File size: 3,953 Bytes
f4e4d72
 
77c3bed
 
f4e4d72
 
 
 
77c3bed
f4e4d72
 
 
 
 
 
 
 
 
 
 
77c3bed
f4e4d72
 
 
 
 
77c3bed
f4e4d72
 
77c3bed
f4e4d72
77c3bed
 
 
 
f4e4d72
 
 
 
 
 
 
 
77c3bed
f4e4d72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77c3bed
 
 
f4e4d72
 
 
 
 
77c3bed
f4e4d72
 
 
 
 
 
 
 
 
 
77c3bed
f4e4d72
77c3bed
 
 
f4e4d72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77c3bed
 
f4e4d72
 
 
77c3bed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4e4d72
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
---
library_name: transformers
license: llama3.2
base_model: NousResearch/Llama-3.2-1B
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 0c2649cc-2fe7-4e88-b672-6da1fee4001f
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>

axolotl version: `0.4.1`
```yaml
base_model: NousResearch/Llama-3.2-1B
batch_size: 32
bf16: true
chat_template: tokenizer_default_fallback_alpaca
datasets:
- data_files:
  - f51beb4c568b9128_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/f51beb4c568b9128_train_data.json
  type:
    field_input: keywords
    field_instruction: idea
    field_output: full_response
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
eval_steps: 20
flash_attention: true
gpu_memory_limit: 80GiB
gradient_checkpointing: true
group_by_length: true
hub_model_id: willtensora/0c2649cc-2fe7-4e88-b672-6da1fee4001f
hub_strategy: checkpoint
learning_rate: 0.0002
logging_steps: 10
lr_scheduler: cosine
max_steps: 2500
micro_batch_size: 4
model_type: AutoModelForCausalLM
optimizer: adamw_bnb_8bit
output_dir: /workspace/axolotl/configs
pad_to_sequence_len: true
resize_token_embeddings_to_32x: false
sample_packing: false
save_steps: 40
save_total_limit: 1
sequence_len: 2048
special_tokens:
  pad_token: <|end_of_text|>
tokenizer_type: PreTrainedTokenizerFast
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.1
wandb_entity: ''
wandb_mode: online
wandb_name: NousResearch/Llama-3.2-1B-/workspace/input_data/f51beb4c568b9128_train_data.json
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: default
warmup_ratio: 0.05
xformers_attention: true

```

</details><br>

# 0c2649cc-2fe7-4e88-b672-6da1fee4001f

This model is a fine-tuned version of [NousResearch/Llama-3.2-1B](https://huggingface.co/NousResearch/Llama-3.2-1B) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0849

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 32
- total_eval_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 12
- training_steps: 258

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| No log        | 0.0005 | 1    | 0.2074          |
| 0.5472        | 0.0097 | 20   | 0.1746          |
| 0.3199        | 0.0194 | 40   | 0.2036          |
| 0.2013        | 0.0291 | 60   | 0.1772          |
| 0.0903        | 0.0388 | 80   | 0.1702          |
| 0.0875        | 0.0485 | 100  | 0.2040          |
| 0.1425        | 0.0582 | 120  | 0.1392          |
| 0.1982        | 0.0679 | 140  | 0.1194          |
| 0.1372        | 0.0776 | 160  | 0.1014          |
| 0.0278        | 0.0873 | 180  | 0.0952          |
| 0.0248        | 0.0970 | 200  | 0.0893          |
| 0.1051        | 0.1067 | 220  | 0.0875          |
| 0.0649        | 0.1164 | 240  | 0.0849          |


### Framework versions

- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1