willcai commited on
Commit
ccea57f
1 Parent(s): 63da60a

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +86 -0
README.md ADDED
@@ -0,0 +1,86 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - common_voice
7
+ model-index:
8
+ - name: wav2vec2_common_voice_accents_indian_only_rerun
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # wav2vec2_common_voice_accents_indian_only_rerun
16
+
17
+ This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 1.2807
20
+
21
+ ## Model description
22
+
23
+ More information needed
24
+
25
+ ## Intended uses & limitations
26
+
27
+ More information needed
28
+
29
+ ## Training and evaluation data
30
+
31
+ More information needed
32
+
33
+ ## Training procedure
34
+
35
+ ### Training hyperparameters
36
+
37
+ The following hyperparameters were used during training:
38
+ - learning_rate: 0.0003
39
+ - train_batch_size: 48
40
+ - eval_batch_size: 4
41
+ - seed: 42
42
+ - distributed_type: multi-GPU
43
+ - num_devices: 8
44
+ - total_train_batch_size: 384
45
+ - total_eval_batch_size: 32
46
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
47
+ - lr_scheduler_type: linear
48
+ - lr_scheduler_warmup_steps: 500
49
+ - num_epochs: 588
50
+ - mixed_precision_training: Native AMP
51
+
52
+ ### Training results
53
+
54
+ | Training Loss | Epoch | Step | Validation Loss |
55
+ |:-------------:|:-----:|:----:|:---------------:|
56
+ | 4.6205 | 25.0 | 400 | 1.4584 |
57
+ | 0.3427 | 50.0 | 800 | 1.8377 |
58
+ | 0.1213 | 75.0 | 1200 | 1.6086 |
59
+ | 0.0643 | 100.0 | 1600 | 1.5136 |
60
+ | 0.0433 | 125.0 | 2000 | 1.4882 |
61
+ | 0.0323 | 150.0 | 2400 | 1.2204 |
62
+ | 0.0265 | 175.0 | 2800 | 1.3034 |
63
+ | 0.0206 | 200.0 | 3200 | 1.2866 |
64
+ | 0.0191 | 225.0 | 3600 | 1.2337 |
65
+ | 0.0148 | 250.0 | 4000 | 1.1729 |
66
+ | 0.0121 | 275.0 | 4400 | 1.2059 |
67
+ | 0.0105 | 300.0 | 4800 | 1.1246 |
68
+ | 0.01 | 325.0 | 5200 | 1.1397 |
69
+ | 0.0098 | 350.0 | 5600 | 1.1684 |
70
+ | 0.0073 | 375.0 | 6000 | 1.1030 |
71
+ | 0.0061 | 400.0 | 6400 | 1.2077 |
72
+ | 0.0049 | 425.0 | 6800 | 1.2653 |
73
+ | 0.0044 | 450.0 | 7200 | 1.1587 |
74
+ | 0.0037 | 475.0 | 7600 | 1.2283 |
75
+ | 0.0033 | 500.0 | 8000 | 1.1897 |
76
+ | 0.0026 | 525.0 | 8400 | 1.2633 |
77
+ | 0.0023 | 550.0 | 8800 | 1.2571 |
78
+ | 0.002 | 575.0 | 9200 | 1.2807 |
79
+
80
+
81
+ ### Framework versions
82
+
83
+ - Transformers 4.17.0
84
+ - Pytorch 1.10.2+cu102
85
+ - Datasets 1.18.4
86
+ - Tokenizers 0.11.6