--- library_name: transformers license: llama3.2 base_model: NousResearch/Llama-3.2-1B tags: - axolotl - generated_from_trainer model-index: - name: 0c2649cc-2fe7-4e88-b672-6da1fee4001f results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml base_model: NousResearch/Llama-3.2-1B batch_size: 32 bf16: true chat_template: tokenizer_default_fallback_alpaca datasets: - data_files: - f51beb4c568b9128_train_data.json ds_type: json format: custom path: /workspace/input_data/f51beb4c568b9128_train_data.json type: field_input: keywords field_instruction: idea field_output: full_response format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' eval_steps: 20 flash_attention: true gpu_memory_limit: 80GiB gradient_checkpointing: true group_by_length: true hub_model_id: willtensora/0c2649cc-2fe7-4e88-b672-6da1fee4001f hub_strategy: checkpoint learning_rate: 0.0002 logging_steps: 10 lr_scheduler: cosine max_steps: 2500 micro_batch_size: 4 model_type: AutoModelForCausalLM optimizer: adamw_bnb_8bit output_dir: /workspace/axolotl/configs pad_to_sequence_len: true resize_token_embeddings_to_32x: false sample_packing: false save_steps: 40 save_total_limit: 1 sequence_len: 2048 special_tokens: pad_token: <|end_of_text|> tokenizer_type: PreTrainedTokenizerFast train_on_inputs: false trust_remote_code: true val_set_size: 0.1 wandb_entity: '' wandb_mode: online wandb_name: NousResearch/Llama-3.2-1B-/workspace/input_data/f51beb4c568b9128_train_data.json wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: default warmup_ratio: 0.05 xformers_attention: true ```

# 0c2649cc-2fe7-4e88-b672-6da1fee4001f This model is a fine-tuned version of [NousResearch/Llama-3.2-1B](https://huggingface.co/NousResearch/Llama-3.2-1B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0849 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 32 - total_eval_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 12 - training_steps: 258 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0005 | 1 | 0.2074 | | 0.5472 | 0.0097 | 20 | 0.1746 | | 0.3199 | 0.0194 | 40 | 0.2036 | | 0.2013 | 0.0291 | 60 | 0.1772 | | 0.0903 | 0.0388 | 80 | 0.1702 | | 0.0875 | 0.0485 | 100 | 0.2040 | | 0.1425 | 0.0582 | 120 | 0.1392 | | 0.1982 | 0.0679 | 140 | 0.1194 | | 0.1372 | 0.0776 | 160 | 0.1014 | | 0.0278 | 0.0873 | 180 | 0.0952 | | 0.0248 | 0.0970 | 200 | 0.0893 | | 0.1051 | 0.1067 | 220 | 0.0875 | | 0.0649 | 0.1164 | 240 | 0.0849 | ### Framework versions - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1