--- license: llama2 base_model: codellama/CodeLlama-7b-hf tags: - generated_from_trainer model-index: - name: out results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.0` ```yaml base_model: codellama/CodeLlama-7b-hf tokenizer_type: LlamaTokenizer is_llama_derived_model: true load_in_8bit: false load_in_4bit: false strict: false datasets: - path: wndknd/stata type: completion dataset_prepared_path: last_run_prepared val_set_size: 0.05 output_dir: ./out sequence_len: 4096 sample_packing: true pad_to_sequence_len: true adapter: lora_model_dir: lora_r: lora_alpha: lora_dropout: lora_target_linear: lora_fan_in_fan_out: wandb_project: wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 1 micro_batch_size: 1 num_epochs: 1 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true flash_attn_cross_entropy: false flash_attn_rms_norm: true flash_attn_fuse_qkv: false flash_attn_fuse_mlp: true warmup_steps: 100 evals_per_epoch: 4 eval_table_size: saves_per_epoch: 1 debug: deepspeed: #deepspeed_configs/zero2.json # multi-gpu only weight_decay: 0.1 fsdp: fsdp_config: special_tokens: ```

# out This model is a fine-tuned version of [codellama/CodeLlama-7b-hf](https://huggingface.co/codellama/CodeLlama-7b-hf) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0146 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.4999 | 0.0 | 1 | 1.0117 | | 2.6581 | 0.25 | 129 | 1.6428 | | 1.4897 | 0.5 | 258 | 1.3088 | | 0.0849 | 0.75 | 387 | 1.0146 | ### Framework versions - Transformers 4.37.0 - Pytorch 2.1.1+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0