--- license: other tags: - generated_from_trainer model-index: - name: segment_50ep results: [] --- # segment_50ep This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the None dataset. It achieves the following results on the evaluation set: - eval_loss: 0.0867 - eval_mean_iou: 0.8941 - eval_mean_accuracy: 0.9459 - eval_overall_accuracy: 0.9728 - eval_per_category_iou: [0.8914159628180123, 0.9397057910334902, 0.784713695838044, 0.9606094621573129] - eval_per_category_accuracy: [0.9685998627316403, 0.9696767617484154, 0.8661740631737143, 0.9789942690602516] - eval_runtime: 40.9902 - eval_samples_per_second: 0.976 - eval_steps_per_second: 0.244 - epoch: 36.82 - step: 3240 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.0 - Datasets 2.10.1 - Tokenizers 0.13.2