willcai commited on
Commit
8ac0415
1 Parent(s): 2f3d300

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +86 -0
README.md ADDED
@@ -0,0 +1,86 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - common_voice
7
+ model-index:
8
+ - name: wav2vec2_common_voice_accents_us
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # wav2vec2_common_voice_accents_us
16
+
17
+ This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.2722
20
+
21
+ ## Model description
22
+
23
+ More information needed
24
+
25
+ ## Intended uses & limitations
26
+
27
+ More information needed
28
+
29
+ ## Training and evaluation data
30
+
31
+ More information needed
32
+
33
+ ## Training procedure
34
+
35
+ ### Training hyperparameters
36
+
37
+ The following hyperparameters were used during training:
38
+ - learning_rate: 0.0003
39
+ - train_batch_size: 48
40
+ - eval_batch_size: 4
41
+ - seed: 42
42
+ - distributed_type: multi-GPU
43
+ - num_devices: 8
44
+ - total_train_batch_size: 384
45
+ - total_eval_batch_size: 32
46
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
47
+ - lr_scheduler_type: linear
48
+ - lr_scheduler_warmup_steps: 500
49
+ - num_epochs: 30
50
+ - mixed_precision_training: Native AMP
51
+
52
+ ### Training results
53
+
54
+ | Training Loss | Epoch | Step | Validation Loss |
55
+ |:-------------:|:-----:|:----:|:---------------:|
56
+ | 4.549 | 1.28 | 400 | 0.8521 |
57
+ | 0.4066 | 2.56 | 800 | 0.2407 |
58
+ | 0.2262 | 3.83 | 1200 | 0.2070 |
59
+ | 0.1828 | 5.11 | 1600 | 0.2134 |
60
+ | 0.1565 | 6.39 | 2000 | 0.2060 |
61
+ | 0.1448 | 7.67 | 2400 | 0.2100 |
62
+ | 0.1333 | 8.95 | 2800 | 0.2036 |
63
+ | 0.121 | 10.22 | 3200 | 0.2192 |
64
+ | 0.1146 | 11.5 | 3600 | 0.2154 |
65
+ | 0.1108 | 12.78 | 4000 | 0.2223 |
66
+ | 0.1017 | 14.06 | 4400 | 0.2331 |
67
+ | 0.094 | 15.34 | 4800 | 0.2257 |
68
+ | 0.0896 | 16.61 | 5200 | 0.2229 |
69
+ | 0.0825 | 17.89 | 5600 | 0.2229 |
70
+ | 0.0777 | 19.17 | 6000 | 0.2417 |
71
+ | 0.0719 | 20.45 | 6400 | 0.2433 |
72
+ | 0.0659 | 21.73 | 6800 | 0.2447 |
73
+ | 0.0651 | 23.0 | 7200 | 0.2446 |
74
+ | 0.0587 | 24.28 | 7600 | 0.2542 |
75
+ | 0.056 | 25.56 | 8000 | 0.2587 |
76
+ | 0.0521 | 26.84 | 8400 | 0.2640 |
77
+ | 0.0494 | 28.12 | 8800 | 0.2753 |
78
+ | 0.0465 | 29.39 | 9200 | 0.2722 |
79
+
80
+
81
+ ### Framework versions
82
+
83
+ - Transformers 4.17.0
84
+ - Pytorch 1.10.2+cu102
85
+ - Datasets 1.18.4
86
+ - Tokenizers 0.11.6