|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- common_voice |
|
model-index: |
|
- name: wav2vec2_common_voice_accents_indian |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# wav2vec2_common_voice_accents_indian |
|
|
|
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2692 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0003 |
|
- train_batch_size: 48 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- num_devices: 8 |
|
- total_train_batch_size: 384 |
|
- total_eval_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- num_epochs: 30 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:----:|:---------------:| |
|
| 4.5186 | 1.28 | 400 | 0.6937 | |
|
| 0.3485 | 2.56 | 800 | 0.2323 | |
|
| 0.2229 | 3.83 | 1200 | 0.2195 | |
|
| 0.1877 | 5.11 | 1600 | 0.2147 | |
|
| 0.1618 | 6.39 | 2000 | 0.2058 | |
|
| 0.1434 | 7.67 | 2400 | 0.2077 | |
|
| 0.132 | 8.95 | 2800 | 0.1995 | |
|
| 0.1223 | 10.22 | 3200 | 0.2146 | |
|
| 0.1153 | 11.5 | 3600 | 0.2117 | |
|
| 0.1061 | 12.78 | 4000 | 0.2071 | |
|
| 0.1003 | 14.06 | 4400 | 0.2219 | |
|
| 0.0949 | 15.34 | 4800 | 0.2204 | |
|
| 0.0889 | 16.61 | 5200 | 0.2162 | |
|
| 0.0824 | 17.89 | 5600 | 0.2243 | |
|
| 0.0784 | 19.17 | 6000 | 0.2323 | |
|
| 0.0702 | 20.45 | 6400 | 0.2325 | |
|
| 0.0665 | 21.73 | 6800 | 0.2334 | |
|
| 0.0626 | 23.0 | 7200 | 0.2411 | |
|
| 0.058 | 24.28 | 7600 | 0.2473 | |
|
| 0.054 | 25.56 | 8000 | 0.2591 | |
|
| 0.0506 | 26.84 | 8400 | 0.2577 | |
|
| 0.0484 | 28.12 | 8800 | 0.2633 | |
|
| 0.0453 | 29.39 | 9200 | 0.2692 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.17.0 |
|
- Pytorch 1.10.2+cu102 |
|
- Datasets 1.18.4 |
|
- Tokenizers 0.11.6 |
|
|