willcai commited on
Commit
bc2d965
1 Parent(s): 6215434

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +86 -0
README.md ADDED
@@ -0,0 +1,86 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - common_voice
7
+ model-index:
8
+ - name: wav2vec2_common_voice_accents_indian
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # wav2vec2_common_voice_accents_indian
16
+
17
+ This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.2692
20
+
21
+ ## Model description
22
+
23
+ More information needed
24
+
25
+ ## Intended uses & limitations
26
+
27
+ More information needed
28
+
29
+ ## Training and evaluation data
30
+
31
+ More information needed
32
+
33
+ ## Training procedure
34
+
35
+ ### Training hyperparameters
36
+
37
+ The following hyperparameters were used during training:
38
+ - learning_rate: 0.0003
39
+ - train_batch_size: 48
40
+ - eval_batch_size: 4
41
+ - seed: 42
42
+ - distributed_type: multi-GPU
43
+ - num_devices: 8
44
+ - total_train_batch_size: 384
45
+ - total_eval_batch_size: 32
46
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
47
+ - lr_scheduler_type: linear
48
+ - lr_scheduler_warmup_steps: 500
49
+ - num_epochs: 30
50
+ - mixed_precision_training: Native AMP
51
+
52
+ ### Training results
53
+
54
+ | Training Loss | Epoch | Step | Validation Loss |
55
+ |:-------------:|:-----:|:----:|:---------------:|
56
+ | 4.5186 | 1.28 | 400 | 0.6937 |
57
+ | 0.3485 | 2.56 | 800 | 0.2323 |
58
+ | 0.2229 | 3.83 | 1200 | 0.2195 |
59
+ | 0.1877 | 5.11 | 1600 | 0.2147 |
60
+ | 0.1618 | 6.39 | 2000 | 0.2058 |
61
+ | 0.1434 | 7.67 | 2400 | 0.2077 |
62
+ | 0.132 | 8.95 | 2800 | 0.1995 |
63
+ | 0.1223 | 10.22 | 3200 | 0.2146 |
64
+ | 0.1153 | 11.5 | 3600 | 0.2117 |
65
+ | 0.1061 | 12.78 | 4000 | 0.2071 |
66
+ | 0.1003 | 14.06 | 4400 | 0.2219 |
67
+ | 0.0949 | 15.34 | 4800 | 0.2204 |
68
+ | 0.0889 | 16.61 | 5200 | 0.2162 |
69
+ | 0.0824 | 17.89 | 5600 | 0.2243 |
70
+ | 0.0784 | 19.17 | 6000 | 0.2323 |
71
+ | 0.0702 | 20.45 | 6400 | 0.2325 |
72
+ | 0.0665 | 21.73 | 6800 | 0.2334 |
73
+ | 0.0626 | 23.0 | 7200 | 0.2411 |
74
+ | 0.058 | 24.28 | 7600 | 0.2473 |
75
+ | 0.054 | 25.56 | 8000 | 0.2591 |
76
+ | 0.0506 | 26.84 | 8400 | 0.2577 |
77
+ | 0.0484 | 28.12 | 8800 | 0.2633 |
78
+ | 0.0453 | 29.39 | 9200 | 0.2692 |
79
+
80
+
81
+ ### Framework versions
82
+
83
+ - Transformers 4.17.0
84
+ - Pytorch 1.10.2+cu102
85
+ - Datasets 1.18.4
86
+ - Tokenizers 0.11.6