update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- common_voice
|
7 |
+
model-index:
|
8 |
+
- name: wav2vec2_common_voice_accents_indian_only_rerun
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# wav2vec2_common_voice_accents_indian_only_rerun
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 1.2807
|
20 |
+
|
21 |
+
## Model description
|
22 |
+
|
23 |
+
More information needed
|
24 |
+
|
25 |
+
## Intended uses & limitations
|
26 |
+
|
27 |
+
More information needed
|
28 |
+
|
29 |
+
## Training and evaluation data
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Training procedure
|
34 |
+
|
35 |
+
### Training hyperparameters
|
36 |
+
|
37 |
+
The following hyperparameters were used during training:
|
38 |
+
- learning_rate: 0.0003
|
39 |
+
- train_batch_size: 48
|
40 |
+
- eval_batch_size: 4
|
41 |
+
- seed: 42
|
42 |
+
- distributed_type: multi-GPU
|
43 |
+
- num_devices: 8
|
44 |
+
- total_train_batch_size: 384
|
45 |
+
- total_eval_batch_size: 32
|
46 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
47 |
+
- lr_scheduler_type: linear
|
48 |
+
- lr_scheduler_warmup_steps: 500
|
49 |
+
- num_epochs: 588
|
50 |
+
- mixed_precision_training: Native AMP
|
51 |
+
|
52 |
+
### Training results
|
53 |
+
|
54 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
55 |
+
|:-------------:|:-----:|:----:|:---------------:|
|
56 |
+
| 4.6205 | 25.0 | 400 | 1.4584 |
|
57 |
+
| 0.3427 | 50.0 | 800 | 1.8377 |
|
58 |
+
| 0.1213 | 75.0 | 1200 | 1.6086 |
|
59 |
+
| 0.0643 | 100.0 | 1600 | 1.5136 |
|
60 |
+
| 0.0433 | 125.0 | 2000 | 1.4882 |
|
61 |
+
| 0.0323 | 150.0 | 2400 | 1.2204 |
|
62 |
+
| 0.0265 | 175.0 | 2800 | 1.3034 |
|
63 |
+
| 0.0206 | 200.0 | 3200 | 1.2866 |
|
64 |
+
| 0.0191 | 225.0 | 3600 | 1.2337 |
|
65 |
+
| 0.0148 | 250.0 | 4000 | 1.1729 |
|
66 |
+
| 0.0121 | 275.0 | 4400 | 1.2059 |
|
67 |
+
| 0.0105 | 300.0 | 4800 | 1.1246 |
|
68 |
+
| 0.01 | 325.0 | 5200 | 1.1397 |
|
69 |
+
| 0.0098 | 350.0 | 5600 | 1.1684 |
|
70 |
+
| 0.0073 | 375.0 | 6000 | 1.1030 |
|
71 |
+
| 0.0061 | 400.0 | 6400 | 1.2077 |
|
72 |
+
| 0.0049 | 425.0 | 6800 | 1.2653 |
|
73 |
+
| 0.0044 | 450.0 | 7200 | 1.1587 |
|
74 |
+
| 0.0037 | 475.0 | 7600 | 1.2283 |
|
75 |
+
| 0.0033 | 500.0 | 8000 | 1.1897 |
|
76 |
+
| 0.0026 | 525.0 | 8400 | 1.2633 |
|
77 |
+
| 0.0023 | 550.0 | 8800 | 1.2571 |
|
78 |
+
| 0.002 | 575.0 | 9200 | 1.2807 |
|
79 |
+
|
80 |
+
|
81 |
+
### Framework versions
|
82 |
+
|
83 |
+
- Transformers 4.17.0
|
84 |
+
- Pytorch 1.10.2+cu102
|
85 |
+
- Datasets 1.18.4
|
86 |
+
- Tokenizers 0.11.6
|