--- language: - it license: apache-2.0 tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer base_model: openai/whisper-small model-index: - name: Whisper Small Italian results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 args: 'config: it, split: test' metrics: - type: wer value: 17.37085955328124 name: Wer --- # Whisper Small Italian This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.2421 - Wer: 17.3709 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.4521 | 0.1 | 100 | 1.3771 | 120.3480 | | 0.7526 | 0.21 | 200 | 0.9120 | 83.8949 | | 0.3023 | 0.31 | 300 | 0.4427 | 26.2063 | | 0.2718 | 0.42 | 400 | 0.4282 | 25.9013 | | 0.2823 | 0.52 | 500 | 0.4181 | 26.2757 | | 0.3151 | 0.63 | 600 | 0.4095 | 25.0624 | | 0.2559 | 0.73 | 700 | 0.4028 | 25.4784 | | 0.2727 | 0.84 | 800 | 0.2888 | 19.5491 | | 0.2532 | 0.94 | 900 | 0.2779 | 19.3832 | | 0.232 | 1.05 | 1000 | 0.2722 | 18.6778 | | 0.2169 | 1.15 | 1100 | 0.2720 | 18.9268 | | 0.2493 | 1.26 | 1200 | 0.2741 | 20.0678 | | 0.2312 | 1.36 | 1300 | 0.2666 | 18.2767 | | 0.2158 | 1.47 | 1400 | 0.2651 | 19.6529 | | 0.2171 | 1.57 | 1500 | 0.2583 | 18.6087 | | 0.2074 | 1.68 | 1600 | 0.2551 | 17.6820 | | 0.1862 | 1.78 | 1700 | 0.2491 | 17.4124 | | 0.2044 | 1.89 | 1800 | 0.2475 | 17.8964 | | 0.1877 | 1.99 | 1900 | 0.2421 | 17.3709 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2