steps: 500
|
61 |
+
- num_epochs: 2
|
62 |
+
- mixed_precision_training: Native AMP
|
63 |
+
|
64 |
+
### Training results
|
65 |
+
|
66 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
67 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
68 |
+
| 1.4521 | 0.1 | 100 | 1.3771 | 120.3480 |
|
69 |
+
| 0.7526 | 0.21 | 200 | 0.9120 | 83.8949 |
|
70 |
+
| 0.3023 | 0.31 | 300 | 0.4427 | 26.2063 |
|
71 |
+
| 0.2718 | 0.42 | 400 | 0.4282 | 25.9013 |
|
72 |
+
| 0.2823 | 0.52 | 500 | 0.4181 | 26.2757 |
|
73 |
+
| 0.3151 | 0.63 | 600 | 0.4095 | 25.0624 |
|
74 |
+
| 0.2559 | 0.73 | 700 | 0.4028 | 25.4784 |
|
75 |
+
| 0.2727 | 0.84 | 800 | 0.2888 | 19.5491 |
|
76 |
+
| 0.2532 | 0.94 | 900 | 0.2779 | 19.3832 |
|
77 |
+
| 0.232 | 1.05 | 1000 | 0.2722 | 18.6778 |
|
78 |
+
| 0.2169 | 1.15 | 1100 | 0.2720 | 18.9268 |
|
79 |
+
| 0.2493 | 1.26 | 1200 | 0.2741 | 20.0678 |
|
80 |
+
| 0.2312 | 1.36 | 1300 | 0.2666 | 18.2767 |
|
81 |
+
| 0.2158 | 1.47 | 1400 | 0.2651 | 19.6529 |
|
82 |
+
| 0.2171 | 1.57 | 1500 | 0.2583 | 18.6087 |
|
83 |
+
| 0.2074 | 1.68 | 1600 | 0.2551 | 17.6820 |
|
84 |
+
| 0.1862 | 1.78 | 1700 | 0.2491 | 17.4124 |
|
85 |
+
| 0.2044 | 1.89 | 1800 | 0.2475 | 17.8964 |
|
86 |
+
| 0.1877 | 1.99 | 1900 | 0.2421 | 17.3709 |
|
87 |
+
|
88 |
+
### Framework versions
|
89 |
+
|
90 |
+
- Transformers 4.26.0.dev0
|
91 |
+
- Pytorch 1.13.0+cu116
|
92 |
+
- Datasets 2.7.1
|
93 |
+
- Tokenizers 0.13.2
|