winninghealth commited on
Commit
b633a27
1 Parent(s): ca6104e

Upload 8 files

Browse files
cache_autogptq_cuda_256.cpp ADDED
@@ -0,0 +1,198 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #include <torch/all.h>
2
+ #include <torch/python.h>
3
+ #include <c10/cuda/CUDAGuard.h>
4
+
5
+ // adapted from https://github.com/PanQiWei/AutoGPTQ/blob/main/autogptq_extension/cuda_256/autogptq_cuda_256.cpp
6
+ void vecquant8matmul_cuda(
7
+ torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
8
+ torch::Tensor scales, torch::Tensor zeros,
9
+ torch::Tensor g_idx
10
+ );
11
+
12
+ void vecquant8matmul(
13
+ torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
14
+ torch::Tensor scales, torch::Tensor zeros,
15
+ torch::Tensor g_idx
16
+ ) {
17
+ const at::cuda::OptionalCUDAGuard device_guard(device_of(vec));
18
+ vecquant8matmul_cuda(vec, mat, mul, scales, zeros, g_idx);
19
+ }
20
+
21
+ void vecquant8matmul_batched_cuda(
22
+ torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
23
+ torch::Tensor scales, torch::Tensor zeros
24
+ );
25
+
26
+ void vecquant8matmul_batched(
27
+ torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
28
+ torch::Tensor scales, torch::Tensor zeros
29
+ ) {
30
+ const at::cuda::OptionalCUDAGuard device_guard(device_of(vec));
31
+ vecquant8matmul_batched_cuda(vec, mat, mul, scales, zeros);
32
+ }
33
+
34
+ void vecquant8matmul_batched_column_compression_cuda(
35
+ torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
36
+ torch::Tensor scales, torch::Tensor zeros
37
+ );
38
+
39
+ void vecquant8matmul_batched_column_compression(
40
+ torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
41
+ torch::Tensor scales, torch::Tensor zeros
42
+ ) {
43
+ const at::cuda::OptionalCUDAGuard device_guard(device_of(vec));
44
+ vecquant8matmul_batched_column_compression_cuda(vec, mat, mul, scales, zeros);
45
+ }
46
+
47
+ void vecquant4matmul_batched_cuda(
48
+ torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
49
+ torch::Tensor scales, torch::Tensor zeros
50
+ );
51
+
52
+ void vecquant4matmul_batched(
53
+ torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
54
+ torch::Tensor scales, torch::Tensor zeros
55
+ ) {
56
+ const at::cuda::OptionalCUDAGuard device_guard(device_of(vec));
57
+ vecquant4matmul_batched_cuda(vec, mat, mul, scales, zeros);
58
+ }
59
+
60
+ void vecquant4matmul_batched_column_compression_cuda(
61
+ torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
62
+ torch::Tensor scales, torch::Tensor zeros
63
+ );
64
+
65
+ void vecquant4matmul_batched_column_compression(
66
+ torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
67
+ torch::Tensor scales, torch::Tensor zeros
68
+ ) {
69
+ const at::cuda::OptionalCUDAGuard device_guard(device_of(vec));
70
+ vecquant4matmul_batched_column_compression_cuda(vec, mat, mul, scales, zeros);
71
+ }
72
+
73
+ void vecquant8matmul_batched_old_cuda(
74
+ torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
75
+ torch::Tensor scales, torch::Tensor zeros
76
+ );
77
+
78
+ void vecquant8matmul_batched_old(
79
+ torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
80
+ torch::Tensor scales, torch::Tensor zeros
81
+ ) {
82
+ const at::cuda::OptionalCUDAGuard device_guard(device_of(vec));
83
+ vecquant8matmul_batched_old_cuda(vec, mat, mul, scales, zeros);
84
+ }
85
+
86
+
87
+ void vecquant4matmul_batched_old_cuda(
88
+ torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
89
+ torch::Tensor scales, torch::Tensor zeros
90
+ );
91
+
92
+ void vecquant4matmul_batched_old(
93
+ torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
94
+ torch::Tensor scales, torch::Tensor zeros
95
+ ) {
96
+ const at::cuda::OptionalCUDAGuard device_guard(device_of(vec));
97
+ vecquant4matmul_batched_old_cuda(vec, mat, mul, scales, zeros);
98
+ }
99
+
100
+ void vecquant8matmul_batched_column_compression_old_cuda(
101
+ torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
102
+ torch::Tensor scales, torch::Tensor zeros
103
+ );
104
+
105
+ void vecquant8matmul_batched_column_compression_old(
106
+ torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
107
+ torch::Tensor scales, torch::Tensor zeros
108
+ ) {
109
+ const at::cuda::OptionalCUDAGuard device_guard(device_of(vec));
110
+ vecquant8matmul_batched_column_compression_old_cuda(vec, mat, mul, scales, zeros);
111
+ }
112
+
113
+ void vecquant4matmul_batched_column_compression_old_cuda(
114
+ torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
115
+ torch::Tensor scales, torch::Tensor zeros
116
+ );
117
+
118
+ void vecquant4matmul_batched_column_compression_old(
119
+ torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
120
+ torch::Tensor scales, torch::Tensor zeros
121
+ ) {
122
+ const at::cuda::OptionalCUDAGuard device_guard(device_of(vec));
123
+ vecquant4matmul_batched_column_compression_old_cuda(vec, mat, mul, scales, zeros);
124
+ }
125
+
126
+
127
+
128
+ void vecquant8matmul_batched_faster_cuda(
129
+ torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
130
+ torch::Tensor scales, torch::Tensor zeros
131
+ );
132
+
133
+ void vecquant8matmul_batched_faster(
134
+ torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
135
+ torch::Tensor scales, torch::Tensor zeros
136
+ ) {
137
+ const at::cuda::OptionalCUDAGuard device_guard(device_of(vec));
138
+ vecquant8matmul_batched_faster_cuda(vec, mat, mul, scales, zeros);
139
+ }
140
+
141
+
142
+ void vecquant8matmul_batched_faster_old_cuda(
143
+ torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
144
+ torch::Tensor scales, torch::Tensor zeros
145
+ );
146
+
147
+ void vecquant8matmul_batched_faster_old(
148
+ torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
149
+ torch::Tensor scales, torch::Tensor zeros
150
+ ) {
151
+ const at::cuda::OptionalCUDAGuard device_guard(device_of(vec));
152
+ vecquant8matmul_batched_faster_old_cuda(vec, mat, mul, scales, zeros);
153
+ }
154
+
155
+ void vecquant8matmul_batched_column_compression_faster_cuda(
156
+ torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
157
+ torch::Tensor scales, torch::Tensor zeros
158
+ );
159
+
160
+ void vecquant8matmul_batched_column_compression_faster(
161
+ torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
162
+ torch::Tensor scales, torch::Tensor zeros
163
+ ) {
164
+ const at::cuda::OptionalCUDAGuard device_guard(device_of(vec));
165
+ vecquant8matmul_batched_column_compression_faster_cuda(vec, mat, mul, scales, zeros);
166
+ }
167
+
168
+
169
+ void vecquant8matmul_batched_column_compression_faster_old_cuda(
170
+ torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
171
+ torch::Tensor scales, torch::Tensor zeros
172
+ );
173
+
174
+ void vecquant8matmul_batched_column_compression_faster_old(
175
+ torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
176
+ torch::Tensor scales, torch::Tensor zeros
177
+ ) {
178
+ const at::cuda::OptionalCUDAGuard device_guard(device_of(vec));
179
+ vecquant8matmul_batched_column_compression_faster_old_cuda(vec, mat, mul, scales, zeros);
180
+ }
181
+
182
+
183
+
184
+ PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
185
+ m.def("vecquant8matmul", &vecquant8matmul, "Vector 8-bit Quantized Matrix Multiplication (CUDA) (desc_act)");
186
+ m.def("vecquant8matmul_batched", &vecquant8matmul_batched, "Vector 8-bit Batched Quantized Matrix Multiplication (CUDA) (desc_act)");
187
+ m.def("vecquant8matmul_batched_old", &vecquant8matmul_batched_old, "Vector 8-bit old Batched Quantized Matrix Multiplication (CUDA) (desc_act)");
188
+ m.def("vecquant8matmul_batched_faster", &vecquant8matmul_batched_faster, "Vector 8-bit old Batched Quantized Matrix Multiplication (CUDA) (desc_act)");
189
+ m.def("vecquant8matmul_batched_faster_old", &vecquant8matmul_batched_faster_old, "Vector 8-bit old Batched Quantized Matrix Multiplication (CUDA) (desc_act)");
190
+ m.def("vecquant4matmul_batched_old", &vecquant4matmul_batched_old, "Vector 4-bit old Batched Quantized Matrix Multiplication (CUDA) (desc_act)");
191
+ m.def("vecquant8matmul_batched_column_compression", &vecquant8matmul_batched_column_compression, "Vector 8-bit Batched Quantized Matrix Multiplication (CUDA) with weight's column compressed (desc_act)");
192
+ m.def("vecquant8matmul_batched_column_compression_old", &vecquant8matmul_batched_column_compression_old, "Vector old 8-bit Batched Quantized Matrix Multiplication (CUDA) with weight's column compressed (desc_act)");
193
+ m.def("vecquant8matmul_batched_column_compression_faster", &vecquant8matmul_batched_column_compression_faster, "Vector old 8-bit Batched Quantized Matrix Multiplication (CUDA) with weight's column compressed (desc_act)");
194
+ m.def("vecquant8matmul_batched_column_compression_faster_old", &vecquant8matmul_batched_column_compression_faster_old, "Vector old 8-bit Batched Quantized Matrix Multiplication (CUDA) with weight's column compressed (desc_act)");
195
+ m.def("vecquant4matmul_batched_column_compression_old", &vecquant4matmul_batched_column_compression_old, "Vector old 4-bit Batched Quantized Matrix Multiplication (CUDA) with weight's column compressed (desc_act)");
196
+ m.def("vecquant4matmul_batched", &vecquant4matmul_batched, "Vector 4-bit Batched Quantized Matrix Multiplication (CUDA) (desc_act)");
197
+ m.def("vecquant4matmul_batched_column_compression", &vecquant4matmul_batched_column_compression, "Vector 4-bit Batched Quantized Matrix Multiplication (CUDA) with weight's column compressed (desc_act)");
198
+ }
cache_autogptq_cuda_kernel_256.cu ADDED
@@ -0,0 +1,1708 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #define _CRT_SECURE_NO_WARNINGS
2
+ #include <torch/all.h>
3
+ #include <torch/python.h>
4
+ #include <cuda.h>
5
+ #include <cuda_runtime.h>
6
+ #include <cuda_fp16.h>
7
+ #include <stdint.h>
8
+
9
+ #if (defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 700) || defined(USE_ROCM)
10
+ // adapted from https://github.com/PanQiWei/AutoGPTQ/blob/main/autogptq_extension/cuda_256/autogptq_cuda_kernel_256.cu
11
+ __device__ __forceinline__ void atomicAdd(c10::Half* address, c10::Half val) {
12
+ unsigned int *address_as_ui = reinterpret_cast<unsigned int *>(reinterpret_cast<char *>(address) - (reinterpret_cast<size_t>(address) & 2));
13
+ unsigned int old = *address_as_ui;
14
+ unsigned int assumed;
15
+
16
+ do {
17
+ assumed = old;
18
+ unsigned short hsum = reinterpret_cast<size_t>(address) & 2 ? (old >> 16) : (old & 0xffff);
19
+ hsum += val;
20
+ old = reinterpret_cast<size_t>(address) & 2
21
+ ? (old & 0xffff) | (hsum << 16)
22
+ : (old & 0xffff0000) | hsum;
23
+ old = atomicCAS(address_as_ui, assumed, old);
24
+
25
+ // Note: uses integer comparison to avoid hang in case of NaN (since NaN != NaN)
26
+ } while (assumed != old);
27
+ }
28
+ __device__ __forceinline__ void atomicAdd(__half* address, c10::Half val) {
29
+ unsigned int * address_as_ui = (unsigned int *) ((char *)address - ((size_t)address & 2));
30
+ unsigned int old = *address_as_ui;
31
+ unsigned int assumed;
32
+
33
+ do {
34
+ assumed = old;
35
+ __half_raw hsum;
36
+ hsum.x = (size_t)address & 2 ? (old >> 16) : (old & 0xffff);
37
+ half tmpres = __hadd(hsum, val);
38
+ hsum = __half_raw(tmpres);
39
+ old = (size_t)address & 2 ? (old & 0xffff) | (hsum.x << 16) : (old & 0xffff0000) | hsum.x;
40
+ old = atomicCAS(address_as_ui, assumed, old);
41
+ } while (assumed != old);
42
+ }
43
+ #endif
44
+
45
+ template <typename scalar_t>
46
+ __global__ void VecQuant8MatMulKernel(
47
+ const scalar_t* __restrict__ vec,
48
+ const int* __restrict__ mat,
49
+ scalar_t* __restrict__ mul,
50
+ const scalar_t* __restrict__ scales,
51
+ const int* __restrict__ zeros,
52
+ const int* __restrict__ g_idx,
53
+ int batch,
54
+ int vec_height,
55
+ int height,
56
+ int width,
57
+ int zero_width
58
+ );
59
+
60
+ template <typename scalar_t>
61
+ __global__ void VecQuant8BatchMatMulColumnCompressionKernel(
62
+ const scalar_t* __restrict__ vec,
63
+ const int* __restrict__ mat,
64
+ scalar_t* __restrict__ mul,
65
+ const scalar_t* __restrict__ scales,
66
+ const int* __restrict__ zeros,
67
+ int batch,
68
+ int heads,
69
+ int vec_row,
70
+ int height,
71
+ int width
72
+ );
73
+
74
+ template <typename scalar_t>
75
+ __global__ void VecQuant4BatchMatMulColumnCompressionKernel(
76
+ const scalar_t* __restrict__ vec,
77
+ const int* __restrict__ mat,
78
+ scalar_t* __restrict__ mul,
79
+ const scalar_t* __restrict__ scales,
80
+ const int* __restrict__ zeros,
81
+ int batch,
82
+ int heads,
83
+ int vec_row,
84
+ int height,
85
+ int width
86
+ );
87
+
88
+ template <typename scalar_t>
89
+ __global__ void VecQuant8BatchMatMulKernel(
90
+ const scalar_t* __restrict__ vec,
91
+ const int* __restrict__ mat,
92
+ scalar_t* __restrict__ mul,
93
+ const scalar_t* __restrict__ scales,
94
+ const int* __restrict__ zeros,
95
+ int batch,
96
+ int heads,
97
+ int vec_row,
98
+ int vec_height,
99
+ int height,
100
+ int width,
101
+ int zero_width
102
+ );
103
+
104
+ template <typename scalar_t>
105
+ __global__ void VecQuant4BatchMatMulKernel(
106
+ const scalar_t* __restrict__ vec,
107
+ const int* __restrict__ mat,
108
+ scalar_t* __restrict__ mul,
109
+ const scalar_t* __restrict__ scales,
110
+ const int* __restrict__ zeros,
111
+ int batch,
112
+ int heads,
113
+ int vec_row,
114
+ int vec_height,
115
+ int height,
116
+ int width,
117
+ int zero_width
118
+ );
119
+
120
+
121
+
122
+ template <typename scalar_t>
123
+ __global__ void VecQuant8BatchMatMulKernel_old(
124
+ const scalar_t* __restrict__ vec,
125
+ const uint8_t* __restrict__ mat,
126
+ scalar_t* __restrict__ mul,
127
+ const scalar_t* __restrict__ scales,
128
+ const scalar_t* __restrict__ zeros,
129
+ int batch,
130
+ int heads,
131
+ int vec_row,
132
+ int vec_height,
133
+ int height,
134
+ int width,
135
+ int zero_width
136
+ );
137
+
138
+ __global__ void VecQuant8BatchMatMulKernel_faster(
139
+ const half* __restrict__ vec,
140
+ const uint8_t* __restrict__ mat,
141
+ half* __restrict__ mul,
142
+ const half* __restrict__ scales,
143
+ const half* __restrict__ zeros,
144
+ int batch,
145
+ int heads,
146
+ int vec_row,
147
+ int vec_height,
148
+ int height,
149
+ int width,
150
+ int zero_width
151
+ );
152
+
153
+
154
+
155
+ __global__ void VecQuant8BatchMatMulKernel_faster_old(
156
+ const half* __restrict__ vec,
157
+ const uint8_t* __restrict__ mat,
158
+ half* __restrict__ mul,
159
+ const half* __restrict__ scales,
160
+ const half* __restrict__ zeros,
161
+ int batch,
162
+ int heads,
163
+ int vec_row,
164
+ int vec_height,
165
+ int height,
166
+ int width
167
+ );
168
+
169
+
170
+ template <typename scalar_t>
171
+ __global__ void VecQuant4BatchMatMulKernel_old(
172
+ const scalar_t* __restrict__ vec,
173
+ const uint8_t* __restrict__ mat,
174
+ scalar_t* __restrict__ mul,
175
+ const scalar_t* __restrict__ scales,
176
+ const scalar_t* __restrict__ zeros,
177
+ int batch,
178
+ int heads,
179
+ int vec_row,
180
+ int vec_height,
181
+ int height,
182
+ int width,
183
+ int zero_width
184
+ );
185
+
186
+
187
+ template <typename scalar_t>
188
+ __global__ void VecQuant8BatchMatMulColumnCompressionKernel_old(
189
+ const scalar_t* __restrict__ vec,
190
+ const uint8_t* __restrict__ mat,
191
+ scalar_t* __restrict__ mul,
192
+ const scalar_t* __restrict__ scales,
193
+ const scalar_t* __restrict__ zeros,
194
+ int batch,
195
+ int heads,
196
+ int vec_row,
197
+ int height,
198
+ int width
199
+ );
200
+
201
+ __global__ void VecQuant8BatchMatMulColumnCompressionKernel_faster(
202
+ const half* __restrict__ vec,
203
+ const uint8_t* __restrict__ mat,
204
+ half* __restrict__ mul,
205
+ const half* __restrict__ scales,
206
+ const half* __restrict__ zeros,
207
+ int batch,
208
+ int heads,
209
+ int vec_row,
210
+ int height,
211
+ int width
212
+ );
213
+
214
+ __global__ void VecQuant8BatchMatMulColumnCompressionKernel_faster_old(
215
+ const half* __restrict__ vec,
216
+ const uint8_t* __restrict__ mat,
217
+ half* __restrict__ mul,
218
+ const half* __restrict__ scales,
219
+ const half* __restrict__ zeros,
220
+ int batch,
221
+ int heads,
222
+ int vec_row,
223
+ int height,
224
+ int width
225
+ );
226
+
227
+
228
+ template <typename scalar_t>
229
+ __global__ void VecQuant4BatchMatMulColumnCompressionKernel_old(
230
+ const scalar_t* __restrict__ vec,
231
+ const uint8_t* __restrict__ mat,
232
+ scalar_t* __restrict__ mul,
233
+ const scalar_t* __restrict__ scales,
234
+ const scalar_t* __restrict__ zeros,
235
+ int batch,
236
+ int heads,
237
+ int vec_row,
238
+ int height,
239
+ int width
240
+ );
241
+
242
+
243
+ __global__ void VecQuant8BatchMatMulKernel_faster(
244
+ const half* __restrict__ vec,
245
+ const uint8_t* __restrict__ mat,
246
+ half* __restrict__ mul,
247
+ const half* __restrict__ scales,
248
+ const half* __restrict__ zeros,
249
+ int batch,
250
+ int heads,
251
+ int vec_row,
252
+ int vec_height,
253
+ int height,
254
+ int width
255
+ );
256
+
257
+
258
+ __global__ void VecQuant8BatchMatMulColumnCompressionKernel_faster(
259
+ const half* __restrict__ vec,
260
+ const uint8_t* __restrict__ mat,
261
+ half* __restrict__ mul,
262
+ const half* __restrict__ scales,
263
+ const half* __restrict__ zeros,
264
+ int batch,
265
+ int heads,
266
+ int vec_row,
267
+ int height,
268
+ int width
269
+ );
270
+
271
+ const int BLOCKWIDTH = 128;
272
+ const int BLOCKHEIGHT8 = 32;
273
+ const int BLOCKHEIGHT4 = 16;
274
+ const int BLOCKHEIGHT_OLD4 = 128;
275
+ //const int BLOCKHEIGHT_OLD8 = 128;
276
+
277
+ __device__ inline unsigned int as_unsigned(int i) {
278
+ return *reinterpret_cast<unsigned int*>(&i);
279
+ }
280
+
281
+ __device__ inline int as_int(int i) {
282
+ return *reinterpret_cast<int*>(&i);
283
+ }
284
+
285
+ void vecquant8matmul_batched_column_compression_cuda(
286
+ torch::Tensor vec,
287
+ torch::Tensor mat,
288
+ torch::Tensor mul,
289
+ torch::Tensor scales,
290
+ torch::Tensor zeros
291
+ ) {
292
+ int batch = vec.size(0);
293
+ int heads = vec.size(1);
294
+ int vec_row = vec.size(2);
295
+ int height = vec.size(3);
296
+ int width = mat.size(3) * 4;
297
+
298
+ dim3 blocks(
299
+ (height + BLOCKWIDTH - 1) / BLOCKWIDTH,
300
+ (width + BLOCKWIDTH - 1) / BLOCKWIDTH
301
+ );
302
+ dim3 threads(BLOCKWIDTH);
303
+
304
+ AT_DISPATCH_FLOATING_TYPES(
305
+ vec.type(), "vecquant8matmul_batched_cuda", ([&] {
306
+ VecQuant8BatchMatMulColumnCompressionKernel<<<blocks, threads>>>(
307
+ vec.data<scalar_t>(), mat.data<int>(), mul.data<scalar_t>(),
308
+ scales.data<scalar_t>(), zeros.data<int>(),
309
+ batch, heads, vec_row, height, width
310
+ );
311
+ })
312
+ );
313
+
314
+ }
315
+
316
+ template <typename scalar_t>
317
+ __global__ void VecQuant8BatchMatMulColumnCompressionKernel(
318
+ const scalar_t* __restrict__ vec,
319
+ const int* __restrict__ mat,
320
+ scalar_t* __restrict__ mul,
321
+ const scalar_t* __restrict__ scales,
322
+ const int* __restrict__ zeros,
323
+ int batch,
324
+ int heads,
325
+ int vec_row,
326
+ int height,
327
+ int width
328
+ ) {
329
+ int weight_total = batch * heads * height * width / 4;
330
+ int input_total = batch * heads * vec_row * height;
331
+ int out_total = batch * heads * vec_row * width;
332
+ int tid = threadIdx.x;
333
+ // h is index of height with step being BLOCKWIDTH
334
+ int h = BLOCKWIDTH * blockIdx.x;
335
+ // w is index of width with step being 1
336
+ int w = BLOCKWIDTH * blockIdx.y + tid;
337
+ if (w >= width && tid >= height) {
338
+ return;
339
+ }
340
+
341
+ __shared__ scalar_t blockvec[BLOCKWIDTH];
342
+ int k;
343
+ scalar_t w_tmp;
344
+
345
+ float weight[BLOCKWIDTH];
346
+
347
+ for (int b = 0; b < batch; ++b){
348
+ for (int head = 0; head < heads; ++head){
349
+ int batch_shift = b * heads + head;
350
+ for (k = 0; k < BLOCKWIDTH && h + k < height; ++k){
351
+ int i_w = (w / 4);
352
+ int w_bit = (w % 4) * 8;
353
+
354
+ int w_index = (batch_shift * height + h + k) * width / 4 + i_w;
355
+ if (w_index >= weight_total || w >= width) {
356
+ weight[k] = 0;
357
+ } else {
358
+ scalar_t scale = scales[batch_shift * height + h + k];
359
+ scalar_t zero = zeros[batch_shift * height + h + k];
360
+ w_tmp = ((as_unsigned(mat[w_index]) >> w_bit) & 0xFF);
361
+ weight[k] = scale * (w_tmp - zero);
362
+ }
363
+ }
364
+
365
+ scalar_t res;
366
+ for (int vr = 0; vr < vec_row; ++vr){
367
+ res = 0;
368
+ int vec_index = (batch_shift * vec_row + vr) * height + blockIdx.x * BLOCKWIDTH + tid;
369
+ if (vec_index < input_total) {
370
+ blockvec[tid] = vec[vec_index];
371
+ } else {
372
+ blockvec[tid] = 0;
373
+ }
374
+
375
+ __syncthreads();
376
+ for (k = 0; k < BLOCKWIDTH && h + k < height; ++k){
377
+ // res is the dot product of BLOCKWIDTH elements (part of width)
378
+ res += weight[k] * blockvec[k];
379
+ }
380
+ // add res to the final result, final matrix shape: (batch, vec_row, width)
381
+ int out_index = (batch_shift * vec_row + vr) * width + w;
382
+ if (out_index < out_total) {
383
+ atomicAdd(&mul[out_index], res);
384
+ }
385
+ __syncthreads();
386
+ }
387
+ }
388
+ }
389
+ }
390
+
391
+ void vecquant8matmul_batched_cuda(
392
+ torch::Tensor vec,
393
+ torch::Tensor mat,
394
+ torch::Tensor mul,
395
+ torch::Tensor scales,
396
+ torch::Tensor zeros
397
+ ) {
398
+ int batch = vec.size(0);
399
+ int heads = vec.size(1);
400
+ int vec_row = vec.size(2);
401
+ int vec_height = vec.size(3);
402
+ int height = mat.size(2);
403
+ int width = mat.size(3);
404
+ int zero_width = zeros.size(2);
405
+
406
+ dim3 blocks(
407
+ (height + BLOCKHEIGHT8 - 1) / BLOCKHEIGHT8,
408
+ (width + BLOCKWIDTH - 1) / BLOCKWIDTH
409
+ );
410
+ dim3 threads(BLOCKWIDTH);
411
+
412
+ AT_DISPATCH_FLOATING_TYPES(
413
+ vec.type(), "vecquant8matmul_batched_cuda", ([&] {
414
+ VecQuant8BatchMatMulKernel<<<blocks, threads>>>(
415
+ vec.data<scalar_t>(), mat.data<int>(), mul.data<scalar_t>(),
416
+ scales.data<scalar_t>(), zeros.data<int>(),
417
+ batch, heads, vec_row, vec_height, height, width, zero_width
418
+ );
419
+ })
420
+ );
421
+
422
+ }
423
+
424
+ template <typename scalar_t>
425
+ __global__ void VecQuant8BatchMatMulKernel(
426
+ const scalar_t* __restrict__ vec,
427
+ const int* __restrict__ mat,
428
+ scalar_t* __restrict__ mul,
429
+ const scalar_t* __restrict__ scales,
430
+ const int* __restrict__ zeros,
431
+ int batch,
432
+ int heads,
433
+ int vec_row,
434
+ int vec_height,
435
+ int height,
436
+ int width,
437
+ int zero_width
438
+ ) {
439
+ int weight_total = batch * heads * height * width;
440
+ int input_total = batch * heads * vec_row * vec_height;
441
+ int out_total = batch * heads * vec_row * width;
442
+ int tid = threadIdx.x;
443
+ // h is index of height with step being BLOCKHEIGHT8
444
+ int h = BLOCKHEIGHT8 * blockIdx.x;
445
+ // w is index of width with step being 1
446
+ int w = BLOCKWIDTH * blockIdx.y + tid;
447
+ if (w >= width && tid >= vec_height) {
448
+ return;
449
+ }
450
+
451
+ __shared__ scalar_t blockvec[BLOCKWIDTH];
452
+ // i is index of mat of block first row
453
+ int i = width * h + w;
454
+ // if (i >= width * height) {
455
+ // return;
456
+ // }
457
+ int k;
458
+ scalar_t w_tmp;
459
+
460
+ int z_w = w / 4;
461
+ int z_mod = (w % 4) * 8;
462
+
463
+ float weight[BLOCKWIDTH];
464
+
465
+ for (int b = 0; b < batch; ++b){
466
+ for (int head = 0; head < heads; ++head){
467
+ int batch_shift = b * heads + head;
468
+ for (k = 0; k < BLOCKWIDTH && h * 4 + k < vec_height; ++k){
469
+ int k_w = (k / 4);
470
+ int k_bit = (k % 4) * 8;
471
+
472
+ int w_index = batch_shift * height * width + i + (k_w * width);
473
+ if (w_index >= weight_total || w >= width) {
474
+ weight[k] = 0;
475
+ } else {
476
+ scalar_t scale = scales[batch_shift * width + w];
477
+ scalar_t zero;
478
+ if (zero_width == width) {
479
+ zero = zeros[batch_shift * width + w];
480
+ } else {
481
+ zero = scalar_t(((as_unsigned(zeros[batch_shift * zero_width + z_w]) >> z_mod) & 0xFF) + 1);
482
+ }
483
+ w_tmp = ((as_unsigned(mat[w_index]) >> k_bit) & 0xFF);
484
+ weight[k] = scale * (w_tmp - zero);
485
+ }
486
+ }
487
+
488
+ scalar_t res;
489
+ for (int vr = 0; vr < vec_row; ++vr){
490
+ res = 0;
491
+ int vec_index = (batch_shift * vec_row + vr) * vec_height + blockIdx.x * BLOCKWIDTH + tid;
492
+ if (vec_index < input_total) {
493
+ blockvec[tid] = vec[vec_index];
494
+ } else {
495
+ blockvec[tid] = 0;
496
+ }
497
+
498
+ __syncthreads();
499
+ for (k = 0; k < BLOCKWIDTH && h * 4 + k < vec_height; ++k){
500
+ // res is the dot product of BLOCKWIDTH elements (part of width)
501
+ res += weight[k] * blockvec[k];
502
+ }
503
+ // add res to the final result, final matrix shape: (batch, vec_row, width)
504
+ int out_index = (batch_shift * vec_row + vr) * width + w;
505
+ if (out_index < out_total) {
506
+ atomicAdd(&mul[out_index], res);
507
+ }
508
+ __syncthreads();
509
+ }
510
+ }
511
+ }
512
+ }
513
+
514
+
515
+ void vecquant8matmul_cuda(
516
+ torch::Tensor vec,
517
+ torch::Tensor mat,
518
+ torch::Tensor mul,
519
+ torch::Tensor scales,
520
+ torch::Tensor zeros,
521
+ torch::Tensor g_idx
522
+ ) {
523
+ int batch = vec.size(0);
524
+ int vec_height = vec.size(1);
525
+ int height = mat.size(0);
526
+ int width = mat.size(1);
527
+ int zero_width = zeros.size(1);
528
+
529
+ dim3 blocks(
530
+ (height + BLOCKHEIGHT8 - 1) / BLOCKHEIGHT8,
531
+ (width + BLOCKWIDTH - 1) / BLOCKWIDTH
532
+ );
533
+ dim3 threads(BLOCKWIDTH);
534
+
535
+ AT_DISPATCH_FLOATING_TYPES(
536
+ vec.type(), "vecquant8matmul_cuda", ([&] {
537
+ VecQuant8MatMulKernel<<<blocks, threads>>>(
538
+ vec.data<scalar_t>(), mat.data<int>(), mul.data<scalar_t>(),
539
+ scales.data<scalar_t>(), zeros.data<int>(), g_idx.data<int>(),
540
+ batch, vec_height, height, width, zero_width
541
+ );
542
+ })
543
+ );
544
+ }
545
+
546
+ template <typename scalar_t>
547
+ __global__ void VecQuant8MatMulKernel(
548
+ const scalar_t* __restrict__ vec,
549
+ const int* __restrict__ mat,
550
+ scalar_t* __restrict__ mul,
551
+ const scalar_t* __restrict__ scales,
552
+ const int* __restrict__ zeros,
553
+ const int* __restrict__ g_idx,
554
+ int batch,
555
+ int vec_height,
556
+ int height,
557
+ int width,
558
+ int zero_width
559
+ ) {
560
+ int h = BLOCKHEIGHT8 * blockIdx.x;
561
+ int w = BLOCKWIDTH * blockIdx.y + threadIdx.x;
562
+
563
+ __shared__ scalar_t blockvec[BLOCKWIDTH];
564
+ int i = width * h + w;
565
+ int g_h = h * 4;
566
+ int k;
567
+ unsigned int g;
568
+ scalar_t w_tmp;
569
+
570
+ int z_w = w / 4;
571
+ int z_mod = (w % 4) * 8;
572
+
573
+ float weight[BLOCKWIDTH];
574
+
575
+ for (k = 0; k < BLOCKWIDTH; ++k){
576
+ int k_w = (k / 4);
577
+ int k_bit = (k % 4) * 8;
578
+
579
+ g = as_int(g_idx[g_h + k]);
580
+ scalar_t scale = scales[g * width + w];
581
+ scalar_t zero = scalar_t(((as_unsigned(zeros[g * zero_width + z_w]) >> z_mod) & 0xFF) + 1);
582
+
583
+ w_tmp = ((as_unsigned(mat[i + (k_w * width)]) >> k_bit) & 0xFF);
584
+
585
+ weight[k] = scale * (w_tmp - zero);
586
+ }
587
+
588
+
589
+ scalar_t res;
590
+ for (int b = 0; b < batch; ++b){
591
+ res = 0;
592
+ blockvec[threadIdx.x] = vec[b * vec_height + blockIdx.x * BLOCKWIDTH + threadIdx.x];
593
+ __syncthreads();
594
+ for (k = 0; k < BLOCKWIDTH; ++k){
595
+ res += weight[k] * blockvec[k];
596
+ }
597
+ atomicAdd(&mul[b * width + w], res);
598
+ __syncthreads();
599
+ }
600
+ }
601
+
602
+
603
+
604
+ void vecquant4matmul_batched_cuda(
605
+ torch::Tensor vec,
606
+ torch::Tensor mat,
607
+ torch::Tensor mul,
608
+ torch::Tensor scales,
609
+ torch::Tensor zeros
610
+ ) {
611
+ int batch = vec.size(0);
612
+ int heads = vec.size(1);
613
+ int vec_row = vec.size(2);
614
+ int vec_height = vec.size(3);
615
+ int height = mat.size(2);
616
+ int width = mat.size(3);
617
+ int zero_width = zeros.size(2);
618
+
619
+ dim3 blocks(
620
+ (height + BLOCKHEIGHT4 - 1) / BLOCKHEIGHT4,
621
+ (width + BLOCKWIDTH - 1) / BLOCKWIDTH
622
+ );
623
+ dim3 threads(BLOCKWIDTH);
624
+
625
+ AT_DISPATCH_FLOATING_TYPES(
626
+ vec.type(), "vecquant4matmul_batched_cuda", ([&] {
627
+ VecQuant4BatchMatMulKernel<<<blocks, threads>>>(
628
+ vec.data<scalar_t>(), mat.data<int>(), mul.data<scalar_t>(),
629
+ scales.data<scalar_t>(), zeros.data<int>(),
630
+ batch, heads, vec_row, vec_height, height, width, zero_width
631
+ );
632
+ })
633
+ );
634
+
635
+ }
636
+
637
+ template <typename scalar_t>
638
+ __global__ void VecQuant4BatchMatMulKernel(
639
+ const scalar_t* __restrict__ vec,
640
+ const int* __restrict__ mat,
641
+ scalar_t* __restrict__ mul,
642
+ const scalar_t* __restrict__ scales,
643
+ const int* __restrict__ zeros,
644
+ int batch,
645
+ int heads,
646
+ int vec_row,
647
+ int vec_height,
648
+ int height,
649
+ int width,
650
+ int zero_width
651
+ ) {
652
+ int weight_total = batch * heads * height * width;
653
+ int input_total = batch * heads * vec_row * vec_height;
654
+ int out_total = batch * heads * vec_row * width;
655
+ int tid = threadIdx.x;
656
+ // h is index of height with step being BLOCKHEIGHT4
657
+ int h = BLOCKHEIGHT4 * blockIdx.x;
658
+ // w is index of width with step being 1
659
+ int w = BLOCKWIDTH * blockIdx.y + tid;
660
+ if (w >= width && tid >= vec_height) {
661
+ return;
662
+ }
663
+
664
+ __shared__ scalar_t blockvec[BLOCKWIDTH];
665
+ // i is index of mat of block first row
666
+ int i = width * h + w;
667
+ int k;
668
+ scalar_t w_tmp;
669
+
670
+ int z_w = w / 8;
671
+ int z_mod = (w % 8) * 4;
672
+
673
+ float weight[BLOCKWIDTH];
674
+
675
+ for (int b = 0; b < batch; ++b){
676
+ for (int head = 0; head < heads; ++head){
677
+ int batch_shift = b * heads + head;
678
+ for (k = 0; k < BLOCKWIDTH && h * 8 + k < vec_height; ++k){
679
+ int k_w = (k / 8);
680
+ int k_bit = (k % 8) * 4;
681
+
682
+ int w_index = batch_shift * height * width + i + (k_w * width);
683
+ if (w_index >= weight_total || w >= width) {
684
+ weight[k] = 0;
685
+ } else {
686
+ scalar_t scale = scales[batch_shift * width + w];
687
+ scalar_t zero;
688
+ if (zero_width == width) {
689
+ zero = zeros[batch_shift * width + w];
690
+ } else {
691
+ zero = scalar_t(((as_unsigned(zeros[batch_shift * zero_width + z_w]) >> z_mod) & 0xF));
692
+ }
693
+ w_tmp = ((as_unsigned(mat[w_index]) >> k_bit) & 0xF);
694
+ weight[k] = scale * (w_tmp - zero);
695
+ }
696
+ }
697
+
698
+ scalar_t res;
699
+ for (int vr = 0; vr < vec_row; ++vr){
700
+ res = 0;
701
+ int vec_index = (batch_shift * vec_row + vr) * vec_height + blockIdx.x * BLOCKWIDTH + tid;
702
+ if (vec_index < input_total) {
703
+ blockvec[tid] = vec[vec_index];
704
+ } else {
705
+ blockvec[tid] = 0;
706
+ }
707
+
708
+ __syncthreads();
709
+ for (k = 0; k < BLOCKWIDTH && h * 8 + k < vec_height; ++k){
710
+ // res is the dot product of BLOCKWIDTH elements (part of width)
711
+ res += weight[k] * blockvec[k];
712
+ }
713
+ // add res to the final result, final matrix shape: (batch, vec_row, width)
714
+ int out_index = (batch_shift * vec_row + vr) * width + w;
715
+ if (out_index < out_total) {
716
+ atomicAdd(&mul[out_index], res);
717
+ }
718
+ __syncthreads();
719
+ }
720
+ }
721
+ }
722
+ }
723
+
724
+
725
+
726
+ void vecquant4matmul_batched_column_compression_cuda(
727
+ torch::Tensor vec,
728
+ torch::Tensor mat,
729
+ torch::Tensor mul,
730
+ torch::Tensor scales,
731
+ torch::Tensor zeros
732
+ ) {
733
+ int batch = vec.size(0);
734
+ int heads = vec.size(1);
735
+ int vec_row = vec.size(2);
736
+ int height = vec.size(3);
737
+ int width = mat.size(3) * 8;
738
+
739
+ dim3 blocks(
740
+ (height + BLOCKWIDTH - 1) / BLOCKWIDTH,
741
+ (width + BLOCKWIDTH - 1) / BLOCKWIDTH
742
+ );
743
+ dim3 threads(BLOCKWIDTH);
744
+
745
+ AT_DISPATCH_FLOATING_TYPES(
746
+ vec.type(), "vecquant4matmul_batched_cuda", ([&] {
747
+ VecQuant4BatchMatMulColumnCompressionKernel<<<blocks, threads>>>(
748
+ vec.data<scalar_t>(), mat.data<int>(), mul.data<scalar_t>(),
749
+ scales.data<scalar_t>(), zeros.data<int>(),
750
+ batch, heads, vec_row, height, width
751
+ );
752
+ })
753
+ );
754
+
755
+ }
756
+
757
+ template <typename scalar_t>
758
+ __global__ void VecQuant4BatchMatMulColumnCompressionKernel(
759
+ const scalar_t* __restrict__ vec,
760
+ const int* __restrict__ mat,
761
+ scalar_t* __restrict__ mul,
762
+ const scalar_t* __restrict__ scales,
763
+ const int* __restrict__ zeros,
764
+ int batch,
765
+ int heads,
766
+ int vec_row,
767
+ int height,
768
+ int width
769
+ ) {
770
+ int weight_total = batch * heads * height * width / 8;
771
+ int input_total = batch * heads * vec_row * height;
772
+ int out_total = batch * heads * vec_row * width;
773
+ int tid = threadIdx.x;
774
+ // h is index of height with step being BLOCKWIDTH
775
+ int h = BLOCKWIDTH * blockIdx.x;
776
+ // w is index of width with step being 1
777
+ int w = BLOCKWIDTH * blockIdx.y + tid;
778
+ if (w >= width && tid >= height) {
779
+ return;
780
+ }
781
+
782
+ __shared__ scalar_t blockvec[BLOCKWIDTH];
783
+ int k;
784
+ scalar_t w_tmp;
785
+
786
+ float weight[BLOCKWIDTH];
787
+
788
+ for (int b = 0; b < batch; ++b){
789
+ for (int head = 0; head < heads; ++head){
790
+ int batch_shift = b * heads + head;
791
+ for (k = 0; k < BLOCKWIDTH && h + k < height; ++k){
792
+ int i_w = (w / 8);
793
+ int w_bit = (w % 8) * 4;
794
+
795
+ int w_index = (batch_shift * height + h + k) * width / 8 + i_w;
796
+ if (w_index >= weight_total || w >= width) {
797
+ weight[k] = 0;
798
+ } else {
799
+ scalar_t scale = scales[batch_shift * height + h + k];
800
+ scalar_t zero = zeros[batch_shift * height + h + k];
801
+ w_tmp = ((as_unsigned(mat[w_index]) >> w_bit) & 0xF);
802
+ weight[k] = scale * (w_tmp - zero);
803
+ }
804
+ }
805
+
806
+ scalar_t res;
807
+ for (int vr = 0; vr < vec_row; ++vr){
808
+ res = 0;
809
+ int vec_index = (batch_shift * vec_row + vr) * height + blockIdx.x * BLOCKWIDTH + tid;
810
+ if (vec_index < input_total) {
811
+ blockvec[tid] = vec[vec_index];
812
+ } else {
813
+ blockvec[tid] = 0;
814
+ }
815
+
816
+ __syncthreads();
817
+ for (k = 0; k < BLOCKWIDTH && h + k < height; ++k){
818
+ // res is the dot product of BLOCKWIDTH elements (part of width)
819
+ res += weight[k] * blockvec[k];
820
+ }
821
+ // add res to the final result, final matrix shape: (batch, vec_row, width)
822
+ int out_index = (batch_shift * vec_row + vr) * width + w;
823
+ if (out_index < out_total) {
824
+ atomicAdd(&mul[out_index], res);
825
+ }
826
+ __syncthreads();
827
+ }
828
+ }
829
+ }
830
+ }
831
+
832
+
833
+ void vecquant8matmul_batched_old_cuda(
834
+ torch::Tensor vec,
835
+ torch::Tensor mat,
836
+ torch::Tensor mul,
837
+ torch::Tensor scales,
838
+ torch::Tensor zeros
839
+ ) {
840
+ int batch = vec.size(0);
841
+ int heads = vec.size(1);
842
+ int vec_row = vec.size(2);
843
+ int vec_height = vec.size(3);
844
+ int height = mat.size(2);
845
+ int width = mat.size(3);
846
+ int zero_width = zeros.size(2);
847
+
848
+ dim3 blocks(
849
+ (height + BLOCKWIDTH - 1) / BLOCKWIDTH,
850
+ (width + BLOCKWIDTH - 1) / BLOCKWIDTH
851
+ );
852
+ dim3 threads(BLOCKWIDTH);
853
+
854
+ AT_DISPATCH_FLOATING_TYPES(
855
+ vec.type(), "vecquant8matmul_batched_old_cuda", ([&] {
856
+ VecQuant8BatchMatMulKernel_old<<<blocks, threads>>>(
857
+ vec.data<scalar_t>(), mat.data<uint8_t>(), mul.data<scalar_t>(),
858
+ scales.data<scalar_t>(), zeros.data<scalar_t>(),
859
+ batch, heads, vec_row, vec_height, height, width, zero_width
860
+ );
861
+ })
862
+ );
863
+ }
864
+
865
+
866
+ template <typename scalar_t>
867
+ __global__ void VecQuant8BatchMatMulKernel_old(
868
+ const scalar_t* __restrict__ vec,
869
+ const uint8_t* __restrict__ mat,
870
+ scalar_t* __restrict__ mul,
871
+ const scalar_t* __restrict__ scales,
872
+ const scalar_t* __restrict__ zeros,
873
+ int batch,
874
+ int heads,
875
+ int vec_row,
876
+ int vec_height,
877
+ int height,
878
+ int width,
879
+ int zero_width
880
+ ) {
881
+ int weight_total = batch * heads * height * width;
882
+ int input_total = batch * heads * vec_row * vec_height;
883
+ int out_total = batch * heads * vec_row * width;
884
+ int tid = threadIdx.x;
885
+ // h is index of height with step being BLOCKHEIGHT8
886
+ int h = BLOCKWIDTH * blockIdx.x;
887
+ // w is index of width with step being 1
888
+ int w = BLOCKWIDTH * blockIdx.y + tid;
889
+ if (w >= width && tid >= vec_height) {
890
+ return;
891
+ }
892
+
893
+ __shared__ scalar_t blockvec[BLOCKWIDTH];
894
+ // i is index of mat of block first row
895
+ int i = width * h + w;
896
+ int k;
897
+ scalar_t w_tmp;
898
+
899
+ float weight[BLOCKWIDTH];
900
+ for (int b = 0; b < batch; ++b){
901
+ for (int head = 0; head < heads; ++head){
902
+ int batch_shift = b * heads + head;
903
+ for (k = 0; k < BLOCKWIDTH && h + k < vec_height; ++k){
904
+ int k_w = k;
905
+ int w_index = batch_shift * height * width + i + (k_w * width);
906
+ if (w_index >= weight_total || w >= width) {
907
+ weight[k] = 0;
908
+ } else {
909
+ scalar_t scale = scales[batch_shift * width + w];
910
+ scalar_t zero = zeros[batch_shift * width + w];
911
+ w_tmp = as_unsigned(mat[w_index]);
912
+ weight[k] = scale * (w_tmp - zero);
913
+ }
914
+ }
915
+
916
+ scalar_t res;
917
+ for (int vr = 0; vr < vec_row; ++vr){
918
+ res = 0;
919
+ int vec_index = (batch_shift * vec_row + vr) * vec_height + blockIdx.x * BLOCKWIDTH + tid;
920
+ if (vec_index < input_total) {
921
+ blockvec[tid] = vec[vec_index];
922
+ } else {
923
+ blockvec[tid] = 0;
924
+ }
925
+
926
+ __syncthreads();
927
+ for (k = 0; k < BLOCKWIDTH && h + k < vec_height; ++k){
928
+ // res is the dot product of BLOCKWIDTH elements (part of width)
929
+ res += weight[k] * blockvec[k];
930
+ }
931
+ // add res to the final result, final matrix shape: (batch, vec_row, width)
932
+ int out_index = (batch_shift * vec_row + vr) * width + w;
933
+ if (out_index < out_total) {
934
+ atomicAdd(&mul[out_index], res);
935
+ }
936
+ __syncthreads();
937
+ }
938
+ }
939
+ }
940
+ }
941
+
942
+
943
+
944
+ void vecquant8matmul_batched_faster_cuda(
945
+ torch::Tensor vec,
946
+ torch::Tensor mat,
947
+ torch::Tensor mul,
948
+ torch::Tensor scales,
949
+ torch::Tensor zeros
950
+ ) {
951
+ int batch = vec.size(0);
952
+ int heads = vec.size(1);
953
+ int vec_row = vec.size(2);
954
+ int vec_height = vec.size(3);
955
+ int height = mat.size(2);
956
+ int width = mat.size(3);
957
+ int zero_width = zeros.size(2);
958
+
959
+ dim3 blocks(
960
+ (height + BLOCKWIDTH - 1) / BLOCKWIDTH,
961
+ (width + BLOCKWIDTH - 1) / BLOCKWIDTH
962
+ );
963
+ dim3 threads(BLOCKWIDTH);
964
+
965
+ VecQuant8BatchMatMulKernel_faster<<<blocks, threads>>>(
966
+ (half*) vec.data_ptr(),
967
+ (uint8_t*) mat.data_ptr(),
968
+ (half*) mul.data_ptr(),
969
+ (half*) scales.data_ptr(),
970
+ (half*) zeros.data_ptr(),
971
+ batch, heads, vec_row, vec_height, height, width, zero_width
972
+ );
973
+ }
974
+
975
+
976
+
977
+ __global__ void VecQuant8BatchMatMulKernel_faster(
978
+ const half* __restrict__ vec,
979
+ const uint8_t* __restrict__ mat,
980
+ half* __restrict__ mul,
981
+ const half* __restrict__ scales,
982
+ const half* __restrict__ zeros,
983
+ int batch,
984
+ int heads,
985
+ int vec_row,
986
+ int vec_height,
987
+ int height,
988
+ int width,
989
+ int zero_width
990
+ ) {
991
+ //int weight_total = batch * heads * height * width;
992
+ int input_total = batch * heads * vec_row * vec_height;
993
+ int out_total = batch * heads * vec_row * width;
994
+ int tid = threadIdx.x;
995
+ int h = BLOCKWIDTH * blockIdx.x;
996
+ int w = BLOCKWIDTH * blockIdx.y + tid;
997
+ if (w >= width && tid >= height) {
998
+ return;
999
+ }
1000
+
1001
+ __shared__ float blockvec[BLOCKWIDTH];
1002
+ int i = width * h + w;
1003
+ int k;
1004
+ float w_tmp;
1005
+
1006
+ float weight[BLOCKWIDTH];
1007
+ for (int b = 0; b < batch; ++b){
1008
+ for (int head = 0; head < heads; ++head){
1009
+ int batch_shift = b * heads + head;
1010
+ for (k = 0; k < BLOCKWIDTH && h + k < vec_height; ++k){
1011
+ int k_w = k;
1012
+ int w_index = batch_shift * height * width + i + (k_w * width);
1013
+ float scale = __half2float(scales[batch_shift * width + w]);
1014
+ float zero = __half2float(zeros[batch_shift * width + w]);
1015
+ w_tmp = as_unsigned(mat[w_index]);
1016
+ weight[k] = scale *(w_tmp-zero);
1017
+ }
1018
+
1019
+ float res;
1020
+ for (int vr = 0; vr < vec_row; ++vr){
1021
+ res = 0;
1022
+ int vec_index = (batch_shift * vec_row + vr) * vec_height + blockIdx.x * BLOCKWIDTH + tid;
1023
+ if (vec_index < input_total) {
1024
+ blockvec[tid] = __half2float(vec[vec_index]);
1025
+ } else {
1026
+ blockvec[tid] = 0;
1027
+ }
1028
+ __syncthreads();
1029
+ for (k = 0; k < BLOCKWIDTH && h + k < vec_height; ++k){
1030
+ float temp_res = weight[k]*blockvec[k];
1031
+ res += temp_res;
1032
+ }
1033
+ int out_index = (batch_shift * vec_row + vr) * width + w;
1034
+ if (out_index < out_total) {
1035
+ atomicAdd(&mul[out_index], __float2half(res));
1036
+ }
1037
+ __syncthreads();
1038
+ }
1039
+ }
1040
+ }
1041
+ }
1042
+
1043
+
1044
+
1045
+
1046
+ void vecquant8matmul_batched_column_compression_faster_cuda(
1047
+ torch::Tensor vec,
1048
+ torch::Tensor mat,
1049
+ torch::Tensor mul,
1050
+ torch::Tensor scales,
1051
+ torch::Tensor zeros
1052
+ ) {
1053
+ int batch = vec.size(0);
1054
+ int heads = vec.size(1);
1055
+ int vec_row = vec.size(2);
1056
+ int height = vec.size(3);
1057
+ int width = mat.size(3);
1058
+
1059
+ dim3 blocks(
1060
+ (height + BLOCKWIDTH - 1) / BLOCKWIDTH,
1061
+ (width + BLOCKWIDTH - 1) / BLOCKWIDTH
1062
+ );
1063
+ dim3 threads(BLOCKWIDTH);
1064
+
1065
+ VecQuant8BatchMatMulColumnCompressionKernel_faster<<<blocks, threads>>>(
1066
+ (half*) vec.data_ptr(),
1067
+ (uint8_t*) mat.data_ptr(),
1068
+ (half*) mul.data_ptr(),
1069
+ (half*) scales.data_ptr(),
1070
+ (half*) zeros.data_ptr(),
1071
+ batch, heads, vec_row, height, width
1072
+ );
1073
+
1074
+ }
1075
+
1076
+ __global__ void VecQuant8BatchMatMulColumnCompressionKernel_faster(
1077
+ const half* __restrict__ vec,
1078
+ const uint8_t* __restrict__ mat,
1079
+ half* __restrict__ mul,
1080
+ const half* __restrict__ scales,
1081
+ const half* __restrict__ zeros,
1082
+ int batch,
1083
+ int heads,
1084
+ int vec_row,
1085
+ int height,
1086
+ int width
1087
+ ) {
1088
+ //int weight_total = batch * heads * height * width;
1089
+ int input_total = batch * heads * vec_row * height;
1090
+ int out_total = batch * heads * vec_row * width;
1091
+ int tid = threadIdx.x;
1092
+ int h = BLOCKWIDTH * blockIdx.x;
1093
+ int w = BLOCKWIDTH * blockIdx.y + tid;
1094
+ if (w >= width && tid >= height) {
1095
+ return;
1096
+ }
1097
+
1098
+ __shared__ float blockvec[BLOCKWIDTH];
1099
+ int k;
1100
+ float w_tmp;
1101
+ float weight[BLOCKWIDTH];
1102
+
1103
+ for (int b = 0; b < batch; ++b){
1104
+ for (int head = 0; head < heads; ++head){
1105
+ int batch_shift = b * heads + head;
1106
+ for (k = 0; k < BLOCKWIDTH; ++k){
1107
+ int w_index = (batch_shift * height + h + k) * width + w;
1108
+ float scale = __half2float(scales[batch_shift * height + h + k]);
1109
+ float zero = __half2float(zeros[batch_shift * height + h + k]);
1110
+ w_tmp = mat[w_index];
1111
+ weight[k] = scale * (w_tmp-zero);
1112
+ }
1113
+
1114
+ float res;
1115
+ for (int vr = 0; vr < vec_row; ++vr){
1116
+ res = 0;
1117
+ int vec_index = (batch_shift * vec_row + vr) * height + blockIdx.x * BLOCKWIDTH + tid;
1118
+ if (vec_index < input_total) {
1119
+ blockvec[tid] = __half2float(vec[vec_index]);
1120
+ } else {
1121
+ blockvec[tid] = 0;
1122
+ }
1123
+ __syncthreads();
1124
+ for (k = 0; k < BLOCKWIDTH; ++k){
1125
+ res += weight[k]*blockvec[k];
1126
+ }
1127
+ int out_index = (batch_shift * vec_row + vr) * width + w;
1128
+ if (out_index < out_total) {
1129
+ atomicAdd(&mul[out_index], __float2half(res));
1130
+ }
1131
+ __syncthreads();
1132
+ }
1133
+ }
1134
+ }
1135
+ }
1136
+
1137
+
1138
+
1139
+ void vecquant8matmul_batched_column_compression_old_cuda(
1140
+ torch::Tensor vec,
1141
+ torch::Tensor mat,
1142
+ torch::Tensor mul,
1143
+ torch::Tensor scales,
1144
+ torch::Tensor zeros
1145
+ ) {
1146
+ int batch = vec.size(0);
1147
+ int heads = vec.size(1);
1148
+ int vec_row = vec.size(2);
1149
+ int height = vec.size(3);
1150
+ int width = mat.size(3);
1151
+
1152
+ dim3 blocks(
1153
+ (height + BLOCKWIDTH - 1) / BLOCKWIDTH,
1154
+ (width + BLOCKWIDTH - 1) / BLOCKWIDTH
1155
+ );
1156
+ dim3 threads(BLOCKWIDTH);
1157
+
1158
+ AT_DISPATCH_FLOATING_TYPES(
1159
+ vec.type(), "vecquant8matmul_batched_column_compression_old_cuda", ([&] {
1160
+ VecQuant8BatchMatMulColumnCompressionKernel_old<<<blocks, threads>>>(
1161
+ vec.data<scalar_t>(), mat.data<uint8_t>(), mul.data<scalar_t>(),
1162
+ scales.data<scalar_t>(), zeros.data<scalar_t>(),
1163
+ batch, heads, vec_row, height, width
1164
+ );
1165
+ })
1166
+ );
1167
+
1168
+ }
1169
+
1170
+ template <typename scalar_t>
1171
+ __global__ void VecQuant8BatchMatMulColumnCompressionKernel_old(
1172
+ const scalar_t* __restrict__ vec,
1173
+ const uint8_t* __restrict__ mat,
1174
+ scalar_t* __restrict__ mul,
1175
+ const scalar_t* __restrict__ scales,
1176
+ const scalar_t* __restrict__ zeros,
1177
+ int batch,
1178
+ int heads,
1179
+ int vec_row,
1180
+ int height,
1181
+ int width
1182
+ ) {
1183
+ int weight_total = batch * heads * height * width;
1184
+ int input_total = batch * heads * vec_row * height;
1185
+ int out_total = batch * heads * vec_row * width;
1186
+ int tid = threadIdx.x;
1187
+ // h is index of height with step being BLOCKWIDTH
1188
+ int h = BLOCKWIDTH * blockIdx.x;
1189
+ // w is index of width with step being 1
1190
+ int w = BLOCKWIDTH * blockIdx.y + tid;
1191
+ if (w >= width && tid >= height) {
1192
+ return;
1193
+ }
1194
+
1195
+ __shared__ scalar_t blockvec[BLOCKWIDTH];
1196
+ int k;
1197
+ scalar_t w_tmp;
1198
+
1199
+ float weight[BLOCKWIDTH];
1200
+
1201
+ for (int b = 0; b < batch; ++b){
1202
+ for (int head = 0; head < heads; ++head){
1203
+ int batch_shift = b * heads + head;
1204
+ for (k = 0; k < BLOCKWIDTH && h + k < height; ++k){
1205
+ int w_index = (batch_shift * height + h + k) * width + w;
1206
+ if (w_index >= weight_total || w >= width) {
1207
+ weight[k] = 0;
1208
+ } else {
1209
+ scalar_t scale = scales[batch_shift * height + h + k];
1210
+ scalar_t zero = zeros[batch_shift * height + h + k];
1211
+ w_tmp = mat[w_index];
1212
+ weight[k] = scale * (w_tmp - zero);
1213
+ }
1214
+ }
1215
+
1216
+ scalar_t res;
1217
+ for (int vr = 0; vr < vec_row; ++vr){
1218
+ res = 0;
1219
+ int vec_index = (batch_shift * vec_row + vr) * height + blockIdx.x * BLOCKWIDTH + tid;
1220
+ if (vec_index < input_total) {
1221
+ blockvec[tid] = vec[vec_index];
1222
+ } else {
1223
+ blockvec[tid] = 0;
1224
+ }
1225
+
1226
+ __syncthreads();
1227
+ for (k = 0; k < BLOCKWIDTH && h + k < height; ++k){
1228
+ // res is the dot product of BLOCKWIDTH elements (part of width)
1229
+ res += weight[k] * blockvec[k];
1230
+ }
1231
+ // add res to the final result, final matrix shape: (batch, vec_row, width)
1232
+ int out_index = (batch_shift * vec_row + vr) * width + w;
1233
+ if (out_index < out_total) {
1234
+ atomicAdd(&mul[out_index], res);
1235
+ }
1236
+ __syncthreads();
1237
+ }
1238
+ }
1239
+ }
1240
+ }
1241
+
1242
+
1243
+ void vecquant4matmul_batched_old_cuda(
1244
+ torch::Tensor vec,
1245
+ torch::Tensor mat,
1246
+ torch::Tensor mul,
1247
+ torch::Tensor scales,
1248
+ torch::Tensor zeros
1249
+ ) {
1250
+ int batch = vec.size(0);
1251
+ int heads = vec.size(1);
1252
+ int vec_row = vec.size(2);
1253
+ int vec_height = vec.size(3);
1254
+ int height = mat.size(2);
1255
+ int width = mat.size(3);
1256
+ int zero_width = zeros.size(2);
1257
+
1258
+ dim3 blocks(
1259
+ (height + BLOCKHEIGHT_OLD4 - 1) / BLOCKHEIGHT_OLD4,
1260
+ (width + BLOCKWIDTH - 1) / BLOCKWIDTH
1261
+ );
1262
+ dim3 threads(BLOCKWIDTH);
1263
+
1264
+ AT_DISPATCH_FLOATING_TYPES(
1265
+ vec.type(), "vecquant4matmul_batched_old_cuda", ([&] {
1266
+ VecQuant4BatchMatMulKernel_old<<<blocks, threads>>>(
1267
+ vec.data<scalar_t>(), mat.data<uint8_t>(), mul.data<scalar_t>(),
1268
+ scales.data<scalar_t>(), zeros.data<scalar_t>(),
1269
+ batch, heads, vec_row, vec_height, height, width, zero_width
1270
+ );
1271
+ })
1272
+ );
1273
+
1274
+ }
1275
+
1276
+ template <typename scalar_t>
1277
+ __global__ void VecQuant4BatchMatMulKernel_old(
1278
+ const scalar_t* __restrict__ vec,
1279
+ const uint8_t* __restrict__ mat,
1280
+ scalar_t* __restrict__ mul,
1281
+ const scalar_t* __restrict__ scales,
1282
+ const scalar_t* __restrict__ zeros,
1283
+ int batch,
1284
+ int heads,
1285
+ int vec_row,
1286
+ int vec_height,
1287
+ int height,
1288
+ int width,
1289
+ int zero_width
1290
+ ) {
1291
+ int weight_total = batch * heads * height * width;
1292
+ int input_total = batch * heads * vec_row * vec_height;
1293
+ int out_total = batch * heads * vec_row * width;
1294
+ int tid = threadIdx.x;
1295
+ // h is index of height with step being BLOCKHEIGHT_OLD4
1296
+ int h = BLOCKHEIGHT_OLD4 * blockIdx.x;
1297
+ // w is index of width with step being 1
1298
+ int w = BLOCKWIDTH * blockIdx.y + tid;
1299
+ if (w >= width && tid >= vec_height) {
1300
+ return;
1301
+ }
1302
+
1303
+ __shared__ scalar_t blockvec[BLOCKWIDTH];
1304
+ // i is index of mat of block first row
1305
+ int i = width * h + w;
1306
+ int k;
1307
+ scalar_t w_tmp;
1308
+
1309
+ float weight[BLOCKWIDTH];
1310
+ for (int b = 0; b < batch; ++b){
1311
+ for (int head = 0; head < heads; ++head){
1312
+ int batch_shift = b * heads + head;
1313
+ for (k = 0; k < BLOCKWIDTH && h*2 + k < vec_height; ++k){
1314
+ int k_w = (k / 2);
1315
+ int k_bit = (k % 2) * 4;
1316
+ int w_index = batch_shift * height * width + i + (k_w * width);
1317
+ if (w_index >= weight_total || w >= width) {
1318
+ weight[k] = 0;
1319
+ } else {
1320
+ scalar_t scale = scales[batch_shift * width + w];
1321
+ scalar_t zero = zeros[batch_shift * width + w];
1322
+ w_tmp = ((as_unsigned(mat[w_index]) >> k_bit) & 0xF);
1323
+ weight[k] = scale * (w_tmp - zero);
1324
+ }
1325
+ }
1326
+
1327
+ scalar_t res;
1328
+ for (int vr = 0; vr < vec_row; ++vr){
1329
+ res = 0;
1330
+ int vec_index = (batch_shift * vec_row + vr) * vec_height + blockIdx.x * BLOCKWIDTH + tid;
1331
+ if (vec_index < input_total) {
1332
+ blockvec[tid] = vec[vec_index];
1333
+ } else {
1334
+ blockvec[tid] = 0;
1335
+ }
1336
+
1337
+ __syncthreads();
1338
+ for (k = 0; k < BLOCKWIDTH && h*2 + k < vec_height; ++k){
1339
+ // res is the dot product of BLOCKWIDTH elements (part of width)
1340
+ res += weight[k] * blockvec[k];
1341
+ }
1342
+ // add res to the final result, final matrix shape: (batch, vec_row, width)
1343
+ int out_index = (batch_shift * vec_row + vr) * width + w;
1344
+ if (out_index < out_total) {
1345
+ atomicAdd(&mul[out_index], res);
1346
+ }
1347
+ __syncthreads();
1348
+ }
1349
+ }
1350
+ }
1351
+ }
1352
+
1353
+
1354
+
1355
+
1356
+
1357
+ void vecquant4matmul_batched_column_compression_old_cuda(
1358
+ torch::Tensor vec,
1359
+ torch::Tensor mat,
1360
+ torch::Tensor mul,
1361
+ torch::Tensor scales,
1362
+ torch::Tensor zeros
1363
+ ) {
1364
+ int batch = vec.size(0);
1365
+ int heads = vec.size(1);
1366
+ int vec_row = vec.size(2);
1367
+ int height = vec.size(3);
1368
+ int width = mat.size(3);
1369
+
1370
+ dim3 blocks(
1371
+ (height + BLOCKHEIGHT_OLD4 - 1) / BLOCKHEIGHT_OLD4,
1372
+ (width + BLOCKWIDTH - 1) / BLOCKWIDTH
1373
+ );
1374
+ dim3 threads(BLOCKWIDTH);
1375
+
1376
+ AT_DISPATCH_FLOATING_TYPES(
1377
+ vec.type(), "vecquant4matmul_batched_column_compression_old_cuda", ([&] {
1378
+ VecQuant4BatchMatMulColumnCompressionKernel_old<<<blocks, threads>>>(
1379
+ vec.data<scalar_t>(), mat.data<uint8_t>(), mul.data<scalar_t>(),
1380
+ scales.data<scalar_t>(), zeros.data<scalar_t>(),
1381
+ batch, heads, vec_row, height, width
1382
+ );
1383
+ })
1384
+ );
1385
+
1386
+ }
1387
+
1388
+ template <typename scalar_t>
1389
+ __global__ void VecQuant4BatchMatMulColumnCompressionKernel_old(
1390
+ const scalar_t* __restrict__ vec,
1391
+ const uint8_t* __restrict__ mat,
1392
+ scalar_t* __restrict__ mul,
1393
+ const scalar_t* __restrict__ scales,
1394
+ const scalar_t* __restrict__ zeros,
1395
+ int batch,
1396
+ int heads,
1397
+ int vec_row,
1398
+ int height,
1399
+ int width
1400
+ ) {
1401
+ int weight_total = batch * heads * height * width;
1402
+ int input_total = batch * heads * vec_row * height;
1403
+ int out_total = batch * heads * vec_row * width;
1404
+ int tid = threadIdx.x;
1405
+ // h is index of height with step being BLOCKWIDTH
1406
+ int h = BLOCKHEIGHT_OLD4 * blockIdx.x;
1407
+ // w is index of width with step being 1
1408
+ int w = BLOCKWIDTH * blockIdx.y + tid;
1409
+ if (w >= width && tid >= height) {
1410
+ return;
1411
+ }
1412
+
1413
+ __shared__ scalar_t blockvec[BLOCKWIDTH];
1414
+ int k;
1415
+ scalar_t w_tmp;
1416
+
1417
+ float weight[BLOCKWIDTH];
1418
+
1419
+ for (int b = 0; b < batch; ++b){
1420
+ for (int head = 0; head < heads; ++head){
1421
+ int batch_shift = b * heads + head;
1422
+ for (k = 0; k < BLOCKWIDTH && h*2 + k < height; ++k){
1423
+ int k_w = (k / 2);
1424
+ int k_bit = (k % 2) * 4;
1425
+ int w_index = (batch_shift * height + h + k) * width + k_w;
1426
+ if (w_index >= weight_total || w >= width) {
1427
+ weight[k] = 0;
1428
+ } else {
1429
+ scalar_t scale = scales[batch_shift * height + h + k];
1430
+ scalar_t zero = zeros[batch_shift * height + h + k];
1431
+ w_tmp = ((as_unsigned(mat[w_index]) >> k_bit) & 0xF);
1432
+ weight[k] = scale * (w_tmp - zero);
1433
+ }
1434
+ }
1435
+
1436
+ scalar_t res;
1437
+ for (int vr = 0; vr < vec_row; ++vr){
1438
+ res = 0;
1439
+ int vec_index = (batch_shift * vec_row + vr) * height + blockIdx.x * BLOCKWIDTH + tid;
1440
+ if (vec_index < input_total) {
1441
+ blockvec[tid] = vec[vec_index];
1442
+ } else {
1443
+ blockvec[tid] = 0;
1444
+ }
1445
+
1446
+ __syncthreads();
1447
+ for (k = 0; k < BLOCKWIDTH && h*2 + k < height; ++k){
1448
+ // res is the dot product of BLOCKWIDTH elements (part of width)
1449
+ res += weight[k] * blockvec[k];
1450
+ }
1451
+ // add res to the final result, final matrix shape: (batch, vec_row, width)
1452
+ int out_index = (batch_shift * vec_row + vr) * width + w;
1453
+ if (out_index < out_total) {
1454
+ atomicAdd(&mul[out_index], res);
1455
+ }
1456
+ __syncthreads();
1457
+ }
1458
+ }
1459
+ }
1460
+ }
1461
+
1462
+
1463
+
1464
+
1465
+
1466
+ void vecquant8matmul_batched_faster_old_cuda(
1467
+ torch::Tensor vec,
1468
+ torch::Tensor mat,
1469
+ torch::Tensor mul,
1470
+ torch::Tensor scales,
1471
+ torch::Tensor zeros
1472
+ ) {
1473
+ int batch = vec.size(0);
1474
+ int heads = vec.size(1);
1475
+ int vec_row = vec.size(2);
1476
+ int vec_height = vec.size(3);
1477
+ int height = mat.size(2);
1478
+ int width = mat.size(3);
1479
+
1480
+ dim3 blocks(
1481
+ (height + BLOCKWIDTH - 1) / BLOCKWIDTH,
1482
+ (width + BLOCKWIDTH - 1) / BLOCKWIDTH
1483
+ );
1484
+ dim3 threads(BLOCKWIDTH);
1485
+
1486
+ VecQuant8BatchMatMulKernel_faster_old<<<blocks, threads>>>(
1487
+ (half*) vec.data_ptr(),
1488
+ (uint8_t*) mat.data_ptr(),
1489
+ (half*) mul.data_ptr(),
1490
+ (half*) scales.data_ptr(),
1491
+ (half*) zeros.data_ptr(),
1492
+ batch, heads, vec_row, vec_height, height, width
1493
+ );
1494
+ }
1495
+
1496
+
1497
+ __global__ void VecQuant8BatchMatMulKernel_faster_old(
1498
+ const half* __restrict__ vec,
1499
+ const uint8_t* __restrict__ mat,
1500
+ half* __restrict__ mul,
1501
+ const half* __restrict__ scales,
1502
+ const half* __restrict__ zeros,
1503
+ int batch,
1504
+ int heads,
1505
+ int vec_row,
1506
+ int vec_height,
1507
+ int height,
1508
+ int width
1509
+ ) {
1510
+ int weight_total = batch * heads * height * width;
1511
+ int input_total = batch * heads * vec_row * vec_height;
1512
+ int out_total = batch * heads * vec_row * width;
1513
+ int tid = threadIdx.x;
1514
+ const int BLOCKWIDTH_half = BLOCKWIDTH/2;
1515
+
1516
+ int h = BLOCKWIDTH * blockIdx.x; //head_dim, dim=-1
1517
+ int w = BLOCKWIDTH * blockIdx.y + tid; //seq-len, +0-256 ,dim=-2
1518
+ /*
1519
+ if (w >= width && tid >= vec_height) {
1520
+ return;
1521
+ }
1522
+ */
1523
+ __shared__ half blockvec[BLOCKWIDTH]; //256
1524
+ int i = width * h + w;
1525
+ int k;
1526
+
1527
+ half w_tmp1 = __float2half(0);
1528
+ half w_tmp2 = __float2half(0);
1529
+
1530
+ half2 weight[BLOCKWIDTH_half];
1531
+ for (int b = 0; b < batch; ++b){
1532
+ for (int head = 0; head < heads; ++head){
1533
+ int batch_shift = b * heads + head;
1534
+ //int zero_index = batch_shift;
1535
+ for (k = 0; k < BLOCKWIDTH_half; ++k){
1536
+ int w_index1 = batch_shift * height * width + i + (2 * k * width); // [batch,head,h+k, w]
1537
+ int w_index2 = batch_shift * height * width + i + ((2 * k + 1) * width);
1538
+ int zero_index = batch_shift * width + w; // [batch,head, w]
1539
+ if (w_index1 >= weight_total || w >= width || (2 * k + h) >= height) {
1540
+ weight[k] = __float2half2_rn(0);
1541
+ } else {
1542
+ float zero_f=__half2float(zeros[zero_index]);
1543
+ float scale_f= __half2float(scales[zero_index]);
1544
+ if (w_index2 >= weight_total){
1545
+ w_tmp1 = __float2half((as_unsigned(mat[w_index1]) -zero_f)*scale_f);
1546
+ w_tmp2 = __float2half(0);
1547
+ weight[k] = __halves2half2(w_tmp1,w_tmp2);
1548
+ //printf("zero_index is %d w is %d height is %d width is %d w_index1 is %d w_tmp1 is %f w_tmp2 is %f zero is %f scale is %f low is %f high is %f \n ",zero_index,w,height, width,w_index1,__half2float(w_tmp1),__half2float(w_tmp2),zero_f,scale_f,__low2float(weight[k]),__high2float(weight[k]));
1549
+ }else{
1550
+ w_tmp1 = __int2half_rn(as_unsigned(mat[w_index1]));
1551
+ w_tmp2 = __int2half_rn(as_unsigned(mat[w_index2]));
1552
+
1553
+ //weight[k] = __hmul2(__hsub2(__halves2half2(w_tmp1,w_tmp2), __halves2half2(zero,zero)),__halves2half2(scale,scale));
1554
+ weight[k] = __hfma2(__halves2half2(w_tmp1,w_tmp2), __float2half2_rn(scale_f), __float2half2_rn(-(scale_f * zero_f)));
1555
+ //printf("zero_index1 is %d zero_index2 is %d k is %d head is %d w is %d h is %d height is %d width is %d w_index1 is %d w_index2 is %d zero is %f scale is %f low is %f high is %f \n ",zero_index1,zero_index2,k,head,w,h,height, width,w_index1,w_index2,__half2float(zero1),__half2float(scale1),__low2float(weight[k]),__high2float(weight[k]));
1556
+ }
1557
+ }
1558
+ }
1559
+
1560
+
1561
+ for (int vr = 0; vr < vec_row; ++vr){
1562
+ float res=0;
1563
+ int vec_index = (batch_shift * vec_row + vr) * height + blockIdx.x * BLOCKWIDTH + tid;
1564
+ int out_index = (batch_shift * vec_row + vr) * width + w;
1565
+ if (vec_index < input_total) {
1566
+ //blockvec[tid] = __half2float(vec[vec_index]);// [batch, head, vr, tid(seq_len dim+)]
1567
+ blockvec[tid] = vec[vec_index];
1568
+ //printf("width is %d height is %d h is %d w is %d vec_index is %d out_index is %d vec_row is %d vec_height is %d,vr is %d tid is %d blockvec is %f\n",width,height, h,w,vec_index,out_index,vec_row,vec_height,vr,tid,blockvec[tid]);
1569
+ } else {
1570
+ blockvec[tid] = __float2half(0);
1571
+ }
1572
+ __syncthreads();
1573
+ if (out_index < out_total) {
1574
+ for (k = 0; k < BLOCKWIDTH_half; ++k){
1575
+ half2 res2 = __hmul2(weight[k],__halves2half2(blockvec[2*k],blockvec[2*k+1]));
1576
+ res += __low2float(res2) + __high2float(res2);
1577
+ }
1578
+ atomicAdd(&mul[out_index], __float2half(res));
1579
+ }
1580
+ __syncthreads();
1581
+ }
1582
+ }
1583
+ }
1584
+ }
1585
+
1586
+
1587
+ void vecquant8matmul_batched_column_compression_faster_old_cuda(
1588
+ torch::Tensor vec, // [batch,heads, seq_q, seq_v]
1589
+ torch::Tensor mat, // [batch,heads, seq_v, head_dim]
1590
+ torch::Tensor mul, // [batch,heads, seq_q,head_dim]
1591
+ torch::Tensor scales, // [batch,heads, head_dim]
1592
+ torch::Tensor zeros
1593
+ ) {
1594
+ int batch = vec.size(0);
1595
+ int heads = vec.size(1);
1596
+ int vec_row = vec.size(2); //ql
1597
+ int height = mat.size(2); //vl
1598
+ int width = mat.size(3); //head_dim
1599
+
1600
+ dim3 blocks(
1601
+ (height + BLOCKWIDTH - 1) / BLOCKWIDTH,
1602
+ (width + BLOCKWIDTH - 1) / BLOCKWIDTH
1603
+ );
1604
+ dim3 threads(BLOCKWIDTH);
1605
+
1606
+ VecQuant8BatchMatMulColumnCompressionKernel_faster_old<<<blocks, threads>>>(
1607
+ (half*) vec.data_ptr(),
1608
+ (uint8_t*) mat.data_ptr(),
1609
+ (half*) mul.data_ptr(),
1610
+ (half*) scales.data_ptr(),
1611
+ (half*) zeros.data_ptr(),
1612
+ batch, heads, vec_row, height, width
1613
+ );
1614
+
1615
+ }
1616
+
1617
+
1618
+ __global__ void VecQuant8BatchMatMulColumnCompressionKernel_faster_old(
1619
+ const half* __restrict__ vec, // [batch,heads, seq_q, seq_v]
1620
+ const uint8_t* __restrict__ mat, // [batch,heads, seq_v, head_dim]
1621
+ half* __restrict__ mul, // [batch,heads, seq_q,head_dim]
1622
+ const half* __restrict__ scales, // [batch,heads, seq_v]
1623
+ const half* __restrict__ zeros,
1624
+ int batch,
1625
+ int heads,
1626
+ int vec_row, //seq_q
1627
+ int height, //seq_v
1628
+ int width //head_dim
1629
+ ) {
1630
+ int weight_total = batch * heads * height * width;
1631
+ int input_total = batch * heads * vec_row * height;
1632
+ int out_total = batch * heads * vec_row * width;
1633
+ int tid = threadIdx.x;
1634
+ int h = BLOCKWIDTH * blockIdx.x; // vl
1635
+ int w = BLOCKWIDTH * blockIdx.y + tid; //head_dim + block
1636
+ if (w >= width && tid >= height) {
1637
+ return;
1638
+ }
1639
+ __shared__ half blockvec[BLOCKWIDTH];
1640
+ int k;
1641
+ half w_tmp1 = __float2half(0);
1642
+ half w_tmp2 = __float2half(0);
1643
+ int i = width * h + w;
1644
+ const int BLOCKWIDTH_half = BLOCKWIDTH/2;
1645
+ half2 weight[BLOCKWIDTH_half];
1646
+
1647
+ for (int b = 0; b < batch; ++b){
1648
+ for (int head = 0; head < heads; ++head){
1649
+ int batch_shift = b * heads + head;
1650
+ //int zero_index = batch_shift;
1651
+ for (k = 0; k < BLOCKWIDTH_half; ++k){
1652
+ int w_index1 = batch_shift * height * width + i + (2 * k) * width; // [batch,head, h+k, w]
1653
+ int w_index2 = batch_shift * height * width + i + ((2 * k + 1) * width);
1654
+ int zero_index1 = batch_shift * height + h + 2*k; // [batch,head, w]
1655
+ int zero_index2 = batch_shift * height + h + 2*k+1; // [batch,head, w]
1656
+
1657
+ if (w_index1 >= weight_total || (2 * k + h)>=height) {
1658
+ weight[k]=__float2half2_rn(0);
1659
+ } else{
1660
+ //int zero_index = batch_shift + h; // [batch,head, w]
1661
+ //float scale_f1 = __half2float(scales[zero_index1]);
1662
+ //float zero_f1 = __half2float(zeros[zero_index1]);
1663
+ if (w_index2>=weight_total){
1664
+ w_tmp1 = __float2half((as_unsigned(mat[w_index1]) - __half2float(zeros[zero_index1]))* __half2float(scales[zero_index1]));
1665
+ w_tmp2 = __float2half(0);
1666
+ weight[k] = __halves2half2(w_tmp1,w_tmp2);
1667
+ //printf("zero_index is %d k is %d w is %d head is %d height is %d width is %d w_index1 is %d w_tmp1 is %f w_tmp2 is %f zero is %f scale is %f low is %f high is %f \n ",zero_index,k,w,head,height, width,w_index1,__half2float(w_tmp1),__half2float(w_tmp2),zero_f,scale_f,__low2float(weight[k]),__high2float(weight[k]));
1668
+ }else{
1669
+ w_tmp1 = __int2half_rn(as_unsigned(mat[w_index1]));
1670
+ w_tmp2 = __int2half_rn(as_unsigned(mat[w_index2]));
1671
+ half zero1=zeros[zero_index1];
1672
+ half zero2=zeros[zero_index2];
1673
+ half scale1=scales[zero_index1];
1674
+ half scale2=scales[zero_index2];
1675
+ weight[k] = __hmul2(__hsub2(__halves2half2(w_tmp1,w_tmp2), __halves2half2(zero1,zero2)),__halves2half2(scale1,scale2));
1676
+ //weight[k] = __hfma2(__halves2half2(w_tmp1,w_tmp2), __float2half2_rn(scale_f), __float2half2_rn(-(scale_f * zero_f)));
1677
+ //printf("zero_index1 is %d zero_index2 is %d k is %d head is %d w is %d h is %d height is %d width is %d w_index1 is %d w_index2 is %d zero is %f scale is %f low is %f high is %f \n ",zero_index1,zero_index2,k,head,w,h,height, width,w_index1,w_index2,__half2float(zero1),__half2float(scale1),__low2float(weight[k]),__high2float(weight[k]));
1678
+ }
1679
+ }
1680
+ }
1681
+
1682
+
1683
+ for (int vr = 0; vr < vec_row; ++vr){
1684
+ float res=0;
1685
+ int vec_index = (batch_shift * vec_row + vr) * height + blockIdx.x * BLOCKWIDTH + tid;
1686
+ int out_index = (batch_shift * vec_row + vr) * width + w;
1687
+
1688
+ if (vec_index < input_total) {
1689
+ //blockvec[tid] = __half2float(vec[vec_index]);
1690
+ blockvec[tid] = vec[vec_index];
1691
+ //printf("vec_index is %d out_index is %d vec_row is %d ,vr is %d tid is %d blockvec is %f\n",vec_index,out_index,vec_row,vr,tid,blockvec[tid]);
1692
+ } else {
1693
+ blockvec[tid] = __float2half(0);
1694
+ //blockvec[tid] = 0;
1695
+ }
1696
+ __syncthreads();
1697
+ if (out_index < out_total) {
1698
+ for (k = 0; k < BLOCKWIDTH_half; ++k){
1699
+ half2 res2 = __hmul2(weight[k],__halves2half2(blockvec[2*k],blockvec[2*k+1]));
1700
+ res += __low2float(res2) + __high2float(res2);
1701
+ }
1702
+ atomicAdd(&mul[out_index], __float2half(res));
1703
+ }
1704
+ __syncthreads();
1705
+ }
1706
+ }
1707
+ }
1708
+ }
config.json ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/workspace/Xuxiangjun/Model_WinGPT_pretrain/WiNGPT-14B-Base/",
3
+ "architectures": [
4
+ "QWenLMHeadModel"
5
+ ],
6
+ "attn_dropout_prob": 0.0,
7
+ "auto_map": {
8
+ "AutoConfig": "configuration_qwen.QWenConfig",
9
+ "AutoModelForCausalLM": "modeling_qwen.QWenLMHeadModel"
10
+ },
11
+ "bf16": true,
12
+ "emb_dropout_prob": 0.0,
13
+ "fp16": false,
14
+ "fp32": false,
15
+ "hidden_size": 5120,
16
+ "initializer_range": 0.02,
17
+ "intermediate_size": 27392,
18
+ "kv_channels": 128,
19
+ "layer_norm_epsilon": 1e-06,
20
+ "max_position_embeddings": 8192,
21
+ "model_type": "qwen",
22
+ "no_bias": true,
23
+ "num_attention_heads": 40,
24
+ "num_hidden_layers": 40,
25
+ "onnx_safe": null,
26
+ "rotary_emb_base": 10000,
27
+ "rotary_pct": 1.0,
28
+ "scale_attn_weights": true,
29
+ "seq_length": 4096,
30
+ "tie_word_embeddings": false,
31
+ "tokenizer_class": "QWenTokenizer",
32
+ "torch_dtype": "bfloat16",
33
+ "transformers_version": "4.34.0",
34
+ "use_cache": false,
35
+ "use_cache_kernel": false,
36
+ "use_cache_quantization": false,
37
+ "use_dynamic_ntk": true,
38
+ "use_flash_attn": true,
39
+ "use_logn_attn": true,
40
+ "vocab_size": 152064
41
+ }
configuration_qwen.py ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Alibaba Cloud.
2
+ #
3
+ # This source code is licensed under the license found in the
4
+ # LICENSE file in the root directory of this source tree.
5
+
6
+ from transformers import PretrainedConfig
7
+
8
+
9
+ class QWenConfig(PretrainedConfig):
10
+ model_type = "qwen"
11
+ keys_to_ignore_at_inference = ["past_key_values"]
12
+
13
+ def __init__(
14
+ self,
15
+ vocab_size=151936,
16
+ hidden_size=4096,
17
+ num_hidden_layers=32,
18
+ num_attention_heads=32,
19
+ emb_dropout_prob=0.0,
20
+ attn_dropout_prob=0.0,
21
+ layer_norm_epsilon=1e-6,
22
+ initializer_range=0.02,
23
+ max_position_embeddings=8192,
24
+ scale_attn_weights=True,
25
+ use_cache=True,
26
+ bf16=False,
27
+ fp16=False,
28
+ fp32=False,
29
+ kv_channels=128,
30
+ rotary_pct=1.0,
31
+ rotary_emb_base=10000,
32
+ use_dynamic_ntk=True,
33
+ use_logn_attn=True,
34
+ use_flash_attn="auto",
35
+ intermediate_size=22016,
36
+ no_bias=True,
37
+ tie_word_embeddings=False,
38
+ use_cache_quantization=False,
39
+ use_cache_kernel=False,
40
+ **kwargs,
41
+ ):
42
+ self.vocab_size = vocab_size
43
+ self.hidden_size = hidden_size
44
+ self.intermediate_size = intermediate_size
45
+ self.num_hidden_layers = num_hidden_layers
46
+ self.num_attention_heads = num_attention_heads
47
+ self.emb_dropout_prob = emb_dropout_prob
48
+ self.attn_dropout_prob = attn_dropout_prob
49
+ self.layer_norm_epsilon = layer_norm_epsilon
50
+ self.initializer_range = initializer_range
51
+ self.scale_attn_weights = scale_attn_weights
52
+ self.use_cache = use_cache
53
+ self.max_position_embeddings = max_position_embeddings
54
+ self.bf16 = bf16
55
+ self.fp16 = fp16
56
+ self.fp32 = fp32
57
+ self.kv_channels = kv_channels
58
+ self.rotary_pct = rotary_pct
59
+ self.rotary_emb_base = rotary_emb_base
60
+ self.use_dynamic_ntk = use_dynamic_ntk
61
+ self.use_logn_attn = use_logn_attn
62
+ self.use_flash_attn = use_flash_attn
63
+ self.no_bias = no_bias
64
+ self.use_cache_quantization=use_cache_quantization
65
+ self.use_cache_kernel=use_cache_kernel
66
+ super().__init__(
67
+ tie_word_embeddings=tie_word_embeddings,
68
+ **kwargs
69
+ )
cpp_kernels.py ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from torch.utils import cpp_extension
2
+ import pathlib
3
+ import os
4
+ import subprocess
5
+
6
+ def _get_cuda_bare_metal_version(cuda_dir):
7
+ raw_output = subprocess.check_output([cuda_dir + "/bin/nvcc", "-V"],
8
+ universal_newlines=True)
9
+ output = raw_output.split()
10
+ release_idx = output.index("release") + 1
11
+ release = output[release_idx].split(".")
12
+ bare_metal_major = release[0]
13
+ bare_metal_minor = release[1][0]
14
+
15
+ return raw_output, bare_metal_major, bare_metal_minor
16
+
17
+ def _create_build_dir(buildpath):
18
+ try:
19
+ os.mkdir(buildpath)
20
+ except OSError:
21
+ if not os.path.isdir(buildpath):
22
+ print(f"Creation of the build directory {buildpath} failed")
23
+
24
+ # Check if cuda 11 is installed for compute capability 8.0
25
+ cc_flag = []
26
+ _, bare_metal_major, bare_metal_minor = _get_cuda_bare_metal_version(cpp_extension.CUDA_HOME)
27
+ if int(bare_metal_major) >= 11:
28
+ cc_flag.append('-gencode')
29
+ cc_flag.append('arch=compute_80,code=sm_80')
30
+ if int(bare_metal_minor) >= 7:
31
+ cc_flag.append('-gencode')
32
+ cc_flag.append('arch=compute_90,code=sm_90')
33
+
34
+ # Build path
35
+ srcpath = pathlib.Path(__file__).parent.absolute()
36
+ buildpath = srcpath / 'build'
37
+ _create_build_dir(buildpath)
38
+
39
+ def _cpp_extention_load_helper(name, sources, extra_cuda_flags):
40
+ return cpp_extension.load(
41
+ name=name,
42
+ sources=sources,
43
+ build_directory=buildpath,
44
+ extra_cflags=['-O3', ],
45
+ extra_cuda_cflags=['-O3',
46
+ '-gencode', 'arch=compute_70,code=sm_70',
47
+ '--use_fast_math'] + extra_cuda_flags + cc_flag,
48
+ verbose=1
49
+ )
50
+
51
+ extra_flags = []
52
+
53
+ cache_autogptq_cuda_256_sources = ["./cache_autogptq_cuda_256.cpp",
54
+ "./cache_autogptq_cuda_kernel_256.cu"]
55
+ cache_autogptq_cuda_256 = _cpp_extention_load_helper("cache_autogptq_cuda_256", cache_autogptq_cuda_256_sources, extra_flags)
generation_config.json ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "chat_format": "raw",
3
+ "do_sample": true,
4
+ "eos_token_id": 151643,
5
+ "max_new_tokens": 512,
6
+ "pad_token_id": 151643,
7
+ "stop_words_ids": [
8
+ [
9
+ 151643
10
+ ]
11
+ ],
12
+ "top_k": 0,
13
+ "top_p": 0.8,
14
+ "transformers_version": "4.34.0"
15
+ }
modeling_qwen.py ADDED
@@ -0,0 +1,1412 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Alibaba Cloud.
2
+ #
3
+ # This source code is licensed under the license found in the
4
+ # LICENSE file in the root directory of this source tree.
5
+
6
+ import importlib
7
+ import math
8
+ from typing import TYPE_CHECKING, Optional, Tuple, Union, Callable, List, Any, Generator
9
+
10
+ import torch
11
+ import torch.nn.functional as F
12
+ import torch.utils.checkpoint
13
+ from torch.cuda.amp import autocast
14
+
15
+ from torch.nn import CrossEntropyLoss
16
+ from transformers import PreTrainedTokenizer, GenerationConfig, StoppingCriteriaList
17
+ from transformers.generation.logits_process import LogitsProcessorList
18
+
19
+ if TYPE_CHECKING:
20
+ from transformers.generation.streamers import BaseStreamer
21
+ from transformers.generation.utils import GenerateOutput
22
+ from transformers.modeling_outputs import (
23
+ BaseModelOutputWithPast,
24
+ CausalLMOutputWithPast,
25
+ )
26
+ from transformers.modeling_utils import PreTrainedModel
27
+ from transformers.utils import logging
28
+
29
+ try:
30
+ from einops import rearrange
31
+ except ImportError:
32
+ rearrange = None
33
+ from torch import nn
34
+
35
+ SUPPORT_CUDA = torch.cuda.is_available()
36
+ SUPPORT_BF16 = SUPPORT_CUDA and torch.cuda.is_bf16_supported()
37
+ SUPPORT_FP16 = SUPPORT_CUDA and torch.cuda.get_device_capability(0)[0] >= 7
38
+
39
+ from .configuration_qwen import QWenConfig
40
+ from .qwen_generation_utils import (
41
+ HistoryType,
42
+ make_context,
43
+ decode_tokens,
44
+ get_stop_words_ids,
45
+ StopWordsLogitsProcessor,
46
+ )
47
+
48
+
49
+ logger = logging.get_logger(__name__)
50
+
51
+ _CHECKPOINT_FOR_DOC = "qwen"
52
+ _CONFIG_FOR_DOC = "QWenConfig"
53
+
54
+ QWen_PRETRAINED_MODEL_ARCHIVE_LIST = ["qwen-7b"]
55
+
56
+ _ERROR_BAD_CHAT_FORMAT = """\
57
+ We detect you are probably using the pretrained model (rather than chat model) for chatting, since the chat_format in generation_config is not "chatml".
58
+ If you are directly using the model downloaded from Huggingface, please make sure you are using our "Qwen/Qwen-7B-Chat" Huggingface model (rather than "Qwen/Qwen-7B") when you call model.chat().
59
+ 我们检测到您可能在使用预训练模型(而非chat模型)进行多轮chat,因为您当前在generation_config指定的chat_format,并未设置为我们在对话中所支持的"chatml"格式。
60
+ 如果您在直接使用我们从Huggingface提供的模型,请确保您在调用model.chat()时,使用的是"Qwen/Qwen-7B-Chat"模型(而非"Qwen/Qwen-7B"预训练模型)。
61
+ """
62
+
63
+ _SENTINEL = object()
64
+ _ERROR_STREAM_IN_CHAT = """\
65
+ Pass argument `stream` to model.chat() is buggy, deprecated, and marked for removal. Please use model.chat_stream(...) instead of model.chat(..., stream=True).
66
+ 向model.chat()传入参数stream的用法可能存在Bug,该用法已被废弃,将在未来被移除。请使用model.chat_stream(...)代替model.chat(..., stream=True)。
67
+ """
68
+
69
+ _ERROR_INPUT_CPU_QUERY_WITH_FLASH_ATTN_ACTIVATED = """\
70
+ We detect you have activated flash attention support, but running model computation on CPU. Please make sure that your input data has been placed on GPU. If you actually want to run CPU computation, please following the readme and set device_map="cpu" to disable flash attention when loading the model (calling AutoModelForCausalLM.from_pretrained).
71
+ 检测到您的模型已激活了flash attention支持,但正在执行CPU运算任务。如使用flash attention,请您确认模型输入已经传到GPU上。如果您确认要执行CPU运算,请您在载入模型(调用AutoModelForCausalLM.from_pretrained)时,按照readme说法,指定device_map="cpu"以禁用flash attention。
72
+ """
73
+
74
+ apply_rotary_emb_func = None
75
+ rms_norm = None
76
+ flash_attn_unpadded_func = None
77
+
78
+ def _import_flash_attn():
79
+ global apply_rotary_emb_func, rms_norm, flash_attn_unpadded_func
80
+ try:
81
+ from flash_attn.layers.rotary import apply_rotary_emb_func as __apply_rotary_emb_func
82
+ apply_rotary_emb_func = __apply_rotary_emb_func
83
+ except ImportError:
84
+ logger.warn(
85
+ "Warning: import flash_attn rotary fail, please install FlashAttention rotary to get higher efficiency "
86
+ "https://github.com/Dao-AILab/flash-attention/tree/main/csrc/rotary"
87
+ )
88
+
89
+ try:
90
+ from flash_attn.ops.rms_norm import rms_norm as __rms_norm
91
+ rms_norm = __rms_norm
92
+ except ImportError:
93
+ logger.warn(
94
+ "Warning: import flash_attn rms_norm fail, please install FlashAttention layer_norm to get higher efficiency "
95
+ "https://github.com/Dao-AILab/flash-attention/tree/main/csrc/layer_norm"
96
+ )
97
+
98
+ try:
99
+ import flash_attn
100
+ if not hasattr(flash_attn, '__version__'):
101
+ from flash_attn.flash_attn_interface import flash_attn_unpadded_func as __flash_attn_unpadded_func
102
+ else:
103
+ if int(flash_attn.__version__.split(".")[0]) >= 2:
104
+ from flash_attn.flash_attn_interface import flash_attn_varlen_func as __flash_attn_unpadded_func
105
+ else:
106
+ from flash_attn.flash_attn_interface import flash_attn_unpadded_func as __flash_attn_unpadded_func
107
+ flash_attn_unpadded_func = __flash_attn_unpadded_func
108
+ except ImportError:
109
+ logger.warn(
110
+ "Warning: import flash_attn fail, please install FlashAttention to get higher efficiency "
111
+ "https://github.com/Dao-AILab/flash-attention"
112
+ )
113
+
114
+ def quantize_cache_v(fdata, bits, qmax, qmin):
115
+ # b, s, head, h-dim->b, head, s, h-dim
116
+ qtype = torch.uint8
117
+ device = fdata.device
118
+ shape = fdata.shape
119
+
120
+ fdata_cal = torch.flatten(fdata, 2)
121
+ fmax = torch.amax(fdata_cal, dim=-1, keepdim=True)
122
+ fmin = torch.amin(fdata_cal, dim=-1, keepdim=True)
123
+ # Compute params
124
+ if qmax.device != fmax.device:
125
+ qmax = qmax.to(device)
126
+ qmin = qmin.to(device)
127
+ scale = (fmax - fmin) / (qmax - qmin)
128
+ zero = qmin - fmin / scale
129
+ scale = scale.unsqueeze(-1).repeat(1,1,shape[2],1).contiguous()
130
+ zero = zero.unsqueeze(-1).repeat(1,1,shape[2],1).contiguous()
131
+ # Quantize
132
+ res_data = fdata / scale + zero
133
+ qdata = torch.clamp(res_data, qmin, qmax).to(qtype)
134
+ return qdata.contiguous(), scale, zero
135
+
136
+ def dequantize_cache_torch(qdata, scale, zero):
137
+ data = scale * (qdata - zero)
138
+ return data
139
+
140
+ class FlashSelfAttention(torch.nn.Module):
141
+ def __init__(
142
+ self,
143
+ causal=False,
144
+ softmax_scale=None,
145
+ attention_dropout=0.0,
146
+ ):
147
+ super().__init__()
148
+ assert flash_attn_unpadded_func is not None, (
149
+ "Please install FlashAttention first, " "e.g., with pip install flash-attn"
150
+ )
151
+ assert (
152
+ rearrange is not None
153
+ ), "Please install einops first, e.g., with pip install einops"
154
+ self.causal = causal
155
+ self.softmax_scale = softmax_scale
156
+ self.dropout_p = attention_dropout
157
+
158
+ def unpad_input(self, hidden_states, attention_mask):
159
+ valid_mask = attention_mask.squeeze(1).squeeze(1).eq(0)
160
+ seqlens_in_batch = valid_mask.sum(dim=-1, dtype=torch.int32)
161
+ indices = torch.nonzero(valid_mask.flatten(), as_tuple=False).flatten()
162
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
163
+ cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
164
+ hidden_states = hidden_states[indices]
165
+ return hidden_states, indices, cu_seqlens, max_seqlen_in_batch
166
+
167
+ def pad_input(self, hidden_states, indices, batch, seqlen):
168
+ output = torch.zeros(batch * seqlen, *hidden_states.shape[1:], device=hidden_states.device,
169
+ dtype=hidden_states.dtype)
170
+ output[indices] = hidden_states
171
+ return rearrange(output, '(b s) ... -> b s ...', b=batch)
172
+
173
+ def forward(self, q, k, v, attention_mask=None):
174
+ assert all((i.dtype in [torch.float16, torch.bfloat16] for i in (q, k, v)))
175
+ assert all((i.is_cuda for i in (q, k, v)))
176
+ batch_size, seqlen_q = q.shape[0], q.shape[1]
177
+ seqlen_k = k.shape[1]
178
+ seqlen_out = seqlen_q
179
+
180
+ q, k, v = [rearrange(x, "b s ... -> (b s) ...") for x in [q, k, v]]
181
+ cu_seqlens_q = torch.arange(
182
+ 0,
183
+ (batch_size + 1) * seqlen_q,
184
+ step=seqlen_q,
185
+ dtype=torch.int32,
186
+ device=q.device,
187
+ )
188
+
189
+ if attention_mask is not None:
190
+ k, indices_k, cu_seqlens_k, seqlen_k = self.unpad_input(k, attention_mask)
191
+ if q.size(0) == v.size(0):
192
+ q = q[indices_k]
193
+ cu_seqlens_q = cu_seqlens_k
194
+ seqlen_q = seqlen_k
195
+ v = v[indices_k]
196
+ else:
197
+ cu_seqlens_k = torch.arange(
198
+ 0,
199
+ (batch_size + 1) * seqlen_k,
200
+ step=seqlen_k,
201
+ dtype=torch.int32,
202
+ device=q.device,
203
+ )
204
+
205
+ if self.training:
206
+ assert seqlen_k == seqlen_q
207
+ is_causal = self.causal
208
+ dropout_p = self.dropout_p
209
+ else:
210
+ is_causal = seqlen_q == seqlen_k
211
+ dropout_p = 0
212
+
213
+ output = flash_attn_unpadded_func(
214
+ q,
215
+ k,
216
+ v,
217
+ cu_seqlens_q,
218
+ cu_seqlens_k,
219
+ seqlen_q,
220
+ seqlen_k,
221
+ dropout_p,
222
+ softmax_scale=self.softmax_scale,
223
+ causal=is_causal,
224
+ )
225
+ if attention_mask is not None and seqlen_q == seqlen_k:
226
+ output = self.pad_input(output, indices_k, batch_size, seqlen_out)
227
+ else:
228
+ new_shape = (batch_size, output.shape[0] // batch_size) + output.shape[1:]
229
+ output = output.view(new_shape)
230
+ return output
231
+
232
+
233
+ class QWenAttention(nn.Module):
234
+ def __init__(self, config):
235
+ super().__init__()
236
+
237
+ self.register_buffer("masked_bias", torch.tensor(-1e4), persistent=False)
238
+ self.seq_length = config.seq_length
239
+
240
+ self.hidden_size = config.hidden_size
241
+ self.split_size = config.hidden_size
242
+ self.num_heads = config.num_attention_heads
243
+ self.head_dim = self.hidden_size // self.num_heads
244
+
245
+ self.use_flash_attn = config.use_flash_attn
246
+ self.scale_attn_weights = True
247
+
248
+ self.projection_size = config.kv_channels * config.num_attention_heads
249
+
250
+ assert self.projection_size % config.num_attention_heads == 0
251
+ self.hidden_size_per_attention_head = (
252
+ self.projection_size // config.num_attention_heads
253
+ )
254
+
255
+ self.c_attn = nn.Linear(config.hidden_size, 3 * self.projection_size)
256
+
257
+ self.c_proj = nn.Linear(
258
+ config.hidden_size, self.projection_size, bias=not config.no_bias
259
+ )
260
+
261
+ self.is_fp32 = not (config.bf16 or config.fp16)
262
+ if (
263
+ self.use_flash_attn
264
+ and flash_attn_unpadded_func is not None
265
+ and not self.is_fp32
266
+ ):
267
+ self.core_attention_flash = FlashSelfAttention(
268
+ causal=True, attention_dropout=config.attn_dropout_prob
269
+ )
270
+ self.bf16 = config.bf16
271
+
272
+ self.use_dynamic_ntk = config.use_dynamic_ntk
273
+ self.use_logn_attn = config.use_logn_attn
274
+
275
+ logn_list = [
276
+ math.log(i, self.seq_length) if i > self.seq_length else 1
277
+ for i in range(1, 32768)
278
+ ]
279
+ logn_tensor = torch.tensor(logn_list)[None, :, None, None]
280
+ self.register_buffer("logn_tensor", logn_tensor, persistent=False)
281
+
282
+ self.attn_dropout = nn.Dropout(config.attn_dropout_prob)
283
+ self.use_cache_quantization = config.use_cache_quantization if hasattr(config, 'use_cache_quantization') else False
284
+ self.use_cache_kernel = config.use_cache_kernel if hasattr(config,'use_cache_kernel') else False
285
+ cache_dtype = torch.float
286
+ if self.bf16:
287
+ cache_dtype=torch.bfloat16
288
+ elif config.fp16:
289
+ cache_dtype = torch.float16
290
+ self.cache_qmax = torch.tensor(torch.iinfo(torch.uint8).max, dtype=cache_dtype)
291
+ self.cache_qmin = torch.tensor(torch.iinfo(torch.uint8).min, dtype=cache_dtype)
292
+
293
+ if config.use_cache_quantization and config.use_cache_kernel:
294
+ from .cpp_kernels import cache_autogptq_cuda_256
295
+ try:
296
+ self.cache_kernels = cache_autogptq_cuda_256
297
+ except ImportError:
298
+ self.cache_kernels = None
299
+
300
+ def _attn(self, query, key, value, registered_causal_mask, attention_mask=None, head_mask=None):
301
+ device = query.device
302
+ if self.use_cache_quantization:
303
+ qk, qk_scale, qk_zero = key
304
+ if self.use_cache_kernel and self.cache_kernels is not None:
305
+ shape = query.shape[:-1] + (qk.shape[-2],)
306
+ attn_weights = torch.zeros(shape, dtype=torch.float16, device=device)
307
+ self.cache_kernels.vecquant8matmul_batched_faster_old(
308
+ query.contiguous() if query.dtype == torch.float16 else query.to(torch.float16).contiguous(),
309
+ qk.transpose(-1, -2).contiguous(),
310
+ attn_weights,
311
+ qk_scale.contiguous() if qk_scale.dtype == torch.float16 else qk_scale.to(torch.float16).contiguous(),
312
+ qk_zero.contiguous()if qk_zero.dtype == torch.float16 else qk_zero.to(torch.float16).contiguous())
313
+ # attn_weights = attn_weights.to(query.dtype).contiguous()
314
+ else:
315
+ key = dequantize_cache_torch(qk, qk_scale, qk_zero)
316
+ attn_weights = torch.matmul(query, key.transpose(-1, -2))
317
+ else:
318
+ attn_weights = torch.matmul(query, key.transpose(-1, -2))
319
+
320
+ if self.scale_attn_weights:
321
+ if self.use_cache_quantization:
322
+ size_temp = value[0].size(-1)
323
+ else:
324
+ size_temp = value.size(-1)
325
+ attn_weights = attn_weights / torch.full(
326
+ [],
327
+ size_temp ** 0.5,
328
+ dtype=attn_weights.dtype,
329
+ device=attn_weights.device,
330
+ )
331
+ if self.use_cache_quantization:
332
+ query_length, key_length = query.size(-2), key[0].size(-2)
333
+ else:
334
+ query_length, key_length = query.size(-2), key.size(-2)
335
+ causal_mask = registered_causal_mask[
336
+ :, :, key_length - query_length : key_length, :key_length
337
+ ]
338
+ mask_value = torch.finfo(attn_weights.dtype).min
339
+ mask_value = torch.full([], mask_value, dtype=attn_weights.dtype).to(
340
+ attn_weights.device
341
+ )
342
+ attn_weights = torch.where(
343
+ causal_mask, attn_weights.to(attn_weights.dtype), mask_value
344
+ )
345
+
346
+ if attention_mask is not None:
347
+ attn_weights = attn_weights + attention_mask
348
+
349
+ attn_weights = nn.functional.softmax(attn_weights.float(), dim=-1)
350
+
351
+ attn_weights = attn_weights.type(query.dtype)
352
+ attn_weights = self.attn_dropout(attn_weights)
353
+
354
+ if head_mask is not None:
355
+ attn_weights = attn_weights * head_mask
356
+
357
+ if self.use_cache_quantization:
358
+ qv, qv_scale, qv_zero = value
359
+ if self.use_cache_kernel and self.cache_kernels is not None:
360
+ shape = attn_weights.shape[:-1] + (query.shape[-1],)
361
+ attn_output = torch.zeros(shape, dtype=torch.float16, device=device)
362
+ self.cache_kernels.vecquant8matmul_batched_column_compression_faster_old(
363
+ attn_weights.contiguous() if attn_weights.dtype == torch.float16 else attn_weights.to(torch.float16).contiguous(),
364
+ qv.contiguous(), # dtype: int32
365
+ attn_output,
366
+ qv_scale.contiguous() if qv_scale.dtype == torch.float16 else qv_scale.to(torch.float16).contiguous(),
367
+ qv_zero.contiguous() if qv_zero.dtype == torch.float16 else qv_zero.to(torch.float16).contiguous())
368
+ if attn_output.dtype != query.dtype:
369
+ attn_output = attn_output.to(query.dtype)
370
+ attn_weights = attn_weights.to(query.dtype)
371
+ else:
372
+ value = dequantize_cache_torch(qv, qv_scale, qv_zero)
373
+ attn_output = torch.matmul(attn_weights, value)
374
+ else:
375
+ attn_output = torch.matmul(attn_weights, value)
376
+
377
+ attn_output = attn_output.transpose(1, 2)
378
+
379
+ return attn_output, attn_weights
380
+
381
+ def _upcast_and_reordered_attn(
382
+ self, query, key, value, registered_causal_mask, attention_mask=None, head_mask=None
383
+ ):
384
+ bsz, num_heads, q_seq_len, dk = query.size()
385
+ _, _, k_seq_len, _ = key.size()
386
+
387
+ attn_weights = torch.empty(
388
+ bsz * num_heads,
389
+ q_seq_len,
390
+ k_seq_len,
391
+ dtype=torch.float32,
392
+ device=query.device,
393
+ )
394
+
395
+ scale_factor = 1.0
396
+ if self.scale_attn_weights:
397
+ scale_factor /= float(value.size(-1)) ** 0.5
398
+
399
+ with autocast(enabled=False):
400
+ q, k = query.reshape(-1, q_seq_len, dk), key.transpose(-1, -2).reshape(
401
+ -1, dk, k_seq_len
402
+ )
403
+ attn_weights = torch.baddbmm(
404
+ attn_weights, q.float(), k.float(), beta=0, alpha=scale_factor
405
+ )
406
+ attn_weights = attn_weights.reshape(bsz, num_heads, q_seq_len, k_seq_len)
407
+
408
+ query_length, key_length = query.size(-2), key.size(-2)
409
+ causal_mask = registered_causal_mask[
410
+ :, :, key_length - query_length : key_length, :key_length
411
+ ]
412
+ mask_value = torch.finfo(attn_weights.dtype).min
413
+ mask_value = torch.tensor(mask_value, dtype=attn_weights.dtype).to(
414
+ attn_weights.device
415
+ )
416
+ attn_weights = torch.where(causal_mask, attn_weights, mask_value)
417
+
418
+ if attention_mask is not None:
419
+ attn_weights = attn_weights + attention_mask
420
+
421
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1)
422
+
423
+ if attn_weights.dtype != torch.float32:
424
+ raise RuntimeError(
425
+ "Error with upcasting, attn_weights does not have dtype torch.float32"
426
+ )
427
+ attn_weights = attn_weights.type(value.dtype)
428
+ attn_weights = self.attn_dropout(attn_weights)
429
+
430
+ if head_mask is not None:
431
+ attn_weights = attn_weights * head_mask
432
+
433
+ attn_output = torch.matmul(attn_weights, value)
434
+
435
+ return attn_output, attn_weights
436
+
437
+ def _split_heads(self, tensor, num_heads, attn_head_size):
438
+ new_shape = tensor.size()[:-1] + (num_heads, attn_head_size)
439
+ tensor = tensor.view(new_shape)
440
+ return tensor
441
+
442
+ def _merge_heads(self, tensor, num_heads, attn_head_size):
443
+ tensor = tensor.contiguous()
444
+ new_shape = tensor.size()[:-2] + (num_heads * attn_head_size,)
445
+ return tensor.view(new_shape)
446
+
447
+ def forward(
448
+ self,
449
+ hidden_states: Optional[Tuple[torch.FloatTensor]],
450
+ rotary_pos_emb_list: Optional[List[torch.Tensor]] = None,
451
+ registered_causal_mask: Optional[torch.Tensor] = None,
452
+ layer_past: Optional[Tuple[torch.Tensor]] = None,
453
+ attention_mask: Optional[torch.FloatTensor] = None,
454
+ head_mask: Optional[torch.FloatTensor] = None,
455
+ encoder_hidden_states: Optional[torch.Tensor] = None,
456
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
457
+ output_attentions: Optional[bool] = False,
458
+ use_cache: Optional[bool] = False,
459
+ ):
460
+ mixed_x_layer = self.c_attn(hidden_states)
461
+
462
+ query, key, value = mixed_x_layer.split(self.split_size, dim=2)
463
+
464
+ query = self._split_heads(query, self.num_heads, self.head_dim)
465
+ key = self._split_heads(key, self.num_heads, self.head_dim)
466
+ value = self._split_heads(value, self.num_heads, self.head_dim)
467
+
468
+ if rotary_pos_emb_list is not None:
469
+ cur_len = query.shape[1]
470
+ if len(rotary_pos_emb_list) == 1:
471
+ rotary_pos_emb = rotary_pos_emb_list[0]
472
+ rotary_pos_emb = [i[:, -cur_len:, :, :] for i in rotary_pos_emb]
473
+ rotary_pos_emb = (rotary_pos_emb,) * 2
474
+ q_pos_emb, k_pos_emb = rotary_pos_emb
475
+ # Slice the pos emb for current inference
476
+ query = apply_rotary_pos_emb(query, q_pos_emb)
477
+ key = apply_rotary_pos_emb(key, k_pos_emb)
478
+ else:
479
+ query_list = []
480
+ key_list = []
481
+ for i, rotary_pos_emb in enumerate(rotary_pos_emb_list):
482
+ rotary_pos_emb = [i[:, -cur_len:, :, :] for i in rotary_pos_emb]
483
+ rotary_pos_emb = (rotary_pos_emb,) * 2
484
+ q_pos_emb, k_pos_emb = rotary_pos_emb
485
+ # Slice the pos emb for current inference
486
+ query_list += [apply_rotary_pos_emb(query[i:i+1, :, :], q_pos_emb)]
487
+ key_list += [apply_rotary_pos_emb(key[i:i+1, :, :], k_pos_emb)]
488
+ query = torch.cat(query_list, dim=0)
489
+ key = torch.cat(key_list, dim=0)
490
+
491
+ if self.use_cache_quantization:
492
+ key = quantize_cache_v(key.permute(0, 2, 1, 3),
493
+ bits=8,
494
+ qmin=self.cache_qmin,
495
+ qmax=self.cache_qmax)
496
+ value = quantize_cache_v(value.permute(0, 2, 1, 3),
497
+ bits=8,
498
+ qmin=self.cache_qmin,
499
+ qmax=self.cache_qmax)
500
+
501
+
502
+ if layer_past is not None:
503
+ past_key, past_value = layer_past[0], layer_past[1]
504
+ if self.use_cache_quantization:
505
+ # use_cache_quantization:
506
+ # present=((q_key,key_scale,key_zero_point),
507
+ # (q_value,value_scale,value_zero_point))
508
+ key = (torch.cat((past_key[0], key[0]), dim=2),
509
+ torch.cat((past_key[1], key[1]), dim=2),
510
+ torch.cat((past_key[2], key[2]), dim=2))
511
+ value = (torch.cat((past_value[0], value[0]), dim=2),
512
+ torch.cat((past_value[1], value[1]), dim=2),
513
+ torch.cat((past_value[2], value[2]), dim=2))
514
+ else:
515
+ # not use_cache_quantization:
516
+ # present=(key,value)
517
+ key = torch.cat((past_key, key), dim=1)
518
+ value = torch.cat((past_value, value), dim=1)
519
+
520
+ if use_cache:
521
+ present = (key, value)
522
+ else:
523
+ present = None
524
+
525
+ if self.use_logn_attn and not self.training:
526
+ if self.use_cache_quantization:
527
+ seq_start = key[0].size(2) - query.size(1)
528
+ seq_end = key[0].size(2)
529
+ else:
530
+ seq_start = key.size(1) - query.size(1)
531
+ seq_end = key.size(1)
532
+ logn_tensor = self.logn_tensor[:, seq_start:seq_end, :, :]
533
+ query = query * logn_tensor.expand_as(query)
534
+
535
+ if (
536
+ self.use_flash_attn
537
+ and flash_attn_unpadded_func is not None
538
+ and not self.is_fp32
539
+ and query.is_cuda
540
+ ):
541
+ q, k, v = query, key, value
542
+ context_layer = self.core_attention_flash(q, k, v, attention_mask=attention_mask)
543
+
544
+ # b s h d -> b s (h d)
545
+ context_layer = context_layer.flatten(2,3).contiguous()
546
+
547
+ else:
548
+ query = query.permute(0, 2, 1, 3)
549
+ if not self.use_cache_quantization:
550
+ key = key.permute(0, 2, 1, 3)
551
+ value = value.permute(0, 2, 1, 3)
552
+ if (
553
+ registered_causal_mask is None
554
+ and self.use_flash_attn
555
+ and flash_attn_unpadded_func is not None
556
+ and not self.is_fp32
557
+ and not query.is_cuda
558
+ ):
559
+ raise Exception(_ERROR_INPUT_CPU_QUERY_WITH_FLASH_ATTN_ACTIVATED)
560
+ attn_output, attn_weight = self._attn(
561
+ query, key, value, registered_causal_mask, attention_mask, head_mask
562
+ )
563
+ context_layer = self._merge_heads(
564
+ attn_output, self.num_heads, self.head_dim
565
+ )
566
+
567
+ attn_output = self.c_proj(context_layer)
568
+
569
+ outputs = (attn_output, present)
570
+ if output_attentions:
571
+ if (
572
+ self.use_flash_attn
573
+ and flash_attn_unpadded_func is not None
574
+ and not self.is_fp32
575
+ ):
576
+ raise ValueError("Cannot output attentions while using flash-attn")
577
+ else:
578
+ outputs += (attn_weight,)
579
+
580
+ return outputs
581
+
582
+
583
+ class QWenMLP(nn.Module):
584
+ def __init__(self, config):
585
+ super().__init__()
586
+ self.w1 = nn.Linear(
587
+ config.hidden_size, config.intermediate_size // 2, bias=not config.no_bias
588
+ )
589
+ self.w2 = nn.Linear(
590
+ config.hidden_size, config.intermediate_size // 2, bias=not config.no_bias
591
+ )
592
+ ff_dim_in = config.intermediate_size // 2
593
+ self.c_proj = nn.Linear(ff_dim_in, config.hidden_size, bias=not config.no_bias)
594
+
595
+ def forward(self, hidden_states):
596
+ a1 = self.w1(hidden_states)
597
+ a2 = self.w2(hidden_states)
598
+ intermediate_parallel = a1 * F.silu(a2)
599
+ output = self.c_proj(intermediate_parallel)
600
+ return output
601
+
602
+ class QWenBlock(nn.Module):
603
+ def __init__(self, config):
604
+ super().__init__()
605
+ hidden_size = config.hidden_size
606
+ self.bf16 = config.bf16
607
+
608
+ self.ln_1 = RMSNorm(
609
+ hidden_size,
610
+ eps=config.layer_norm_epsilon,
611
+ )
612
+ self.attn = QWenAttention(config)
613
+ self.ln_2 = RMSNorm(
614
+ hidden_size,
615
+ eps=config.layer_norm_epsilon,
616
+ )
617
+
618
+ self.mlp = QWenMLP(config)
619
+
620
+ def forward(
621
+ self,
622
+ hidden_states: Optional[Tuple[torch.FloatTensor]],
623
+ rotary_pos_emb_list: Optional[List[torch.Tensor]] = None,
624
+ registered_causal_mask: Optional[torch.Tensor] = None,
625
+ layer_past: Optional[Tuple[torch.Tensor]] = None,
626
+ attention_mask: Optional[torch.FloatTensor] = None,
627
+ head_mask: Optional[torch.FloatTensor] = None,
628
+ encoder_hidden_states: Optional[torch.Tensor] = None,
629
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
630
+ use_cache: Optional[bool] = False,
631
+ output_attentions: Optional[bool] = False,
632
+ ):
633
+ layernorm_output = self.ln_1(hidden_states)
634
+
635
+ attn_outputs = self.attn(
636
+ layernorm_output,
637
+ rotary_pos_emb_list,
638
+ registered_causal_mask=registered_causal_mask,
639
+ layer_past=layer_past,
640
+ attention_mask=attention_mask,
641
+ head_mask=head_mask,
642
+ use_cache=use_cache,
643
+ output_attentions=output_attentions,
644
+ )
645
+ attn_output = attn_outputs[0]
646
+
647
+ outputs = attn_outputs[1:]
648
+
649
+ residual = hidden_states
650
+ layernorm_input = attn_output + residual
651
+
652
+ layernorm_output = self.ln_2(layernorm_input)
653
+
654
+ residual = layernorm_input
655
+ mlp_output = self.mlp(layernorm_output)
656
+ hidden_states = residual + mlp_output
657
+
658
+ if use_cache:
659
+ outputs = (hidden_states,) + outputs
660
+ else:
661
+ outputs = (hidden_states,) + outputs[1:]
662
+
663
+ return outputs
664
+
665
+
666
+ class QWenPreTrainedModel(PreTrainedModel):
667
+ config_class = QWenConfig
668
+ base_model_prefix = "transformer"
669
+ is_parallelizable = False
670
+ supports_gradient_checkpointing = True
671
+ _no_split_modules = ["QWenBlock"]
672
+
673
+ def __init__(self, *inputs, **kwargs):
674
+ super().__init__(*inputs, **kwargs)
675
+
676
+ def _init_weights(self, module):
677
+ """Initialize the weights."""
678
+ if isinstance(module, nn.Linear):
679
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
680
+ if module.bias is not None:
681
+ module.bias.data.zero_()
682
+ elif isinstance(module, nn.Embedding):
683
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
684
+ if module.padding_idx is not None:
685
+ module.weight.data[module.padding_idx].zero_()
686
+ elif isinstance(module, RMSNorm):
687
+ module.weight.data.fill_(1.0)
688
+
689
+ for name, p in module.named_parameters():
690
+ if name == "c_proj.weight":
691
+ p.data.normal_(
692
+ mean=0.0,
693
+ std=(
694
+ self.config.initializer_range
695
+ / math.sqrt(2 * self.config.num_hidden_layers)
696
+ ),
697
+ )
698
+
699
+ def _set_gradient_checkpointing(self, module, value=False):
700
+ if isinstance(module, QWenModel):
701
+ module.gradient_checkpointing = value
702
+
703
+
704
+ class QWenModel(QWenPreTrainedModel):
705
+ _keys_to_ignore_on_load_missing = ["attn.masked_bias"]
706
+
707
+ def __init__(self, config):
708
+ super().__init__(config)
709
+ self.vocab_size = config.vocab_size
710
+ self.num_hidden_layers = config.num_hidden_layers
711
+ self.embed_dim = config.hidden_size
712
+ self.use_cache_quantization = self.config.use_cache_quantization if hasattr(self.config, 'use_cache_quantization') else False
713
+
714
+ self.gradient_checkpointing = False
715
+ self.use_dynamic_ntk = config.use_dynamic_ntk
716
+ self.seq_length = config.seq_length
717
+
718
+ self.wte = nn.Embedding(self.vocab_size, self.embed_dim)
719
+
720
+ self.drop = nn.Dropout(config.emb_dropout_prob)
721
+
722
+ if config.rotary_pct == 1.0:
723
+ self.rotary_ndims = None
724
+ else:
725
+ assert config.rotary_pct < 1
726
+ self.rotary_ndims = int(
727
+ config.kv_channels * config.rotary_pct
728
+ )
729
+ dim = (
730
+ self.rotary_ndims
731
+ if self.rotary_ndims is not None
732
+ else config.kv_channels
733
+ )
734
+ self.rotary_emb = RotaryEmbedding(dim, base=config.rotary_emb_base)
735
+
736
+ self.use_flash_attn = config.use_flash_attn
737
+ self.is_fp32 = not (config.bf16 or config.fp16)
738
+ if (
739
+ self.use_flash_attn
740
+ and flash_attn_unpadded_func is not None
741
+ and not self.is_fp32
742
+ ):
743
+ self.registered_causal_mask = None
744
+ else:
745
+ max_positions = config.max_position_embeddings
746
+ self.register_buffer(
747
+ "registered_causal_mask",
748
+ torch.tril(
749
+ torch.ones((max_positions, max_positions), dtype=torch.bool)
750
+ ).view(1, 1, max_positions, max_positions),
751
+ persistent=False,
752
+ )
753
+
754
+ self.h = nn.ModuleList(
755
+ [
756
+ QWenBlock(
757
+ config
758
+ )
759
+ for i in range(config.num_hidden_layers)
760
+ ]
761
+ )
762
+ self.ln_f = RMSNorm(
763
+ self.embed_dim,
764
+ eps=config.layer_norm_epsilon,
765
+ )
766
+
767
+ self.post_init()
768
+
769
+ def get_input_embeddings(self):
770
+ return self.wte
771
+
772
+ def set_input_embeddings(self, new_embeddings):
773
+ self.wte = new_embeddings
774
+
775
+ def get_ntk_alpha(self, true_seq_len):
776
+ context_value = math.log(true_seq_len / self.seq_length, 2) + 1
777
+ ntk_alpha = 2 ** math.ceil(context_value) - 1
778
+ ntk_alpha = max(ntk_alpha, 1)
779
+ return ntk_alpha
780
+
781
+ def forward(
782
+ self,
783
+ input_ids: Optional[torch.LongTensor] = None,
784
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
785
+ attention_mask: Optional[torch.FloatTensor] = None,
786
+ token_type_ids: Optional[torch.LongTensor] = None,
787
+ position_ids: Optional[torch.LongTensor] = None,
788
+ head_mask: Optional[torch.FloatTensor] = None,
789
+ inputs_embeds: Optional[torch.FloatTensor] = None,
790
+ encoder_hidden_states: Optional[torch.Tensor] = None,
791
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
792
+ use_cache: Optional[bool] = None,
793
+ output_attentions: Optional[bool] = None,
794
+ output_hidden_states: Optional[bool] = None,
795
+ return_dict: Optional[bool] = None,
796
+ ):
797
+ output_attentions = (
798
+ output_attentions
799
+ if output_attentions is not None
800
+ else self.config.output_attentions
801
+ )
802
+ output_hidden_states = (
803
+ output_hidden_states
804
+ if output_hidden_states is not None
805
+ else self.config.output_hidden_states
806
+ )
807
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
808
+ return_dict = (
809
+ return_dict if return_dict is not None else self.config.use_return_dict
810
+ )
811
+
812
+ if input_ids is not None and inputs_embeds is not None:
813
+ raise ValueError(
814
+ "You cannot specify both input_ids and inputs_embeds at the same time"
815
+ )
816
+ elif input_ids is not None:
817
+ input_shape = input_ids.size()
818
+ input_ids = input_ids.view(-1, input_shape[-1])
819
+ batch_size = input_ids.shape[0]
820
+ elif inputs_embeds is not None:
821
+ input_shape = inputs_embeds.size()[:-1]
822
+ batch_size = inputs_embeds.shape[0]
823
+ else:
824
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
825
+
826
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
827
+
828
+ if token_type_ids is not None:
829
+ token_type_ids = token_type_ids.view(-1, input_shape[-1])
830
+ if position_ids is not None:
831
+ position_ids = position_ids.view(-1, input_shape[-1])
832
+
833
+ if past_key_values is None:
834
+ past_length = 0
835
+ past_key_values = tuple([None] * len(self.h))
836
+ else:
837
+ if self.use_cache_quantization:
838
+ past_length = past_key_values[0][0][0].size(2)
839
+ else:
840
+ past_length = past_key_values[0][0].size(-2)
841
+ if position_ids is None:
842
+ position_ids = torch.arange(
843
+ past_length,
844
+ input_shape[-1] + past_length,
845
+ dtype=torch.long,
846
+ device=device,
847
+ )
848
+ position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1])
849
+
850
+ if attention_mask is not None:
851
+ if batch_size <= 0:
852
+ raise ValueError("batch_size has to be defined and > 0")
853
+ attention_mask = attention_mask.view(batch_size, -1)
854
+ attention_mask = attention_mask[:, None, None, :]
855
+ attention_mask = attention_mask.to(dtype=self.dtype)
856
+ attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min
857
+
858
+ encoder_attention_mask = None
859
+ head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
860
+
861
+ if inputs_embeds is None:
862
+ inputs_embeds = self.wte(input_ids)
863
+ hidden_states = inputs_embeds
864
+
865
+ kv_seq_len = hidden_states.size()[1]
866
+ if past_key_values[0] is not None:
867
+ # past key values[0][0] shape: bs * seq_len * head_num * dim
868
+ if self.use_cache_quantization:
869
+ kv_seq_len += past_key_values[0][0][0].shape[2]
870
+ else:
871
+ kv_seq_len += past_key_values[0][0].shape[1]
872
+
873
+ if self.training or not self.use_dynamic_ntk:
874
+ ntk_alpha_list = [1.0]
875
+ elif kv_seq_len != hidden_states.size()[1]:
876
+ ntk_alpha_list = self.rotary_emb._ntk_alpha_cached_list
877
+ else:
878
+ ntk_alpha_list = []
879
+ if attention_mask is not None and kv_seq_len > self.seq_length:
880
+ true_seq_lens = attention_mask.squeeze(1).squeeze(1).eq(0).sum(dim=-1, dtype=torch.int32)
881
+ for i in range(hidden_states.size()[0]):
882
+ true_seq_len = true_seq_lens[i].item()
883
+ ntk_alpha = self.get_ntk_alpha(true_seq_len)
884
+ ntk_alpha_list.append(ntk_alpha)
885
+ else:
886
+ ntk_alpha = self.get_ntk_alpha(kv_seq_len)
887
+ ntk_alpha_list.append(ntk_alpha)
888
+ self.rotary_emb._ntk_alpha_cached_list = ntk_alpha_list
889
+
890
+ rotary_pos_emb_list = []
891
+ for ntk_alpha in ntk_alpha_list:
892
+ rotary_pos_emb = self.rotary_emb(kv_seq_len, ntk_alpha=ntk_alpha)
893
+ rotary_pos_emb_list.append(rotary_pos_emb)
894
+
895
+ hidden_states = self.drop(hidden_states)
896
+ output_shape = input_shape + (hidden_states.size(-1),)
897
+
898
+ if self.gradient_checkpointing and self.training:
899
+ if use_cache:
900
+ logger.warning_once(
901
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
902
+ )
903
+ use_cache = False
904
+
905
+ presents = () if use_cache else None
906
+ all_self_attentions = () if output_attentions else None
907
+ all_hidden_states = () if output_hidden_states else None
908
+ for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
909
+
910
+ if output_hidden_states:
911
+ all_hidden_states = all_hidden_states + (hidden_states,)
912
+
913
+ if self.gradient_checkpointing and self.training:
914
+
915
+ def create_custom_forward(module):
916
+ def custom_forward(*inputs):
917
+ # None for past_key_value
918
+ return module(*inputs, use_cache, output_attentions)
919
+
920
+ return custom_forward
921
+
922
+ outputs = torch.utils.checkpoint.checkpoint(
923
+ create_custom_forward(block),
924
+ hidden_states,
925
+ rotary_pos_emb_list,
926
+ self.registered_causal_mask,
927
+ None,
928
+ attention_mask,
929
+ head_mask[i],
930
+ encoder_hidden_states,
931
+ encoder_attention_mask,
932
+ )
933
+ else:
934
+ outputs = block(
935
+ hidden_states,
936
+ layer_past=layer_past,
937
+ rotary_pos_emb_list=rotary_pos_emb_list,
938
+ registered_causal_mask=self.registered_causal_mask,
939
+ attention_mask=attention_mask,
940
+ head_mask=head_mask[i],
941
+ encoder_hidden_states=encoder_hidden_states,
942
+ encoder_attention_mask=encoder_attention_mask,
943
+ use_cache=use_cache,
944
+ output_attentions=output_attentions,
945
+ )
946
+
947
+ hidden_states = outputs[0]
948
+ if use_cache is True:
949
+ presents = presents + (outputs[1],)
950
+
951
+ if output_attentions:
952
+ all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
953
+
954
+ hidden_states = self.ln_f(hidden_states)
955
+ hidden_states = hidden_states.view(output_shape)
956
+ # Add last hidden state
957
+ if output_hidden_states:
958
+ all_hidden_states = all_hidden_states + (hidden_states,)
959
+
960
+ if not return_dict:
961
+ return tuple(
962
+ v for v in [hidden_states, presents, all_hidden_states] if v is not None
963
+ )
964
+
965
+ return BaseModelOutputWithPast(
966
+ last_hidden_state=hidden_states,
967
+ past_key_values=presents,
968
+ hidden_states=all_hidden_states,
969
+ attentions=all_self_attentions,
970
+ )
971
+
972
+
973
+ class QWenLMHeadModel(QWenPreTrainedModel):
974
+ _keys_to_ignore_on_load_missing = [r"h\.\d+\.attn\.rotary_emb\.inv_freq"]
975
+ _keys_to_ignore_on_load_unexpected = [r"h\.\d+\.attn\.masked_bias"]
976
+
977
+ def __init__(self, config):
978
+ super().__init__(config)
979
+ assert (
980
+ config.bf16 + config.fp16 + config.fp32 <= 1
981
+ ), "Only one of \"bf16\", \"fp16\", \"fp32\" can be true"
982
+ logger.warn(
983
+ "Warning: please make sure that you are using the latest codes and checkpoints, "
984
+ "especially if you used Qwen-7B before 09.25.2023."
985
+ "请使用最新模型和代码,尤其如果你在9月25日前已经开始使用Qwen-7B,千万注意不要使用错误代码和模型。"
986
+ )
987
+
988
+ autoset_precision = config.bf16 + config.fp16 + config.fp32 == 0
989
+
990
+ if autoset_precision:
991
+ if SUPPORT_BF16:
992
+ logger.warn(
993
+ "The model is automatically converting to bf16 for faster inference. "
994
+ "If you want to disable the automatic precision, please manually add bf16/fp16/fp32=True to \"AutoModelForCausalLM.from_pretrained\"."
995
+ )
996
+ config.bf16 = True
997
+ elif SUPPORT_FP16:
998
+ logger.warn(
999
+ "The model is automatically converting to fp16 for faster inference. "
1000
+ "If you want to disable the automatic precision, please manually add bf16/fp16/fp32=True to \"AutoModelForCausalLM.from_pretrained\"."
1001
+ )
1002
+ config.fp16 = True
1003
+ else:
1004
+ config.fp32 = True
1005
+
1006
+ if config.bf16 and SUPPORT_CUDA and not SUPPORT_BF16:
1007
+ logger.warn("Your device does NOT seem to support bf16, you can switch to fp16 or fp32 by by passing fp16/fp32=True in \"AutoModelForCausalLM.from_pretrained\".")
1008
+ if config.fp16 and SUPPORT_CUDA and not SUPPORT_FP16:
1009
+ logger.warn("Your device does NOT support faster inference with fp16, please switch to fp32 which is likely to be faster")
1010
+ if config.fp32:
1011
+ if SUPPORT_BF16:
1012
+ logger.warn("Your device support faster inference by passing bf16=True in \"AutoModelForCausalLM.from_pretrained\".")
1013
+ elif SUPPORT_FP16:
1014
+ logger.warn("Your device support faster inference by passing fp16=True in \"AutoModelForCausalLM.from_pretrained\".")
1015
+
1016
+ if config.use_flash_attn == "auto":
1017
+ if config.bf16 or config.fp16:
1018
+ logger.warn("Try importing flash-attention for faster inference...")
1019
+ config.use_flash_attn = True
1020
+ else:
1021
+ config.use_flash_attn = False
1022
+ if config.use_flash_attn and config.fp32:
1023
+ logger.warn("Flash attention will be disabled because it does NOT support fp32.")
1024
+
1025
+ if config.use_flash_attn:
1026
+ _import_flash_attn()
1027
+
1028
+ self.transformer = QWenModel(config)
1029
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
1030
+
1031
+ if config.bf16:
1032
+ self.transformer.bfloat16()
1033
+ self.lm_head.bfloat16()
1034
+ if config.fp16:
1035
+ self.transformer.half()
1036
+ self.lm_head.half()
1037
+ self.post_init()
1038
+
1039
+
1040
+ def get_output_embeddings(self):
1041
+ return self.lm_head
1042
+
1043
+ def set_output_embeddings(self, new_embeddings):
1044
+ self.lm_head = new_embeddings
1045
+
1046
+ def prepare_inputs_for_generation(
1047
+ self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs
1048
+ ):
1049
+ token_type_ids = kwargs.get("token_type_ids", None)
1050
+ if past_key_values:
1051
+ input_ids = input_ids[:, -1].unsqueeze(-1)
1052
+ if token_type_ids is not None:
1053
+ token_type_ids = token_type_ids[:, -1].unsqueeze(-1)
1054
+
1055
+ attention_mask = kwargs.get("attention_mask", None)
1056
+ position_ids = kwargs.get("position_ids", None)
1057
+
1058
+ if attention_mask is not None and position_ids is None:
1059
+ position_ids = attention_mask.long().cumsum(-1) - 1
1060
+ position_ids.masked_fill_(attention_mask == 0, 1)
1061
+ if past_key_values:
1062
+ position_ids = position_ids[:, -1].unsqueeze(-1)
1063
+ else:
1064
+ position_ids = None
1065
+
1066
+ if inputs_embeds is not None and past_key_values is None:
1067
+ model_inputs = {"inputs_embeds": inputs_embeds}
1068
+ else:
1069
+ model_inputs = {"input_ids": input_ids}
1070
+
1071
+ model_inputs.update(
1072
+ {
1073
+ "past_key_values": past_key_values,
1074
+ "use_cache": kwargs.get("use_cache"),
1075
+ "position_ids": position_ids,
1076
+ "attention_mask": attention_mask,
1077
+ "token_type_ids": token_type_ids,
1078
+ }
1079
+ )
1080
+ return model_inputs
1081
+
1082
+ def forward(
1083
+ self,
1084
+ input_ids: Optional[torch.LongTensor] = None,
1085
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
1086
+ attention_mask: Optional[torch.FloatTensor] = None,
1087
+ token_type_ids: Optional[torch.LongTensor] = None,
1088
+ position_ids: Optional[torch.LongTensor] = None,
1089
+ head_mask: Optional[torch.FloatTensor] = None,
1090
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1091
+ encoder_hidden_states: Optional[torch.Tensor] = None,
1092
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
1093
+ labels: Optional[torch.LongTensor] = None,
1094
+ use_cache: Optional[bool] = None,
1095
+ output_attentions: Optional[bool] = None,
1096
+ output_hidden_states: Optional[bool] = None,
1097
+ return_dict: Optional[bool] = None,
1098
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
1099
+
1100
+ return_dict = (
1101
+ return_dict if return_dict is not None else self.config.use_return_dict
1102
+ )
1103
+
1104
+ transformer_outputs = self.transformer(
1105
+ input_ids,
1106
+ past_key_values=past_key_values,
1107
+ attention_mask=attention_mask,
1108
+ token_type_ids=token_type_ids,
1109
+ position_ids=position_ids,
1110
+ head_mask=head_mask,
1111
+ inputs_embeds=inputs_embeds,
1112
+ encoder_hidden_states=encoder_hidden_states,
1113
+ encoder_attention_mask=encoder_attention_mask,
1114
+ use_cache=use_cache,
1115
+ output_attentions=output_attentions,
1116
+ output_hidden_states=output_hidden_states,
1117
+ return_dict=return_dict,
1118
+ )
1119
+ hidden_states = transformer_outputs[0]
1120
+
1121
+ lm_logits = self.lm_head(hidden_states)
1122
+
1123
+ loss = None
1124
+ if labels is not None:
1125
+ labels = labels.to(lm_logits.device)
1126
+ shift_logits = lm_logits[..., :-1, :].contiguous()
1127
+ shift_labels = labels[..., 1:].contiguous()
1128
+ loss_fct = CrossEntropyLoss()
1129
+ loss = loss_fct(
1130
+ shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)
1131
+ )
1132
+
1133
+ if not return_dict:
1134
+ output = (lm_logits,) + transformer_outputs[1:]
1135
+ return ((loss,) + output) if loss is not None else output
1136
+
1137
+ return CausalLMOutputWithPast(
1138
+ loss=loss,
1139
+ logits=lm_logits,
1140
+ past_key_values=transformer_outputs.past_key_values,
1141
+ hidden_states=transformer_outputs.hidden_states,
1142
+ attentions=transformer_outputs.attentions,
1143
+ )
1144
+
1145
+ @staticmethod
1146
+ def _reorder_cache(
1147
+ past_key_values: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor
1148
+ ) -> Tuple[Tuple[torch.Tensor]]:
1149
+
1150
+ return tuple(
1151
+ tuple(
1152
+ past_state.index_select(0, beam_idx.to(past_state.device))
1153
+ for past_state in layer_past
1154
+ )
1155
+ for layer_past in past_key_values
1156
+ )
1157
+
1158
+ def chat(
1159
+ self,
1160
+ tokenizer: PreTrainedTokenizer,
1161
+ query: str,
1162
+ history: Optional[HistoryType],
1163
+ system: str = "You are a helpful assistant.",
1164
+ append_history: bool = True,
1165
+ stream: Optional[bool] = _SENTINEL,
1166
+ stop_words_ids: Optional[List[List[int]]] = None,
1167
+ generation_config: Optional[GenerationConfig] = None,
1168
+ **kwargs,
1169
+ ) -> Tuple[str, HistoryType]:
1170
+ generation_config = generation_config if generation_config is not None else self.generation_config
1171
+
1172
+ assert stream is _SENTINEL, _ERROR_STREAM_IN_CHAT
1173
+ assert generation_config.chat_format == 'chatml', _ERROR_BAD_CHAT_FORMAT
1174
+ if history is None:
1175
+ history = []
1176
+ if stop_words_ids is None:
1177
+ stop_words_ids = []
1178
+
1179
+ max_window_size = kwargs.get('max_window_size', None)
1180
+ if max_window_size is None:
1181
+ max_window_size = generation_config.max_window_size
1182
+ raw_text, context_tokens = make_context(
1183
+ tokenizer,
1184
+ query,
1185
+ history=history,
1186
+ system=system,
1187
+ max_window_size=max_window_size,
1188
+ chat_format=generation_config.chat_format,
1189
+ )
1190
+
1191
+ stop_words_ids.extend(get_stop_words_ids(
1192
+ generation_config.chat_format, tokenizer
1193
+ ))
1194
+ input_ids = torch.tensor([context_tokens]).to(self.device)
1195
+ outputs = self.generate(
1196
+ input_ids,
1197
+ stop_words_ids=stop_words_ids,
1198
+ return_dict_in_generate=False,
1199
+ generation_config=generation_config,
1200
+ **kwargs,
1201
+ )
1202
+
1203
+ response = decode_tokens(
1204
+ outputs[0],
1205
+ tokenizer,
1206
+ raw_text_len=len(raw_text),
1207
+ context_length=len(context_tokens),
1208
+ chat_format=generation_config.chat_format,
1209
+ verbose=False,
1210
+ errors='replace'
1211
+ )
1212
+
1213
+ if append_history:
1214
+ history.append((query, response))
1215
+
1216
+ return response, history
1217
+
1218
+ def chat_stream(
1219
+ self,
1220
+ tokenizer: PreTrainedTokenizer,
1221
+ query: str,
1222
+ history: Optional[HistoryType],
1223
+ system: str = "You are a helpful assistant.",
1224
+ stop_words_ids: Optional[List[List[int]]] = None,
1225
+ logits_processor: Optional[LogitsProcessorList] = None,
1226
+ generation_config: Optional[GenerationConfig] = None,
1227
+ **kwargs,
1228
+ ) -> Generator[str, Any, None]:
1229
+ generation_config = generation_config if generation_config is not None else self.generation_config
1230
+ assert generation_config.chat_format == 'chatml', _ERROR_BAD_CHAT_FORMAT
1231
+ if history is None:
1232
+ history = []
1233
+ if stop_words_ids is None:
1234
+ stop_words_ids = []
1235
+
1236
+ max_window_size = kwargs.get('max_window_size', None)
1237
+ if max_window_size is None:
1238
+ max_window_size = generation_config.max_window_size
1239
+ raw_text, context_tokens = make_context(
1240
+ tokenizer,
1241
+ query,
1242
+ history=history,
1243
+ system=system,
1244
+ max_window_size=max_window_size,
1245
+ chat_format=generation_config.chat_format,
1246
+ )
1247
+
1248
+ stop_words_ids.extend(get_stop_words_ids(
1249
+ generation_config.chat_format, tokenizer
1250
+ ))
1251
+ if stop_words_ids is not None:
1252
+ stop_words_logits_processor = StopWordsLogitsProcessor(
1253
+ stop_words_ids=stop_words_ids,
1254
+ eos_token_id=generation_config.eos_token_id,
1255
+ )
1256
+ if logits_processor is None:
1257
+ logits_processor = LogitsProcessorList([stop_words_logits_processor])
1258
+ else:
1259
+ logits_processor.append(stop_words_logits_processor)
1260
+ input_ids = torch.tensor([context_tokens]).to(self.device)
1261
+
1262
+ from transformers_stream_generator.main import NewGenerationMixin, StreamGenerationConfig
1263
+ self.__class__.generate_stream = NewGenerationMixin.generate
1264
+ self.__class__.sample_stream = NewGenerationMixin.sample_stream
1265
+ stream_config = StreamGenerationConfig(**generation_config.to_dict(), do_stream=True)
1266
+
1267
+ def stream_generator():
1268
+ outputs = []
1269
+ for token in self.generate_stream(
1270
+ input_ids,
1271
+ return_dict_in_generate=False,
1272
+ generation_config=stream_config,
1273
+ logits_processor=logits_processor,
1274
+ seed=-1,
1275
+ **kwargs):
1276
+ outputs.append(token.item())
1277
+ yield tokenizer.decode(outputs, skip_special_tokens=True, errors='ignore')
1278
+
1279
+ return stream_generator()
1280
+
1281
+ def generate(
1282
+ self,
1283
+ inputs: Optional[torch.Tensor] = None,
1284
+ generation_config: Optional[GenerationConfig] = None,
1285
+ logits_processor: Optional[LogitsProcessorList] = None,
1286
+ stopping_criteria: Optional[StoppingCriteriaList] = None,
1287
+ prefix_allowed_tokens_fn: Optional[
1288
+ Callable[[int, torch.Tensor], List[int]]
1289
+ ] = None,
1290
+ synced_gpus: Optional[bool] = None,
1291
+ assistant_model: Optional["PreTrainedModel"] = None,
1292
+ streamer: Optional["BaseStreamer"] = None,
1293
+ **kwargs,
1294
+ ) -> Union[GenerateOutput, torch.LongTensor]:
1295
+ generation_config = generation_config if generation_config is not None else self.generation_config
1296
+
1297
+ # Process stop_words_ids.
1298
+ stop_words_ids = kwargs.pop("stop_words_ids", None)
1299
+ if stop_words_ids is None and generation_config is not None:
1300
+ stop_words_ids = getattr(generation_config, "stop_words_ids", None)
1301
+ if stop_words_ids is None:
1302
+ stop_words_ids = getattr(generation_config, "stop_words_ids", None)
1303
+
1304
+ if stop_words_ids is not None:
1305
+ stop_words_logits_processor = StopWordsLogitsProcessor(
1306
+ stop_words_ids=stop_words_ids,
1307
+ eos_token_id=generation_config.eos_token_id,
1308
+ )
1309
+ if logits_processor is None:
1310
+ logits_processor = LogitsProcessorList([stop_words_logits_processor])
1311
+ else:
1312
+ logits_processor.append(stop_words_logits_processor)
1313
+
1314
+ return super().generate(
1315
+ inputs,
1316
+ generation_config=generation_config,
1317
+ logits_processor=logits_processor,
1318
+ stopping_criteria=stopping_criteria,
1319
+ prefix_allowed_tokens_fn=prefix_allowed_tokens_fn,
1320
+ synced_gpus=synced_gpus,
1321
+ assistant_model=assistant_model,
1322
+ streamer=streamer,
1323
+ **kwargs,
1324
+ )
1325
+
1326
+
1327
+ class RotaryEmbedding(torch.nn.Module):
1328
+ def __init__(self, dim, base=10000):
1329
+ super().__init__()
1330
+ self.dim = dim
1331
+ self.base = base
1332
+ inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float() / dim))
1333
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
1334
+ if importlib.util.find_spec("einops") is None:
1335
+ raise RuntimeError("einops is required for Rotary Embedding")
1336
+
1337
+ self._rotary_pos_emb_cache = None
1338
+ self._seq_len_cached = 0
1339
+ self._ntk_alpha_cached = 1.0
1340
+ self._ntk_alpha_cached_list = [1.0]
1341
+
1342
+ def update_rotary_pos_emb_cache(self, max_seq_len, offset=0, ntk_alpha=1.0):
1343
+ seqlen = max_seq_len + offset
1344
+ if seqlen > self._seq_len_cached or ntk_alpha != self._ntk_alpha_cached:
1345
+ base = self.base * ntk_alpha ** (self.dim / (self.dim - 2))
1346
+ self.inv_freq = 1.0 / (
1347
+ base
1348
+ ** (
1349
+ torch.arange(0, self.dim, 2, device=self.inv_freq.device).float()
1350
+ / self.dim
1351
+ )
1352
+ )
1353
+ self._seq_len_cached = max(2 * seqlen, 16)
1354
+ self._ntk_alpha_cached = ntk_alpha
1355
+ seq = torch.arange(self._seq_len_cached, device=self.inv_freq.device)
1356
+ freqs = torch.outer(seq.type_as(self.inv_freq), self.inv_freq)
1357
+
1358
+ emb = torch.cat((freqs, freqs), dim=-1)
1359
+ from einops import rearrange
1360
+
1361
+ emb = rearrange(emb, "n d -> 1 n 1 d")
1362
+
1363
+ cos, sin = emb.cos(), emb.sin()
1364
+ self._rotary_pos_emb_cache = [cos, sin]
1365
+
1366
+ def forward(self, max_seq_len, offset=0, ntk_alpha=1.0):
1367
+ self.update_rotary_pos_emb_cache(max_seq_len, offset, ntk_alpha)
1368
+ cos, sin = self._rotary_pos_emb_cache
1369
+ return [cos[:, offset : offset + max_seq_len], sin[:, offset : offset + max_seq_len]]
1370
+
1371
+
1372
+ def _rotate_half(x):
1373
+ from einops import rearrange
1374
+
1375
+ x = rearrange(x, "... (j d) -> ... j d", j=2)
1376
+ x1, x2 = x.unbind(dim=-2)
1377
+ return torch.cat((-x2, x1), dim=-1)
1378
+
1379
+
1380
+ def apply_rotary_pos_emb(t, freqs):
1381
+ cos, sin = freqs
1382
+ if apply_rotary_emb_func is not None and t.is_cuda:
1383
+ t_ = t.float()
1384
+ cos = cos.squeeze(0).squeeze(1)[:, : cos.shape[-1] // 2]
1385
+ sin = sin.squeeze(0).squeeze(1)[:, : sin.shape[-1] // 2]
1386
+ output = apply_rotary_emb_func(t_, cos, sin).type_as(t)
1387
+ return output
1388
+ else:
1389
+ rot_dim = freqs[0].shape[-1]
1390
+ cos, sin = freqs
1391
+ t_, t_pass_ = t[..., :rot_dim], t[..., rot_dim:]
1392
+ t_ = t_.float()
1393
+ t_pass_ = t_pass_.float()
1394
+ t_ = (t_ * cos) + (_rotate_half(t_) * sin)
1395
+ return torch.cat((t_, t_pass_), dim=-1).type_as(t)
1396
+
1397
+
1398
+ class RMSNorm(torch.nn.Module):
1399
+ def __init__(self, dim: int, eps: float = 1e-6):
1400
+ super().__init__()
1401
+ self.eps = eps
1402
+ self.weight = nn.Parameter(torch.ones(dim))
1403
+
1404
+ def _norm(self, x):
1405
+ return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
1406
+
1407
+ def forward(self, x):
1408
+ if rms_norm is not None and x.is_cuda:
1409
+ return rms_norm(x, self.weight, self.eps)
1410
+ else:
1411
+ output = self._norm(x.float()).type_as(x)
1412
+ return output * self.weight
pytorch_model.bin.index.json ADDED
@@ -0,0 +1,330 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 28334581760
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "pytorch_model-00006-of-00006.bin",
7
+ "transformer.h.0.attn.c_attn.bias": "pytorch_model-00001-of-00006.bin",
8
+ "transformer.h.0.attn.c_attn.weight": "pytorch_model-00001-of-00006.bin",
9
+ "transformer.h.0.attn.c_proj.weight": "pytorch_model-00001-of-00006.bin",
10
+ "transformer.h.0.ln_1.weight": "pytorch_model-00001-of-00006.bin",
11
+ "transformer.h.0.ln_2.weight": "pytorch_model-00001-of-00006.bin",
12
+ "transformer.h.0.mlp.c_proj.weight": "pytorch_model-00001-of-00006.bin",
13
+ "transformer.h.0.mlp.w1.weight": "pytorch_model-00001-of-00006.bin",
14
+ "transformer.h.0.mlp.w2.weight": "pytorch_model-00001-of-00006.bin",
15
+ "transformer.h.1.attn.c_attn.bias": "pytorch_model-00001-of-00006.bin",
16
+ "transformer.h.1.attn.c_attn.weight": "pytorch_model-00001-of-00006.bin",
17
+ "transformer.h.1.attn.c_proj.weight": "pytorch_model-00001-of-00006.bin",
18
+ "transformer.h.1.ln_1.weight": "pytorch_model-00001-of-00006.bin",
19
+ "transformer.h.1.ln_2.weight": "pytorch_model-00001-of-00006.bin",
20
+ "transformer.h.1.mlp.c_proj.weight": "pytorch_model-00001-of-00006.bin",
21
+ "transformer.h.1.mlp.w1.weight": "pytorch_model-00001-of-00006.bin",
22
+ "transformer.h.1.mlp.w2.weight": "pytorch_model-00001-of-00006.bin",
23
+ "transformer.h.10.attn.c_attn.bias": "pytorch_model-00002-of-00006.bin",
24
+ "transformer.h.10.attn.c_attn.weight": "pytorch_model-00002-of-00006.bin",
25
+ "transformer.h.10.attn.c_proj.weight": "pytorch_model-00002-of-00006.bin",
26
+ "transformer.h.10.ln_1.weight": "pytorch_model-00002-of-00006.bin",
27
+ "transformer.h.10.ln_2.weight": "pytorch_model-00002-of-00006.bin",
28
+ "transformer.h.10.mlp.c_proj.weight": "pytorch_model-00002-of-00006.bin",
29
+ "transformer.h.10.mlp.w1.weight": "pytorch_model-00002-of-00006.bin",
30
+ "transformer.h.10.mlp.w2.weight": "pytorch_model-00002-of-00006.bin",
31
+ "transformer.h.11.attn.c_attn.bias": "pytorch_model-00002-of-00006.bin",
32
+ "transformer.h.11.attn.c_attn.weight": "pytorch_model-00002-of-00006.bin",
33
+ "transformer.h.11.attn.c_proj.weight": "pytorch_model-00002-of-00006.bin",
34
+ "transformer.h.11.ln_1.weight": "pytorch_model-00002-of-00006.bin",
35
+ "transformer.h.11.ln_2.weight": "pytorch_model-00002-of-00006.bin",
36
+ "transformer.h.11.mlp.c_proj.weight": "pytorch_model-00002-of-00006.bin",
37
+ "transformer.h.11.mlp.w1.weight": "pytorch_model-00002-of-00006.bin",
38
+ "transformer.h.11.mlp.w2.weight": "pytorch_model-00002-of-00006.bin",
39
+ "transformer.h.12.attn.c_attn.bias": "pytorch_model-00002-of-00006.bin",
40
+ "transformer.h.12.attn.c_attn.weight": "pytorch_model-00002-of-00006.bin",
41
+ "transformer.h.12.attn.c_proj.weight": "pytorch_model-00002-of-00006.bin",
42
+ "transformer.h.12.ln_1.weight": "pytorch_model-00002-of-00006.bin",
43
+ "transformer.h.12.ln_2.weight": "pytorch_model-00002-of-00006.bin",
44
+ "transformer.h.12.mlp.c_proj.weight": "pytorch_model-00002-of-00006.bin",
45
+ "transformer.h.12.mlp.w1.weight": "pytorch_model-00002-of-00006.bin",
46
+ "transformer.h.12.mlp.w2.weight": "pytorch_model-00002-of-00006.bin",
47
+ "transformer.h.13.attn.c_attn.bias": "pytorch_model-00002-of-00006.bin",
48
+ "transformer.h.13.attn.c_attn.weight": "pytorch_model-00002-of-00006.bin",
49
+ "transformer.h.13.attn.c_proj.weight": "pytorch_model-00003-of-00006.bin",
50
+ "transformer.h.13.ln_1.weight": "pytorch_model-00002-of-00006.bin",
51
+ "transformer.h.13.ln_2.weight": "pytorch_model-00003-of-00006.bin",
52
+ "transformer.h.13.mlp.c_proj.weight": "pytorch_model-00003-of-00006.bin",
53
+ "transformer.h.13.mlp.w1.weight": "pytorch_model-00003-of-00006.bin",
54
+ "transformer.h.13.mlp.w2.weight": "pytorch_model-00003-of-00006.bin",
55
+ "transformer.h.14.attn.c_attn.bias": "pytorch_model-00003-of-00006.bin",
56
+ "transformer.h.14.attn.c_attn.weight": "pytorch_model-00003-of-00006.bin",
57
+ "transformer.h.14.attn.c_proj.weight": "pytorch_model-00003-of-00006.bin",
58
+ "transformer.h.14.ln_1.weight": "pytorch_model-00003-of-00006.bin",
59
+ "transformer.h.14.ln_2.weight": "pytorch_model-00003-of-00006.bin",
60
+ "transformer.h.14.mlp.c_proj.weight": "pytorch_model-00003-of-00006.bin",
61
+ "transformer.h.14.mlp.w1.weight": "pytorch_model-00003-of-00006.bin",
62
+ "transformer.h.14.mlp.w2.weight": "pytorch_model-00003-of-00006.bin",
63
+ "transformer.h.15.attn.c_attn.bias": "pytorch_model-00003-of-00006.bin",
64
+ "transformer.h.15.attn.c_attn.weight": "pytorch_model-00003-of-00006.bin",
65
+ "transformer.h.15.attn.c_proj.weight": "pytorch_model-00003-of-00006.bin",
66
+ "transformer.h.15.ln_1.weight": "pytorch_model-00003-of-00006.bin",
67
+ "transformer.h.15.ln_2.weight": "pytorch_model-00003-of-00006.bin",
68
+ "transformer.h.15.mlp.c_proj.weight": "pytorch_model-00003-of-00006.bin",
69
+ "transformer.h.15.mlp.w1.weight": "pytorch_model-00003-of-00006.bin",
70
+ "transformer.h.15.mlp.w2.weight": "pytorch_model-00003-of-00006.bin",
71
+ "transformer.h.16.attn.c_attn.bias": "pytorch_model-00003-of-00006.bin",
72
+ "transformer.h.16.attn.c_attn.weight": "pytorch_model-00003-of-00006.bin",
73
+ "transformer.h.16.attn.c_proj.weight": "pytorch_model-00003-of-00006.bin",
74
+ "transformer.h.16.ln_1.weight": "pytorch_model-00003-of-00006.bin",
75
+ "transformer.h.16.ln_2.weight": "pytorch_model-00003-of-00006.bin",
76
+ "transformer.h.16.mlp.c_proj.weight": "pytorch_model-00003-of-00006.bin",
77
+ "transformer.h.16.mlp.w1.weight": "pytorch_model-00003-of-00006.bin",
78
+ "transformer.h.16.mlp.w2.weight": "pytorch_model-00003-of-00006.bin",
79
+ "transformer.h.17.attn.c_attn.bias": "pytorch_model-00003-of-00006.bin",
80
+ "transformer.h.17.attn.c_attn.weight": "pytorch_model-00003-of-00006.bin",
81
+ "transformer.h.17.attn.c_proj.weight": "pytorch_model-00003-of-00006.bin",
82
+ "transformer.h.17.ln_1.weight": "pytorch_model-00003-of-00006.bin",
83
+ "transformer.h.17.ln_2.weight": "pytorch_model-00003-of-00006.bin",
84
+ "transformer.h.17.mlp.c_proj.weight": "pytorch_model-00003-of-00006.bin",
85
+ "transformer.h.17.mlp.w1.weight": "pytorch_model-00003-of-00006.bin",
86
+ "transformer.h.17.mlp.w2.weight": "pytorch_model-00003-of-00006.bin",
87
+ "transformer.h.18.attn.c_attn.bias": "pytorch_model-00003-of-00006.bin",
88
+ "transformer.h.18.attn.c_attn.weight": "pytorch_model-00003-of-00006.bin",
89
+ "transformer.h.18.attn.c_proj.weight": "pytorch_model-00003-of-00006.bin",
90
+ "transformer.h.18.ln_1.weight": "pytorch_model-00003-of-00006.bin",
91
+ "transformer.h.18.ln_2.weight": "pytorch_model-00003-of-00006.bin",
92
+ "transformer.h.18.mlp.c_proj.weight": "pytorch_model-00003-of-00006.bin",
93
+ "transformer.h.18.mlp.w1.weight": "pytorch_model-00003-of-00006.bin",
94
+ "transformer.h.18.mlp.w2.weight": "pytorch_model-00003-of-00006.bin",
95
+ "transformer.h.19.attn.c_attn.bias": "pytorch_model-00003-of-00006.bin",
96
+ "transformer.h.19.attn.c_attn.weight": "pytorch_model-00003-of-00006.bin",
97
+ "transformer.h.19.attn.c_proj.weight": "pytorch_model-00003-of-00006.bin",
98
+ "transformer.h.19.ln_1.weight": "pytorch_model-00003-of-00006.bin",
99
+ "transformer.h.19.ln_2.weight": "pytorch_model-00003-of-00006.bin",
100
+ "transformer.h.19.mlp.c_proj.weight": "pytorch_model-00003-of-00006.bin",
101
+ "transformer.h.19.mlp.w1.weight": "pytorch_model-00003-of-00006.bin",
102
+ "transformer.h.19.mlp.w2.weight": "pytorch_model-00003-of-00006.bin",
103
+ "transformer.h.2.attn.c_attn.bias": "pytorch_model-00001-of-00006.bin",
104
+ "transformer.h.2.attn.c_attn.weight": "pytorch_model-00001-of-00006.bin",
105
+ "transformer.h.2.attn.c_proj.weight": "pytorch_model-00001-of-00006.bin",
106
+ "transformer.h.2.ln_1.weight": "pytorch_model-00001-of-00006.bin",
107
+ "transformer.h.2.ln_2.weight": "pytorch_model-00001-of-00006.bin",
108
+ "transformer.h.2.mlp.c_proj.weight": "pytorch_model-00001-of-00006.bin",
109
+ "transformer.h.2.mlp.w1.weight": "pytorch_model-00001-of-00006.bin",
110
+ "transformer.h.2.mlp.w2.weight": "pytorch_model-00001-of-00006.bin",
111
+ "transformer.h.20.attn.c_attn.bias": "pytorch_model-00003-of-00006.bin",
112
+ "transformer.h.20.attn.c_attn.weight": "pytorch_model-00003-of-00006.bin",
113
+ "transformer.h.20.attn.c_proj.weight": "pytorch_model-00003-of-00006.bin",
114
+ "transformer.h.20.ln_1.weight": "pytorch_model-00003-of-00006.bin",
115
+ "transformer.h.20.ln_2.weight": "pytorch_model-00003-of-00006.bin",
116
+ "transformer.h.20.mlp.c_proj.weight": "pytorch_model-00003-of-00006.bin",
117
+ "transformer.h.20.mlp.w1.weight": "pytorch_model-00003-of-00006.bin",
118
+ "transformer.h.20.mlp.w2.weight": "pytorch_model-00003-of-00006.bin",
119
+ "transformer.h.21.attn.c_attn.bias": "pytorch_model-00004-of-00006.bin",
120
+ "transformer.h.21.attn.c_attn.weight": "pytorch_model-00004-of-00006.bin",
121
+ "transformer.h.21.attn.c_proj.weight": "pytorch_model-00004-of-00006.bin",
122
+ "transformer.h.21.ln_1.weight": "pytorch_model-00003-of-00006.bin",
123
+ "transformer.h.21.ln_2.weight": "pytorch_model-00004-of-00006.bin",
124
+ "transformer.h.21.mlp.c_proj.weight": "pytorch_model-00004-of-00006.bin",
125
+ "transformer.h.21.mlp.w1.weight": "pytorch_model-00004-of-00006.bin",
126
+ "transformer.h.21.mlp.w2.weight": "pytorch_model-00004-of-00006.bin",
127
+ "transformer.h.22.attn.c_attn.bias": "pytorch_model-00004-of-00006.bin",
128
+ "transformer.h.22.attn.c_attn.weight": "pytorch_model-00004-of-00006.bin",
129
+ "transformer.h.22.attn.c_proj.weight": "pytorch_model-00004-of-00006.bin",
130
+ "transformer.h.22.ln_1.weight": "pytorch_model-00004-of-00006.bin",
131
+ "transformer.h.22.ln_2.weight": "pytorch_model-00004-of-00006.bin",
132
+ "transformer.h.22.mlp.c_proj.weight": "pytorch_model-00004-of-00006.bin",
133
+ "transformer.h.22.mlp.w1.weight": "pytorch_model-00004-of-00006.bin",
134
+ "transformer.h.22.mlp.w2.weight": "pytorch_model-00004-of-00006.bin",
135
+ "transformer.h.23.attn.c_attn.bias": "pytorch_model-00004-of-00006.bin",
136
+ "transformer.h.23.attn.c_attn.weight": "pytorch_model-00004-of-00006.bin",
137
+ "transformer.h.23.attn.c_proj.weight": "pytorch_model-00004-of-00006.bin",
138
+ "transformer.h.23.ln_1.weight": "pytorch_model-00004-of-00006.bin",
139
+ "transformer.h.23.ln_2.weight": "pytorch_model-00004-of-00006.bin",
140
+ "transformer.h.23.mlp.c_proj.weight": "pytorch_model-00004-of-00006.bin",
141
+ "transformer.h.23.mlp.w1.weight": "pytorch_model-00004-of-00006.bin",
142
+ "transformer.h.23.mlp.w2.weight": "pytorch_model-00004-of-00006.bin",
143
+ "transformer.h.24.attn.c_attn.bias": "pytorch_model-00004-of-00006.bin",
144
+ "transformer.h.24.attn.c_attn.weight": "pytorch_model-00004-of-00006.bin",
145
+ "transformer.h.24.attn.c_proj.weight": "pytorch_model-00004-of-00006.bin",
146
+ "transformer.h.24.ln_1.weight": "pytorch_model-00004-of-00006.bin",
147
+ "transformer.h.24.ln_2.weight": "pytorch_model-00004-of-00006.bin",
148
+ "transformer.h.24.mlp.c_proj.weight": "pytorch_model-00004-of-00006.bin",
149
+ "transformer.h.24.mlp.w1.weight": "pytorch_model-00004-of-00006.bin",
150
+ "transformer.h.24.mlp.w2.weight": "pytorch_model-00004-of-00006.bin",
151
+ "transformer.h.25.attn.c_attn.bias": "pytorch_model-00004-of-00006.bin",
152
+ "transformer.h.25.attn.c_attn.weight": "pytorch_model-00004-of-00006.bin",
153
+ "transformer.h.25.attn.c_proj.weight": "pytorch_model-00004-of-00006.bin",
154
+ "transformer.h.25.ln_1.weight": "pytorch_model-00004-of-00006.bin",
155
+ "transformer.h.25.ln_2.weight": "pytorch_model-00004-of-00006.bin",
156
+ "transformer.h.25.mlp.c_proj.weight": "pytorch_model-00004-of-00006.bin",
157
+ "transformer.h.25.mlp.w1.weight": "pytorch_model-00004-of-00006.bin",
158
+ "transformer.h.25.mlp.w2.weight": "pytorch_model-00004-of-00006.bin",
159
+ "transformer.h.26.attn.c_attn.bias": "pytorch_model-00004-of-00006.bin",
160
+ "transformer.h.26.attn.c_attn.weight": "pytorch_model-00004-of-00006.bin",
161
+ "transformer.h.26.attn.c_proj.weight": "pytorch_model-00004-of-00006.bin",
162
+ "transformer.h.26.ln_1.weight": "pytorch_model-00004-of-00006.bin",
163
+ "transformer.h.26.ln_2.weight": "pytorch_model-00004-of-00006.bin",
164
+ "transformer.h.26.mlp.c_proj.weight": "pytorch_model-00004-of-00006.bin",
165
+ "transformer.h.26.mlp.w1.weight": "pytorch_model-00004-of-00006.bin",
166
+ "transformer.h.26.mlp.w2.weight": "pytorch_model-00004-of-00006.bin",
167
+ "transformer.h.27.attn.c_attn.bias": "pytorch_model-00004-of-00006.bin",
168
+ "transformer.h.27.attn.c_attn.weight": "pytorch_model-00004-of-00006.bin",
169
+ "transformer.h.27.attn.c_proj.weight": "pytorch_model-00004-of-00006.bin",
170
+ "transformer.h.27.ln_1.weight": "pytorch_model-00004-of-00006.bin",
171
+ "transformer.h.27.ln_2.weight": "pytorch_model-00004-of-00006.bin",
172
+ "transformer.h.27.mlp.c_proj.weight": "pytorch_model-00004-of-00006.bin",
173
+ "transformer.h.27.mlp.w1.weight": "pytorch_model-00004-of-00006.bin",
174
+ "transformer.h.27.mlp.w2.weight": "pytorch_model-00004-of-00006.bin",
175
+ "transformer.h.28.attn.c_attn.bias": "pytorch_model-00004-of-00006.bin",
176
+ "transformer.h.28.attn.c_attn.weight": "pytorch_model-00004-of-00006.bin",
177
+ "transformer.h.28.attn.c_proj.weight": "pytorch_model-00004-of-00006.bin",
178
+ "transformer.h.28.ln_1.weight": "pytorch_model-00004-of-00006.bin",
179
+ "transformer.h.28.ln_2.weight": "pytorch_model-00004-of-00006.bin",
180
+ "transformer.h.28.mlp.c_proj.weight": "pytorch_model-00005-of-00006.bin",
181
+ "transformer.h.28.mlp.w1.weight": "pytorch_model-00004-of-00006.bin",
182
+ "transformer.h.28.mlp.w2.weight": "pytorch_model-00004-of-00006.bin",
183
+ "transformer.h.29.attn.c_attn.bias": "pytorch_model-00005-of-00006.bin",
184
+ "transformer.h.29.attn.c_attn.weight": "pytorch_model-00005-of-00006.bin",
185
+ "transformer.h.29.attn.c_proj.weight": "pytorch_model-00005-of-00006.bin",
186
+ "transformer.h.29.ln_1.weight": "pytorch_model-00005-of-00006.bin",
187
+ "transformer.h.29.ln_2.weight": "pytorch_model-00005-of-00006.bin",
188
+ "transformer.h.29.mlp.c_proj.weight": "pytorch_model-00005-of-00006.bin",
189
+ "transformer.h.29.mlp.w1.weight": "pytorch_model-00005-of-00006.bin",
190
+ "transformer.h.29.mlp.w2.weight": "pytorch_model-00005-of-00006.bin",
191
+ "transformer.h.3.attn.c_attn.bias": "pytorch_model-00001-of-00006.bin",
192
+ "transformer.h.3.attn.c_attn.weight": "pytorch_model-00001-of-00006.bin",
193
+ "transformer.h.3.attn.c_proj.weight": "pytorch_model-00001-of-00006.bin",
194
+ "transformer.h.3.ln_1.weight": "pytorch_model-00001-of-00006.bin",
195
+ "transformer.h.3.ln_2.weight": "pytorch_model-00001-of-00006.bin",
196
+ "transformer.h.3.mlp.c_proj.weight": "pytorch_model-00001-of-00006.bin",
197
+ "transformer.h.3.mlp.w1.weight": "pytorch_model-00001-of-00006.bin",
198
+ "transformer.h.3.mlp.w2.weight": "pytorch_model-00001-of-00006.bin",
199
+ "transformer.h.30.attn.c_attn.bias": "pytorch_model-00005-of-00006.bin",
200
+ "transformer.h.30.attn.c_attn.weight": "pytorch_model-00005-of-00006.bin",
201
+ "transformer.h.30.attn.c_proj.weight": "pytorch_model-00005-of-00006.bin",
202
+ "transformer.h.30.ln_1.weight": "pytorch_model-00005-of-00006.bin",
203
+ "transformer.h.30.ln_2.weight": "pytorch_model-00005-of-00006.bin",
204
+ "transformer.h.30.mlp.c_proj.weight": "pytorch_model-00005-of-00006.bin",
205
+ "transformer.h.30.mlp.w1.weight": "pytorch_model-00005-of-00006.bin",
206
+ "transformer.h.30.mlp.w2.weight": "pytorch_model-00005-of-00006.bin",
207
+ "transformer.h.31.attn.c_attn.bias": "pytorch_model-00005-of-00006.bin",
208
+ "transformer.h.31.attn.c_attn.weight": "pytorch_model-00005-of-00006.bin",
209
+ "transformer.h.31.attn.c_proj.weight": "pytorch_model-00005-of-00006.bin",
210
+ "transformer.h.31.ln_1.weight": "pytorch_model-00005-of-00006.bin",
211
+ "transformer.h.31.ln_2.weight": "pytorch_model-00005-of-00006.bin",
212
+ "transformer.h.31.mlp.c_proj.weight": "pytorch_model-00005-of-00006.bin",
213
+ "transformer.h.31.mlp.w1.weight": "pytorch_model-00005-of-00006.bin",
214
+ "transformer.h.31.mlp.w2.weight": "pytorch_model-00005-of-00006.bin",
215
+ "transformer.h.32.attn.c_attn.bias": "pytorch_model-00005-of-00006.bin",
216
+ "transformer.h.32.attn.c_attn.weight": "pytorch_model-00005-of-00006.bin",
217
+ "transformer.h.32.attn.c_proj.weight": "pytorch_model-00005-of-00006.bin",
218
+ "transformer.h.32.ln_1.weight": "pytorch_model-00005-of-00006.bin",
219
+ "transformer.h.32.ln_2.weight": "pytorch_model-00005-of-00006.bin",
220
+ "transformer.h.32.mlp.c_proj.weight": "pytorch_model-00005-of-00006.bin",
221
+ "transformer.h.32.mlp.w1.weight": "pytorch_model-00005-of-00006.bin",
222
+ "transformer.h.32.mlp.w2.weight": "pytorch_model-00005-of-00006.bin",
223
+ "transformer.h.33.attn.c_attn.bias": "pytorch_model-00005-of-00006.bin",
224
+ "transformer.h.33.attn.c_attn.weight": "pytorch_model-00005-of-00006.bin",
225
+ "transformer.h.33.attn.c_proj.weight": "pytorch_model-00005-of-00006.bin",
226
+ "transformer.h.33.ln_1.weight": "pytorch_model-00005-of-00006.bin",
227
+ "transformer.h.33.ln_2.weight": "pytorch_model-00005-of-00006.bin",
228
+ "transformer.h.33.mlp.c_proj.weight": "pytorch_model-00005-of-00006.bin",
229
+ "transformer.h.33.mlp.w1.weight": "pytorch_model-00005-of-00006.bin",
230
+ "transformer.h.33.mlp.w2.weight": "pytorch_model-00005-of-00006.bin",
231
+ "transformer.h.34.attn.c_attn.bias": "pytorch_model-00005-of-00006.bin",
232
+ "transformer.h.34.attn.c_attn.weight": "pytorch_model-00005-of-00006.bin",
233
+ "transformer.h.34.attn.c_proj.weight": "pytorch_model-00005-of-00006.bin",
234
+ "transformer.h.34.ln_1.weight": "pytorch_model-00005-of-00006.bin",
235
+ "transformer.h.34.ln_2.weight": "pytorch_model-00005-of-00006.bin",
236
+ "transformer.h.34.mlp.c_proj.weight": "pytorch_model-00005-of-00006.bin",
237
+ "transformer.h.34.mlp.w1.weight": "pytorch_model-00005-of-00006.bin",
238
+ "transformer.h.34.mlp.w2.weight": "pytorch_model-00005-of-00006.bin",
239
+ "transformer.h.35.attn.c_attn.bias": "pytorch_model-00005-of-00006.bin",
240
+ "transformer.h.35.attn.c_attn.weight": "pytorch_model-00005-of-00006.bin",
241
+ "transformer.h.35.attn.c_proj.weight": "pytorch_model-00005-of-00006.bin",
242
+ "transformer.h.35.ln_1.weight": "pytorch_model-00005-of-00006.bin",
243
+ "transformer.h.35.ln_2.weight": "pytorch_model-00005-of-00006.bin",
244
+ "transformer.h.35.mlp.c_proj.weight": "pytorch_model-00005-of-00006.bin",
245
+ "transformer.h.35.mlp.w1.weight": "pytorch_model-00005-of-00006.bin",
246
+ "transformer.h.35.mlp.w2.weight": "pytorch_model-00005-of-00006.bin",
247
+ "transformer.h.36.attn.c_attn.bias": "pytorch_model-00005-of-00006.bin",
248
+ "transformer.h.36.attn.c_attn.weight": "pytorch_model-00005-of-00006.bin",
249
+ "transformer.h.36.attn.c_proj.weight": "pytorch_model-00005-of-00006.bin",
250
+ "transformer.h.36.ln_1.weight": "pytorch_model-00005-of-00006.bin",
251
+ "transformer.h.36.ln_2.weight": "pytorch_model-00005-of-00006.bin",
252
+ "transformer.h.36.mlp.c_proj.weight": "pytorch_model-00006-of-00006.bin",
253
+ "transformer.h.36.mlp.w1.weight": "pytorch_model-00005-of-00006.bin",
254
+ "transformer.h.36.mlp.w2.weight": "pytorch_model-00006-of-00006.bin",
255
+ "transformer.h.37.attn.c_attn.bias": "pytorch_model-00006-of-00006.bin",
256
+ "transformer.h.37.attn.c_attn.weight": "pytorch_model-00006-of-00006.bin",
257
+ "transformer.h.37.attn.c_proj.weight": "pytorch_model-00006-of-00006.bin",
258
+ "transformer.h.37.ln_1.weight": "pytorch_model-00006-of-00006.bin",
259
+ "transformer.h.37.ln_2.weight": "pytorch_model-00006-of-00006.bin",
260
+ "transformer.h.37.mlp.c_proj.weight": "pytorch_model-00006-of-00006.bin",
261
+ "transformer.h.37.mlp.w1.weight": "pytorch_model-00006-of-00006.bin",
262
+ "transformer.h.37.mlp.w2.weight": "pytorch_model-00006-of-00006.bin",
263
+ "transformer.h.38.attn.c_attn.bias": "pytorch_model-00006-of-00006.bin",
264
+ "transformer.h.38.attn.c_attn.weight": "pytorch_model-00006-of-00006.bin",
265
+ "transformer.h.38.attn.c_proj.weight": "pytorch_model-00006-of-00006.bin",
266
+ "transformer.h.38.ln_1.weight": "pytorch_model-00006-of-00006.bin",
267
+ "transformer.h.38.ln_2.weight": "pytorch_model-00006-of-00006.bin",
268
+ "transformer.h.38.mlp.c_proj.weight": "pytorch_model-00006-of-00006.bin",
269
+ "transformer.h.38.mlp.w1.weight": "pytorch_model-00006-of-00006.bin",
270
+ "transformer.h.38.mlp.w2.weight": "pytorch_model-00006-of-00006.bin",
271
+ "transformer.h.39.attn.c_attn.bias": "pytorch_model-00006-of-00006.bin",
272
+ "transformer.h.39.attn.c_attn.weight": "pytorch_model-00006-of-00006.bin",
273
+ "transformer.h.39.attn.c_proj.weight": "pytorch_model-00006-of-00006.bin",
274
+ "transformer.h.39.ln_1.weight": "pytorch_model-00006-of-00006.bin",
275
+ "transformer.h.39.ln_2.weight": "pytorch_model-00006-of-00006.bin",
276
+ "transformer.h.39.mlp.c_proj.weight": "pytorch_model-00006-of-00006.bin",
277
+ "transformer.h.39.mlp.w1.weight": "pytorch_model-00006-of-00006.bin",
278
+ "transformer.h.39.mlp.w2.weight": "pytorch_model-00006-of-00006.bin",
279
+ "transformer.h.4.attn.c_attn.bias": "pytorch_model-00001-of-00006.bin",
280
+ "transformer.h.4.attn.c_attn.weight": "pytorch_model-00001-of-00006.bin",
281
+ "transformer.h.4.attn.c_proj.weight": "pytorch_model-00001-of-00006.bin",
282
+ "transformer.h.4.ln_1.weight": "pytorch_model-00001-of-00006.bin",
283
+ "transformer.h.4.ln_2.weight": "pytorch_model-00001-of-00006.bin",
284
+ "transformer.h.4.mlp.c_proj.weight": "pytorch_model-00001-of-00006.bin",
285
+ "transformer.h.4.mlp.w1.weight": "pytorch_model-00001-of-00006.bin",
286
+ "transformer.h.4.mlp.w2.weight": "pytorch_model-00001-of-00006.bin",
287
+ "transformer.h.5.attn.c_attn.bias": "pytorch_model-00001-of-00006.bin",
288
+ "transformer.h.5.attn.c_attn.weight": "pytorch_model-00001-of-00006.bin",
289
+ "transformer.h.5.attn.c_proj.weight": "pytorch_model-00001-of-00006.bin",
290
+ "transformer.h.5.ln_1.weight": "pytorch_model-00001-of-00006.bin",
291
+ "transformer.h.5.ln_2.weight": "pytorch_model-00001-of-00006.bin",
292
+ "transformer.h.5.mlp.c_proj.weight": "pytorch_model-00002-of-00006.bin",
293
+ "transformer.h.5.mlp.w1.weight": "pytorch_model-00002-of-00006.bin",
294
+ "transformer.h.5.mlp.w2.weight": "pytorch_model-00002-of-00006.bin",
295
+ "transformer.h.6.attn.c_attn.bias": "pytorch_model-00002-of-00006.bin",
296
+ "transformer.h.6.attn.c_attn.weight": "pytorch_model-00002-of-00006.bin",
297
+ "transformer.h.6.attn.c_proj.weight": "pytorch_model-00002-of-00006.bin",
298
+ "transformer.h.6.ln_1.weight": "pytorch_model-00002-of-00006.bin",
299
+ "transformer.h.6.ln_2.weight": "pytorch_model-00002-of-00006.bin",
300
+ "transformer.h.6.mlp.c_proj.weight": "pytorch_model-00002-of-00006.bin",
301
+ "transformer.h.6.mlp.w1.weight": "pytorch_model-00002-of-00006.bin",
302
+ "transformer.h.6.mlp.w2.weight": "pytorch_model-00002-of-00006.bin",
303
+ "transformer.h.7.attn.c_attn.bias": "pytorch_model-00002-of-00006.bin",
304
+ "transformer.h.7.attn.c_attn.weight": "pytorch_model-00002-of-00006.bin",
305
+ "transformer.h.7.attn.c_proj.weight": "pytorch_model-00002-of-00006.bin",
306
+ "transformer.h.7.ln_1.weight": "pytorch_model-00002-of-00006.bin",
307
+ "transformer.h.7.ln_2.weight": "pytorch_model-00002-of-00006.bin",
308
+ "transformer.h.7.mlp.c_proj.weight": "pytorch_model-00002-of-00006.bin",
309
+ "transformer.h.7.mlp.w1.weight": "pytorch_model-00002-of-00006.bin",
310
+ "transformer.h.7.mlp.w2.weight": "pytorch_model-00002-of-00006.bin",
311
+ "transformer.h.8.attn.c_attn.bias": "pytorch_model-00002-of-00006.bin",
312
+ "transformer.h.8.attn.c_attn.weight": "pytorch_model-00002-of-00006.bin",
313
+ "transformer.h.8.attn.c_proj.weight": "pytorch_model-00002-of-00006.bin",
314
+ "transformer.h.8.ln_1.weight": "pytorch_model-00002-of-00006.bin",
315
+ "transformer.h.8.ln_2.weight": "pytorch_model-00002-of-00006.bin",
316
+ "transformer.h.8.mlp.c_proj.weight": "pytorch_model-00002-of-00006.bin",
317
+ "transformer.h.8.mlp.w1.weight": "pytorch_model-00002-of-00006.bin",
318
+ "transformer.h.8.mlp.w2.weight": "pytorch_model-00002-of-00006.bin",
319
+ "transformer.h.9.attn.c_attn.bias": "pytorch_model-00002-of-00006.bin",
320
+ "transformer.h.9.attn.c_attn.weight": "pytorch_model-00002-of-00006.bin",
321
+ "transformer.h.9.attn.c_proj.weight": "pytorch_model-00002-of-00006.bin",
322
+ "transformer.h.9.ln_1.weight": "pytorch_model-00002-of-00006.bin",
323
+ "transformer.h.9.ln_2.weight": "pytorch_model-00002-of-00006.bin",
324
+ "transformer.h.9.mlp.c_proj.weight": "pytorch_model-00002-of-00006.bin",
325
+ "transformer.h.9.mlp.w1.weight": "pytorch_model-00002-of-00006.bin",
326
+ "transformer.h.9.mlp.w2.weight": "pytorch_model-00002-of-00006.bin",
327
+ "transformer.ln_f.weight": "pytorch_model-00006-of-00006.bin",
328
+ "transformer.wte.weight": "pytorch_model-00001-of-00006.bin"
329
+ }
330
+ }