File size: 3,953 Bytes
f4e4d72 77c3bed f4e4d72 77c3bed f4e4d72 77c3bed f4e4d72 77c3bed f4e4d72 77c3bed f4e4d72 77c3bed f4e4d72 77c3bed f4e4d72 77c3bed f4e4d72 77c3bed f4e4d72 77c3bed f4e4d72 77c3bed f4e4d72 77c3bed f4e4d72 77c3bed f4e4d72 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 |
---
library_name: transformers
license: llama3.2
base_model: NousResearch/Llama-3.2-1B
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 0c2649cc-2fe7-4e88-b672-6da1fee4001f
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
base_model: NousResearch/Llama-3.2-1B
batch_size: 32
bf16: true
chat_template: tokenizer_default_fallback_alpaca
datasets:
- data_files:
- f51beb4c568b9128_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/f51beb4c568b9128_train_data.json
type:
field_input: keywords
field_instruction: idea
field_output: full_response
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
eval_steps: 20
flash_attention: true
gpu_memory_limit: 80GiB
gradient_checkpointing: true
group_by_length: true
hub_model_id: willtensora/0c2649cc-2fe7-4e88-b672-6da1fee4001f
hub_strategy: checkpoint
learning_rate: 0.0002
logging_steps: 10
lr_scheduler: cosine
max_steps: 2500
micro_batch_size: 4
model_type: AutoModelForCausalLM
optimizer: adamw_bnb_8bit
output_dir: /workspace/axolotl/configs
pad_to_sequence_len: true
resize_token_embeddings_to_32x: false
sample_packing: false
save_steps: 40
save_total_limit: 1
sequence_len: 2048
special_tokens:
pad_token: <|end_of_text|>
tokenizer_type: PreTrainedTokenizerFast
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.1
wandb_entity: ''
wandb_mode: online
wandb_name: NousResearch/Llama-3.2-1B-/workspace/input_data/f51beb4c568b9128_train_data.json
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: default
warmup_ratio: 0.05
xformers_attention: true
```
</details><br>
# 0c2649cc-2fe7-4e88-b672-6da1fee4001f
This model is a fine-tuned version of [NousResearch/Llama-3.2-1B](https://huggingface.co/NousResearch/Llama-3.2-1B) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0849
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 32
- total_eval_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 12
- training_steps: 258
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| No log | 0.0005 | 1 | 0.2074 |
| 0.5472 | 0.0097 | 20 | 0.1746 |
| 0.3199 | 0.0194 | 40 | 0.2036 |
| 0.2013 | 0.0291 | 60 | 0.1772 |
| 0.0903 | 0.0388 | 80 | 0.1702 |
| 0.0875 | 0.0485 | 100 | 0.2040 |
| 0.1425 | 0.0582 | 120 | 0.1392 |
| 0.1982 | 0.0679 | 140 | 0.1194 |
| 0.1372 | 0.0776 | 160 | 0.1014 |
| 0.0278 | 0.0873 | 180 | 0.0952 |
| 0.0248 | 0.0970 | 200 | 0.0893 |
| 0.1051 | 0.1067 | 220 | 0.0875 |
| 0.0649 | 0.1164 | 240 | 0.0849 |
### Framework versions
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
|