wndknd commited on
Commit
624e268
1 Parent(s): 055df35

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +2 -137
README.md CHANGED
@@ -1,139 +1,4 @@
1
- ---
2
- license: llama2
3
- base_model: codellama/CodeLlama-7b-hf
4
- tags:
5
- - generated_from_trainer
6
- model-index:
7
- - name: out
8
- results: []
9
- ---
10
 
11
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
- should probably proofread and complete it, then remove this comment. -->
13
 
14
- [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
15
- <details><summary>See axolotl config</summary>
16
-
17
- axolotl version: `0.4.0`
18
- ```yaml
19
- base_model: codellama/CodeLlama-7b-hf
20
- tokenizer_type: LlamaTokenizer
21
- is_llama_derived_model: true
22
-
23
- load_in_8bit: false
24
- load_in_4bit: false
25
- strict: false
26
-
27
- datasets:
28
- - path: wndknd/stata
29
- type: completion
30
- dataset_prepared_path: last_run_prepared
31
- val_set_size: 0.05
32
- output_dir: ./out
33
-
34
- sequence_len: 4096
35
- sample_packing: true
36
- pad_to_sequence_len: true
37
-
38
- adapter:
39
- lora_model_dir:
40
- lora_r:
41
- lora_alpha:
42
- lora_dropout:
43
- lora_target_linear:
44
- lora_fan_in_fan_out:
45
-
46
- wandb_project:
47
- wandb_entity:
48
- wandb_watch:
49
- wandb_name:
50
- wandb_log_model:
51
-
52
- gradient_accumulation_steps: 1
53
- micro_batch_size: 1
54
- num_epochs: 1
55
- optimizer: adamw_bnb_8bit
56
- lr_scheduler: cosine
57
- learning_rate: 0.0002
58
-
59
- train_on_inputs: false
60
- group_by_length: false
61
- bf16: auto
62
- fp16:
63
- tf32: false
64
-
65
- gradient_checkpointing: true
66
- early_stopping_patience:
67
- resume_from_checkpoint:
68
- local_rank:
69
- logging_steps: 1
70
- xformers_attention:
71
- flash_attention: true
72
- flash_attn_cross_entropy: false
73
- flash_attn_rms_norm: true
74
- flash_attn_fuse_qkv: false
75
- flash_attn_fuse_mlp: true
76
-
77
- warmup_steps: 100
78
- evals_per_epoch: 4
79
- eval_table_size:
80
- saves_per_epoch: 1
81
- debug:
82
- deepspeed: #deepspeed_configs/zero2.json # multi-gpu only
83
- weight_decay: 0.1
84
- fsdp:
85
- fsdp_config:
86
- special_tokens:
87
-
88
- ```
89
-
90
- </details><br>
91
-
92
- # out
93
-
94
- This model is a fine-tuned version of [codellama/CodeLlama-7b-hf](https://huggingface.co/codellama/CodeLlama-7b-hf) on the None dataset.
95
- It achieves the following results on the evaluation set:
96
- - Loss: 1.0146
97
-
98
- ## Model description
99
-
100
- More information needed
101
-
102
- ## Intended uses & limitations
103
-
104
- More information needed
105
-
106
- ## Training and evaluation data
107
-
108
- More information needed
109
-
110
- ## Training procedure
111
-
112
- ### Training hyperparameters
113
-
114
- The following hyperparameters were used during training:
115
- - learning_rate: 0.0002
116
- - train_batch_size: 1
117
- - eval_batch_size: 1
118
- - seed: 42
119
- - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
120
- - lr_scheduler_type: cosine
121
- - lr_scheduler_warmup_steps: 100
122
- - num_epochs: 1
123
-
124
- ### Training results
125
-
126
- | Training Loss | Epoch | Step | Validation Loss |
127
- |:-------------:|:-----:|:----:|:---------------:|
128
- | 0.4999 | 0.0 | 1 | 1.0117 |
129
- | 2.6581 | 0.25 | 129 | 1.6428 |
130
- | 1.4897 | 0.5 | 258 | 1.3088 |
131
- | 0.0849 | 0.75 | 387 | 1.0146 |
132
-
133
-
134
- ### Framework versions
135
-
136
- - Transformers 4.37.0
137
- - Pytorch 2.1.1+cu121
138
- - Datasets 2.16.1
139
- - Tokenizers 0.15.0
 
 
 
 
 
 
 
 
 
 
1
 
2
+ [<img src="https://replicate.delivery/pbxt/hUbveieQTckemJZxBKfeevvU27tecETYadPoYkNBsyenJvASSA/out-3.png" alt="CodeLLama Stata 7B" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
 
3
 
4
+ A finetuned CodeLlama-7b on 100.000 stata tokens