update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- common_voice
|
7 |
+
model-index:
|
8 |
+
- name: wav2vec2_common_voice_accents_indian
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# wav2vec2_common_voice_accents_indian
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.2692
|
20 |
+
|
21 |
+
## Model description
|
22 |
+
|
23 |
+
More information needed
|
24 |
+
|
25 |
+
## Intended uses & limitations
|
26 |
+
|
27 |
+
More information needed
|
28 |
+
|
29 |
+
## Training and evaluation data
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Training procedure
|
34 |
+
|
35 |
+
### Training hyperparameters
|
36 |
+
|
37 |
+
The following hyperparameters were used during training:
|
38 |
+
- learning_rate: 0.0003
|
39 |
+
- train_batch_size: 48
|
40 |
+
- eval_batch_size: 4
|
41 |
+
- seed: 42
|
42 |
+
- distributed_type: multi-GPU
|
43 |
+
- num_devices: 8
|
44 |
+
- total_train_batch_size: 384
|
45 |
+
- total_eval_batch_size: 32
|
46 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
47 |
+
- lr_scheduler_type: linear
|
48 |
+
- lr_scheduler_warmup_steps: 500
|
49 |
+
- num_epochs: 30
|
50 |
+
- mixed_precision_training: Native AMP
|
51 |
+
|
52 |
+
### Training results
|
53 |
+
|
54 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
55 |
+
|:-------------:|:-----:|:----:|:---------------:|
|
56 |
+
| 4.5186 | 1.28 | 400 | 0.6937 |
|
57 |
+
| 0.3485 | 2.56 | 800 | 0.2323 |
|
58 |
+
| 0.2229 | 3.83 | 1200 | 0.2195 |
|
59 |
+
| 0.1877 | 5.11 | 1600 | 0.2147 |
|
60 |
+
| 0.1618 | 6.39 | 2000 | 0.2058 |
|
61 |
+
| 0.1434 | 7.67 | 2400 | 0.2077 |
|
62 |
+
| 0.132 | 8.95 | 2800 | 0.1995 |
|
63 |
+
| 0.1223 | 10.22 | 3200 | 0.2146 |
|
64 |
+
| 0.1153 | 11.5 | 3600 | 0.2117 |
|
65 |
+
| 0.1061 | 12.78 | 4000 | 0.2071 |
|
66 |
+
| 0.1003 | 14.06 | 4400 | 0.2219 |
|
67 |
+
| 0.0949 | 15.34 | 4800 | 0.2204 |
|
68 |
+
| 0.0889 | 16.61 | 5200 | 0.2162 |
|
69 |
+
| 0.0824 | 17.89 | 5600 | 0.2243 |
|
70 |
+
| 0.0784 | 19.17 | 6000 | 0.2323 |
|
71 |
+
| 0.0702 | 20.45 | 6400 | 0.2325 |
|
72 |
+
| 0.0665 | 21.73 | 6800 | 0.2334 |
|
73 |
+
| 0.0626 | 23.0 | 7200 | 0.2411 |
|
74 |
+
| 0.058 | 24.28 | 7600 | 0.2473 |
|
75 |
+
| 0.054 | 25.56 | 8000 | 0.2591 |
|
76 |
+
| 0.0506 | 26.84 | 8400 | 0.2577 |
|
77 |
+
| 0.0484 | 28.12 | 8800 | 0.2633 |
|
78 |
+
| 0.0453 | 29.39 | 9200 | 0.2692 |
|
79 |
+
|
80 |
+
|
81 |
+
### Framework versions
|
82 |
+
|
83 |
+
- Transformers 4.17.0
|
84 |
+
- Pytorch 1.10.2+cu102
|
85 |
+
- Datasets 1.18.4
|
86 |
+
- Tokenizers 0.11.6
|