File size: 2,725 Bytes
4598203 9691749 4598203 9691749 4598203 9691749 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 |
---
library_name: peft
tags:
- generated_from_trainer
- axolotl
base_model: winglian/meta-llama3-chatml
model-index:
- name: llama-3-orpo-qlora
results: []
datasets:
- mlabonne/orpo-dpo-mix-40k
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
WandB: https://wandb.ai/oaaic/orpo-llama-3/runs/gc2d3cxp
Benchmarks: TBD
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.0`
```yaml
base_model: winglian/meta-llama3-chatml
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer
load_in_4bit: true
rl: orpo
orpo_alpha: 0.1
chat_template: chatml
datasets:
- path: mlabonne/orpo-dpo-mix-40k
type: chat_template.argilla
chat_template: chatml
dataset_prepared_path: last_run_prepared
val_set_size: 0.01
output_dir: ./llama-3-orpo-qlora
sequence_len: 2048
sample_packing: false
pad_to_sequence_len: false
adapter: qlora
lora_r: 16
lora_alpha: 32
lora_dropout: 0.05
lora_target_modules:
- q_proj
- k_proj
- v_proj
- o_proj
- gate_proj
- up_proj
- down_proj
wandb_project: orpo-llama-3
wandb_entity: oaaic
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 8
num_epochs: 1
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 1.4e-5
max_grad_norm: 1.0
train_on_inputs: false
group_by_length: false
bf16: true
tf32: true
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: true
logging_steps: 1
flash_attention: true
warmup_steps: 10
evals_per_epoch: 5
saves_per_epoch: 1
weight_decay: 0.0
special_tokens:
pad_token: <|end_of_text|>
```
</details><br>
# llama-3-orpo-qlora
This model was trained from scratch on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1.4e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 1241
### Training results
### Framework versions
- PEFT 0.10.0
- Transformers 4.40.0.dev0
- Pytorch 2.1.2+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0 |