wnordmann commited on
Commit
b455228
1 Parent(s): ca790c6
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 245.70 +/- 21.78
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fc69193a670>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc69193a700>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc69193a790>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc69193a820>", "_build": "<function ActorCriticPolicy._build at 0x7fc69193a8b0>", "forward": "<function ActorCriticPolicy.forward at 0x7fc69193a940>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fc69193a9d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc69193aa60>", "_predict": "<function ActorCriticPolicy._predict at 0x7fc69193aaf0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc69193ab80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc69193ac10>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc69193aca0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fc691929990>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673743622726576730, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGbWfbyuqaC6s7IiuZ5YHLQK9co6wGo7OAAAgD8AAIA/szxuPXGdXbmZHiI5gkUNNKjmZzteGkW4AACAPwAAgD/N9kU9/9IxP/rhcD80HjK+Pzbyvfb17z4AAAAAAAAAAJq5Hjr2mE+6nkN4uBXJjzLdKRq7+0SPNwAAgD8AAIA/M9qdPB8FibkkAUy64JFStb5p6DtVh3c5AACAPwAAgD8A6TG9SEeLurYNyzq8x/E1cXLAuSvw6rkAAIA/AACAP2ZRZ720F6I/fc8Zvb+BSr7/Qv+9lLQlPQAAAAAAAAAAZuYBu3l2sT/tbs298iALv54MFTt5f7c8AAAAAAAAAABzhno+f6rqPpl8mb5d73y+FR04POpPYL0AAAAAAAAAAM38o7qu0ai6TmI6O/XsQDd9E945gtAkugAAgD8AAIA/s8atPfZ8ULoAgZE5JnUQNJQF67kCoqS4AACAPwAAAAAAEhS8KUwTurDpOjhGCSUzR0kRu20FWbcAAIA/AACAP2YBID2Jeus+YY8RPd6veL4KAK09AUeCvQAAAAAAAAAAmvbWvGnle7zGG9e7eSKZPMBd2L29d3Y9AACAPwAAgD8ASGS8KeB7ujYcFTpVYcUyaJh3Ojo5LrkAAIA/AACAP5o9bDyPZjq6Ob0wO95PnzVt+WW6mFJRugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIi6pf6fzzY0CUhpRSlIwBbJRN6AOMAXSUR0CeAjKHO8kEdX2UKGgGaAloD0MIa0Wb49xoZUCUhpRSlGgVTegDaBZHQJ4b12fTTfB1fZQoaAZoCWgPQwjou1tZolZjQJSGlFKUaBVN6ANoFkdAnh1SYw7DEXV9lChoBmgJaA9DCD0QWaSJoGJAlIaUUpRoFU3oA2gWR0CeHw94u9OAdX2UKGgGaAloD0MIhsYTQZxpYkCUhpRSlGgVTegDaBZHQJ4fMENe+mF1fZQoaAZoCWgPQwgNiuYBLJ1jQJSGlFKUaBVN6ANoFkdAniHqTGHYYnV9lChoBmgJaA9DCN4CCYofZWFAlIaUUpRoFU3oA2gWR0CeI3FWXC0odX2UKGgGaAloD0MIuwopP6kcYkCUhpRSlGgVTegDaBZHQJ4lwGgSOBF1fZQoaAZoCWgPQwiP39v054dnQJSGlFKUaBVN6ANoFkdAniexpxm03XV9lChoBmgJaA9DCLH6IwyDM2BAlIaUUpRoFU3oA2gWR0CeK7PoV2zOdX2UKGgGaAloD0MIpdk8DoNNP0CUhpRSlGgVS+5oFkdAniwGvOhTO3V9lChoBmgJaA9DCILknUOZQmdAlIaUUpRoFU3oA2gWR0CeNU6mfoRqdX2UKGgGaAloD0MIt39lpckUZUCUhpRSlGgVTegDaBZHQJ43340uUUx1fZQoaAZoCWgPQwjDu1zE9/lhQJSGlFKUaBVN6ANoFkdAnj0bLt/nXHV9lChoBmgJaA9DCEw2HmyxQmNAlIaUUpRoFU3oA2gWR0CeRfgWrOqvdX2UKGgGaAloD0MIGQEVjiCfX0CUhpRSlGgVTegDaBZHQJ5MTpHI6sB1fZQoaAZoCWgPQwgv/UtSmWRiQJSGlFKUaBVN6ANoFkdAnkzJKSPluHV9lChoBmgJaA9DCNjw9ErZnmVAlIaUUpRoFU3oA2gWR0CeVEzzErGzdX2UKGgGaAloD0MIO29js6OcYECUhpRSlGgVTegDaBZHQJ5ujqNZNfx1fZQoaAZoCWgPQwhPPGcLCKxmQJSGlFKUaBVN6ANoFkdAnnAXWSU1RHV9lChoBmgJaA9DCGQke4QaG2dAlIaUUpRoFU3oA2gWR0CecebB42S/dX2UKGgGaAloD0MIxvzc0BTUYUCUhpRSlGgVTegDaBZHQJ51DTgEU0x1fZQoaAZoCWgPQwht5LopZbhmQJSGlFKUaBVN6ANoFkdAnnarHAAQx3V9lChoBmgJaA9DCJ+qQgMxhWNAlIaUUpRoFU3oA2gWR0CeeVtmL9/CdX2UKGgGaAloD0MIaEC9GfUVcECUhpRSlGgVTYMBaBZHQJ55zWI42jx1fZQoaAZoCWgPQwiWk1D6QhlkQJSGlFKUaBVN6ANoFkdAnntJhfBvaXV9lChoBmgJaA9DCHXmHhI+oWRAlIaUUpRoFU3oA2gWR0Cef3AjIJZ4dX2UKGgGaAloD0MIX5fhP12dYECUhpRSlGgVTegDaBZHQJ5/zV5KODJ1fZQoaAZoCWgPQwiSzyue+m5jQJSGlFKUaBVN6ANoFkdAnop68pTdcnV9lChoBmgJaA9DCOwYV1wchGJAlIaUUpRoFU3oA2gWR0CejYqwhW5pdX2UKGgGaAloD0MIw0gvavdqX0CUhpRSlGgVTegDaBZHQJ6TnS3LFGZ1fZQoaAZoCWgPQwi31awzfrhxQJSGlFKUaBVNIwJoFkdAnpV/Fm4Aj3V9lChoBmgJaA9DCHf1KjK68G9AlIaUUpRoFU3ZAWgWR0CemURlYlpodX2UKGgGaAloD0MITDPd6yTQZECUhpRSlGgVTegDaBZHQJ6c9Ys/Y8N1fZQoaAZoCWgPQwhzol2FlAxjQJSGlFKUaBVN6ANoFkdAnqLwVoHs1XV9lChoBmgJaA9DCJ3YQ/tYjlFAlIaUUpRoFU0wAWgWR0CeqkDKYAsDdX2UKGgGaAloD0MIeZJ0zWTYZECUhpRSlGgVTegDaBZHQJ6qfHdXT3J1fZQoaAZoCWgPQwgEWrqC7YptQJSGlFKUaBVN8gJoFkdAnq4Y+Sr5qXV9lChoBmgJaA9DCFhzgGAOhGBAlIaUUpRoFU3oA2gWR0CexA0gr6LwdX2UKGgGaAloD0MI8SxBRkDgXUCUhpRSlGgVTegDaBZHQJ7Fe/UONHZ1fZQoaAZoCWgPQwglsDkHz6dxQJSGlFKUaBVNfQFoFkdAnsYj7uUliXV9lChoBmgJaA9DCKxWJvxS+GNAlIaUUpRoFU3oA2gWR0CeyfvPkaMrdX2UKGgGaAloD0MI/n3GhQOEUECUhpRSlGgVS+VoFkdAnstn4CZF5XV9lChoBmgJaA9DCBtkkpGzxGJAlIaUUpRoFU3oA2gWR0Cey2ju8brDdX2UKGgGaAloD0MICwithy9UYECUhpRSlGgVTegDaBZHQJ7N+cCo0hx1fZQoaAZoCWgPQwi3tBoSd8VkQJSGlFKUaBVN6ANoFkdAntNrxRVIZ3V9lChoBmgJaA9DCOnuOhvycF9AlIaUUpRoFU3oA2gWR0Ce08qnWJ7+dX2UKGgGaAloD0MIq5hKP+HwbECUhpRSlGgVTTMDaBZHQJ7U8kmhM8J1fZQoaAZoCWgPQwiZLVkVoUVxQJSGlFKUaBVNuAFoFkdAntbt1hb4anV9lChoBmgJaA9DCA9fJooQrGRAlIaUUpRoFU3oA2gWR0Ce3atRNyo5dX2UKGgGaAloD0MIlUbM7HPCbkCUhpRSlGgVTWEBaBZHQJ7f/HXEqDt1fZQoaAZoCWgPQwg1t0JYDShgQJSGlFKUaBVN6ANoFkdAnuY8bzbvgHV9lChoBmgJaA9DCI20VN4O12lAlIaUUpRoFU13AmgWR0Ce5/HI6r/9dX2UKGgGaAloD0MIIxEawcaTZkCUhpRSlGgVTegDaBZHQJ7viDYh+v11fZQoaAZoCWgPQwiAgosVNZleQJSGlFKUaBVN6ANoFkdAnvYKe05U+HV9lChoBmgJaA9DCBN/FHVmn2NAlIaUUpRoFU3oA2gWR0CfBT1oQFs6dX2UKGgGaAloD0MI06HT826sYECUhpRSlGgVTegDaBZHQJ8bWOwPiDN1fZQoaAZoCWgPQwiTGtoArEVyQJSGlFKUaBVN4QJoFkdAnxvtcjZ+QXV9lChoBmgJaA9DCGtiga/odmFAlIaUUpRoFU3oA2gWR0CfHCK/VRUFdX2UKGgGaAloD0MIOXzSiQRKX0CUhpRSlGgVTegDaBZHQJ8hBD3M6il1fZQoaAZoCWgPQwg+ITtv4+ZjQJSGlFKUaBVN6ANoFkdAnyK3H7xd6nV9lChoBmgJaA9DCNC4cCAk2WxAlIaUUpRoFU1OA2gWR0CfIrskY4yXdX2UKGgGaAloD0MIFqbvNQSgYUCUhpRSlGgVTegDaBZHQJ8lk4uK4x11fZQoaAZoCWgPQwiCkCxgAt9KQJSGlFKUaBVNKgFoFkdAnytA3gk1M3V9lChoBmgJaA9DCG77HvVX4WFAlIaUUpRoFU3oA2gWR0CfLENTLns+dX2UKGgGaAloD0MIotReRFu1ZUCUhpRSlGgVTegDaBZHQJ8uPCBPKuB1fZQoaAZoCWgPQwj3rdaJi1FyQJSGlFKUaBVNNANoFkdAnzE6Ieo1k3V9lChoBmgJaA9DCPexgt8G22JAlIaUUpRoFU3oA2gWR0CfNQksSTQmdX2UKGgGaAloD0MI2ekHdZFAZECUhpRSlGgVTegDaBZHQJ83PUsnRb91fZQoaAZoCWgPQwjkgjP4e0lsQJSGlFKUaBVN1QFoFkdAnzhKcZtNz3V9lChoBmgJaA9DCPSo+L+j/m5AlIaUUpRoFU0FAmgWR0CfOpqXWvr4dX2UKGgGaAloD0MIy9qmeFzHcUCUhpRSlGgVTWIBaBZHQJ86tlsguAZ1fZQoaAZoCWgPQwhfX+tSI+tuQJSGlFKUaBVNFwJoFkdAnzwGo3rD63V9lChoBmgJaA9DCP/omzSNmWRAlIaUUpRoFU3oA2gWR0CfPcy6+WWydX2UKGgGaAloD0MImKHxRBCcbkCUhpRSlGgVTewBaBZHQJ8/MSkCV8l1fZQoaAZoCWgPQwjMJsCw/JZTQJSGlFKUaBVL82gWR0CfQy4axX4kdX2UKGgGaAloD0MIJo+n5QdzZ0CUhpRSlGgVTegDaBZHQJ9Du1/lQuV1fZQoaAZoCWgPQwhhb2JITnBkQJSGlFKUaBVN6ANoFkdAn0koigTRIHV9lChoBmgJaA9DCB11dFxNJXJAlIaUUpRoFU2LAWgWR0CfU0LOAy2ydX2UKGgGaAloD0MILgCN0mX4cUCUhpRSlGgVTcgCaBZHQJ9aCTW5H3F1fZQoaAZoCWgPQwgfgNQmTg5wQJSGlFKUaBVNNAJoFkdAn3FyFbmlqXV9lChoBmgJaA9DCOs4fqg0CHBAlIaUUpRoFU28A2gWR0CfczR+z+m4dX2UKGgGaAloD0MI8G36sx/kXUCUhpRSlGgVTegDaBZHQJ90ThegL7Z1fZQoaAZoCWgPQwgqkUQvY4JyQJSGlFKUaBVN/wFoFkdAn3u4crAgxXV9lChoBmgJaA9DCB6n6Egu/WdAlIaUUpRoFU3oA2gWR0CfgTZsbedkdX2UKGgGaAloD0MIzosTX+3sY0CUhpRSlGgVTegDaBZHQJ+EtP1tfol1fZQoaAZoCWgPQwh0CvKzEeZtQJSGlFKUaBVNUwNoFkdAn4eFF2FFlXV9lChoBmgJaA9DCCdQxCIGiGFAlIaUUpRoFU3oA2gWR0Cfh9IQe3hGdX2UKGgGaAloD0MIUvAUciWwYkCUhpRSlGgVTegDaBZHQJ+NopEx7At1fZQoaAZoCWgPQwiOeR1xyAtyQJSGlFKUaBVNHwNoFkdAn444xYaHbnV9lChoBmgJaA9DCIGU2LU982ZAlIaUUpRoFU3oA2gWR0CfkqQKa5PNdX2UKGgGaAloD0MIl+E/3cCbZECUhpRSlGgVTegDaBZHQJ+U1eUpuuR1fZQoaAZoCWgPQwhETIkk+lFjQJSGlFKUaBVN6ANoFkdAn5aCS/0ulHV9lChoBmgJaA9DCPXb14FzqjJAlIaUUpRoFU0WAWgWR0Cfn/g5R0lrdX2UKGgGaAloD0MIoS+9/bmjYkCUhpRSlGgVTegDaBZHQJ+h++tbLU11fZQoaAZoCWgPQwh6jsh3KXdvQJSGlFKUaBVNBwJoFkdAn6dAkona4HV9lChoBmgJaA9DCG4yqgxji29AlIaUUpRoFU3YA2gWR0Cfqv+BpYcOdX2UKGgGaAloD0MIwf9WsuNBckCUhpRSlGgVTVgDaBZHQJ+twUIsyzp1fZQoaAZoCWgPQwhXdsHgGjpmQJSGlFKUaBVN6ANoFkdAn7Hz9fkWAXV9lChoBmgJaA9DCN/42jNLa2dAlIaUUpRoFU3oA2gWR0CftICA+Y+jdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-Lunar-lander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7f63ef63b7005029a86d1874f6123d396cb72e9fd32c02c6a75e16250d4c36c5
3
+ size 147420
ppo-Lunar-lander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
ppo-Lunar-lander-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fc69193a670>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc69193a700>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc69193a790>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc69193a820>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fc69193a8b0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fc69193a940>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fc69193a9d0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc69193aa60>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fc69193aaf0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc69193ab80>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc69193ac10>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc69193aca0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7fc691929990>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 1015808,
47
+ "_total_timesteps": 1000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1673743622726576730,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGbWfbyuqaC6s7IiuZ5YHLQK9co6wGo7OAAAgD8AAIA/szxuPXGdXbmZHiI5gkUNNKjmZzteGkW4AACAPwAAgD/N9kU9/9IxP/rhcD80HjK+Pzbyvfb17z4AAAAAAAAAAJq5Hjr2mE+6nkN4uBXJjzLdKRq7+0SPNwAAgD8AAIA/M9qdPB8FibkkAUy64JFStb5p6DtVh3c5AACAPwAAgD8A6TG9SEeLurYNyzq8x/E1cXLAuSvw6rkAAIA/AACAP2ZRZ720F6I/fc8Zvb+BSr7/Qv+9lLQlPQAAAAAAAAAAZuYBu3l2sT/tbs298iALv54MFTt5f7c8AAAAAAAAAABzhno+f6rqPpl8mb5d73y+FR04POpPYL0AAAAAAAAAAM38o7qu0ai6TmI6O/XsQDd9E945gtAkugAAgD8AAIA/s8atPfZ8ULoAgZE5JnUQNJQF67kCoqS4AACAPwAAAAAAEhS8KUwTurDpOjhGCSUzR0kRu20FWbcAAIA/AACAP2YBID2Jeus+YY8RPd6veL4KAK09AUeCvQAAAAAAAAAAmvbWvGnle7zGG9e7eSKZPMBd2L29d3Y9AACAPwAAgD8ASGS8KeB7ujYcFTpVYcUyaJh3Ojo5LrkAAIA/AACAP5o9bDyPZjq6Ob0wO95PnzVt+WW6mFJRugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.015808000000000044,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVfhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIi6pf6fzzY0CUhpRSlIwBbJRN6AOMAXSUR0CeAjKHO8kEdX2UKGgGaAloD0MIa0Wb49xoZUCUhpRSlGgVTegDaBZHQJ4b12fTTfB1fZQoaAZoCWgPQwjou1tZolZjQJSGlFKUaBVN6ANoFkdAnh1SYw7DEXV9lChoBmgJaA9DCD0QWaSJoGJAlIaUUpRoFU3oA2gWR0CeHw94u9OAdX2UKGgGaAloD0MIhsYTQZxpYkCUhpRSlGgVTegDaBZHQJ4fMENe+mF1fZQoaAZoCWgPQwgNiuYBLJ1jQJSGlFKUaBVN6ANoFkdAniHqTGHYYnV9lChoBmgJaA9DCN4CCYofZWFAlIaUUpRoFU3oA2gWR0CeI3FWXC0odX2UKGgGaAloD0MIuwopP6kcYkCUhpRSlGgVTegDaBZHQJ4lwGgSOBF1fZQoaAZoCWgPQwiP39v054dnQJSGlFKUaBVN6ANoFkdAniexpxm03XV9lChoBmgJaA9DCLH6IwyDM2BAlIaUUpRoFU3oA2gWR0CeK7PoV2zOdX2UKGgGaAloD0MIpdk8DoNNP0CUhpRSlGgVS+5oFkdAniwGvOhTO3V9lChoBmgJaA9DCILknUOZQmdAlIaUUpRoFU3oA2gWR0CeNU6mfoRqdX2UKGgGaAloD0MIt39lpckUZUCUhpRSlGgVTegDaBZHQJ43340uUUx1fZQoaAZoCWgPQwjDu1zE9/lhQJSGlFKUaBVN6ANoFkdAnj0bLt/nXHV9lChoBmgJaA9DCEw2HmyxQmNAlIaUUpRoFU3oA2gWR0CeRfgWrOqvdX2UKGgGaAloD0MIGQEVjiCfX0CUhpRSlGgVTegDaBZHQJ5MTpHI6sB1fZQoaAZoCWgPQwgv/UtSmWRiQJSGlFKUaBVN6ANoFkdAnkzJKSPluHV9lChoBmgJaA9DCNjw9ErZnmVAlIaUUpRoFU3oA2gWR0CeVEzzErGzdX2UKGgGaAloD0MIO29js6OcYECUhpRSlGgVTegDaBZHQJ5ujqNZNfx1fZQoaAZoCWgPQwhPPGcLCKxmQJSGlFKUaBVN6ANoFkdAnnAXWSU1RHV9lChoBmgJaA9DCGQke4QaG2dAlIaUUpRoFU3oA2gWR0CecebB42S/dX2UKGgGaAloD0MIxvzc0BTUYUCUhpRSlGgVTegDaBZHQJ51DTgEU0x1fZQoaAZoCWgPQwht5LopZbhmQJSGlFKUaBVN6ANoFkdAnnarHAAQx3V9lChoBmgJaA9DCJ+qQgMxhWNAlIaUUpRoFU3oA2gWR0CeeVtmL9/CdX2UKGgGaAloD0MIaEC9GfUVcECUhpRSlGgVTYMBaBZHQJ55zWI42jx1fZQoaAZoCWgPQwiWk1D6QhlkQJSGlFKUaBVN6ANoFkdAnntJhfBvaXV9lChoBmgJaA9DCHXmHhI+oWRAlIaUUpRoFU3oA2gWR0Cef3AjIJZ4dX2UKGgGaAloD0MIX5fhP12dYECUhpRSlGgVTegDaBZHQJ5/zV5KODJ1fZQoaAZoCWgPQwiSzyue+m5jQJSGlFKUaBVN6ANoFkdAnop68pTdcnV9lChoBmgJaA9DCOwYV1wchGJAlIaUUpRoFU3oA2gWR0CejYqwhW5pdX2UKGgGaAloD0MIw0gvavdqX0CUhpRSlGgVTegDaBZHQJ6TnS3LFGZ1fZQoaAZoCWgPQwi31awzfrhxQJSGlFKUaBVNIwJoFkdAnpV/Fm4Aj3V9lChoBmgJaA9DCHf1KjK68G9AlIaUUpRoFU3ZAWgWR0CemURlYlpodX2UKGgGaAloD0MITDPd6yTQZECUhpRSlGgVTegDaBZHQJ6c9Ys/Y8N1fZQoaAZoCWgPQwhzol2FlAxjQJSGlFKUaBVN6ANoFkdAnqLwVoHs1XV9lChoBmgJaA9DCJ3YQ/tYjlFAlIaUUpRoFU0wAWgWR0CeqkDKYAsDdX2UKGgGaAloD0MIeZJ0zWTYZECUhpRSlGgVTegDaBZHQJ6qfHdXT3J1fZQoaAZoCWgPQwgEWrqC7YptQJSGlFKUaBVN8gJoFkdAnq4Y+Sr5qXV9lChoBmgJaA9DCFhzgGAOhGBAlIaUUpRoFU3oA2gWR0CexA0gr6LwdX2UKGgGaAloD0MI8SxBRkDgXUCUhpRSlGgVTegDaBZHQJ7Fe/UONHZ1fZQoaAZoCWgPQwglsDkHz6dxQJSGlFKUaBVNfQFoFkdAnsYj7uUliXV9lChoBmgJaA9DCKxWJvxS+GNAlIaUUpRoFU3oA2gWR0CeyfvPkaMrdX2UKGgGaAloD0MI/n3GhQOEUECUhpRSlGgVS+VoFkdAnstn4CZF5XV9lChoBmgJaA9DCBtkkpGzxGJAlIaUUpRoFU3oA2gWR0Cey2ju8brDdX2UKGgGaAloD0MICwithy9UYECUhpRSlGgVTegDaBZHQJ7N+cCo0hx1fZQoaAZoCWgPQwi3tBoSd8VkQJSGlFKUaBVN6ANoFkdAntNrxRVIZ3V9lChoBmgJaA9DCOnuOhvycF9AlIaUUpRoFU3oA2gWR0Ce08qnWJ7+dX2UKGgGaAloD0MIq5hKP+HwbECUhpRSlGgVTTMDaBZHQJ7U8kmhM8J1fZQoaAZoCWgPQwiZLVkVoUVxQJSGlFKUaBVNuAFoFkdAntbt1hb4anV9lChoBmgJaA9DCA9fJooQrGRAlIaUUpRoFU3oA2gWR0Ce3atRNyo5dX2UKGgGaAloD0MIlUbM7HPCbkCUhpRSlGgVTWEBaBZHQJ7f/HXEqDt1fZQoaAZoCWgPQwg1t0JYDShgQJSGlFKUaBVN6ANoFkdAnuY8bzbvgHV9lChoBmgJaA9DCI20VN4O12lAlIaUUpRoFU13AmgWR0Ce5/HI6r/9dX2UKGgGaAloD0MIIxEawcaTZkCUhpRSlGgVTegDaBZHQJ7viDYh+v11fZQoaAZoCWgPQwiAgosVNZleQJSGlFKUaBVN6ANoFkdAnvYKe05U+HV9lChoBmgJaA9DCBN/FHVmn2NAlIaUUpRoFU3oA2gWR0CfBT1oQFs6dX2UKGgGaAloD0MI06HT826sYECUhpRSlGgVTegDaBZHQJ8bWOwPiDN1fZQoaAZoCWgPQwiTGtoArEVyQJSGlFKUaBVN4QJoFkdAnxvtcjZ+QXV9lChoBmgJaA9DCGtiga/odmFAlIaUUpRoFU3oA2gWR0CfHCK/VRUFdX2UKGgGaAloD0MIOXzSiQRKX0CUhpRSlGgVTegDaBZHQJ8hBD3M6il1fZQoaAZoCWgPQwg+ITtv4+ZjQJSGlFKUaBVN6ANoFkdAnyK3H7xd6nV9lChoBmgJaA9DCNC4cCAk2WxAlIaUUpRoFU1OA2gWR0CfIrskY4yXdX2UKGgGaAloD0MIFqbvNQSgYUCUhpRSlGgVTegDaBZHQJ8lk4uK4x11fZQoaAZoCWgPQwiCkCxgAt9KQJSGlFKUaBVNKgFoFkdAnytA3gk1M3V9lChoBmgJaA9DCG77HvVX4WFAlIaUUpRoFU3oA2gWR0CfLENTLns+dX2UKGgGaAloD0MIotReRFu1ZUCUhpRSlGgVTegDaBZHQJ8uPCBPKuB1fZQoaAZoCWgPQwj3rdaJi1FyQJSGlFKUaBVNNANoFkdAnzE6Ieo1k3V9lChoBmgJaA9DCPexgt8G22JAlIaUUpRoFU3oA2gWR0CfNQksSTQmdX2UKGgGaAloD0MI2ekHdZFAZECUhpRSlGgVTegDaBZHQJ83PUsnRb91fZQoaAZoCWgPQwjkgjP4e0lsQJSGlFKUaBVN1QFoFkdAnzhKcZtNz3V9lChoBmgJaA9DCPSo+L+j/m5AlIaUUpRoFU0FAmgWR0CfOpqXWvr4dX2UKGgGaAloD0MIy9qmeFzHcUCUhpRSlGgVTWIBaBZHQJ86tlsguAZ1fZQoaAZoCWgPQwhfX+tSI+tuQJSGlFKUaBVNFwJoFkdAnzwGo3rD63V9lChoBmgJaA9DCP/omzSNmWRAlIaUUpRoFU3oA2gWR0CfPcy6+WWydX2UKGgGaAloD0MImKHxRBCcbkCUhpRSlGgVTewBaBZHQJ8/MSkCV8l1fZQoaAZoCWgPQwjMJsCw/JZTQJSGlFKUaBVL82gWR0CfQy4axX4kdX2UKGgGaAloD0MIJo+n5QdzZ0CUhpRSlGgVTegDaBZHQJ9Du1/lQuV1fZQoaAZoCWgPQwhhb2JITnBkQJSGlFKUaBVN6ANoFkdAn0koigTRIHV9lChoBmgJaA9DCB11dFxNJXJAlIaUUpRoFU2LAWgWR0CfU0LOAy2ydX2UKGgGaAloD0MILgCN0mX4cUCUhpRSlGgVTcgCaBZHQJ9aCTW5H3F1fZQoaAZoCWgPQwgfgNQmTg5wQJSGlFKUaBVNNAJoFkdAn3FyFbmlqXV9lChoBmgJaA9DCOs4fqg0CHBAlIaUUpRoFU28A2gWR0CfczR+z+m4dX2UKGgGaAloD0MI8G36sx/kXUCUhpRSlGgVTegDaBZHQJ90ThegL7Z1fZQoaAZoCWgPQwgqkUQvY4JyQJSGlFKUaBVN/wFoFkdAn3u4crAgxXV9lChoBmgJaA9DCB6n6Egu/WdAlIaUUpRoFU3oA2gWR0CfgTZsbedkdX2UKGgGaAloD0MIzosTX+3sY0CUhpRSlGgVTegDaBZHQJ+EtP1tfol1fZQoaAZoCWgPQwh0CvKzEeZtQJSGlFKUaBVNUwNoFkdAn4eFF2FFlXV9lChoBmgJaA9DCCdQxCIGiGFAlIaUUpRoFU3oA2gWR0Cfh9IQe3hGdX2UKGgGaAloD0MIUvAUciWwYkCUhpRSlGgVTegDaBZHQJ+NopEx7At1fZQoaAZoCWgPQwiOeR1xyAtyQJSGlFKUaBVNHwNoFkdAn444xYaHbnV9lChoBmgJaA9DCIGU2LU982ZAlIaUUpRoFU3oA2gWR0CfkqQKa5PNdX2UKGgGaAloD0MIl+E/3cCbZECUhpRSlGgVTegDaBZHQJ+U1eUpuuR1fZQoaAZoCWgPQwhETIkk+lFjQJSGlFKUaBVN6ANoFkdAn5aCS/0ulHV9lChoBmgJaA9DCPXb14FzqjJAlIaUUpRoFU0WAWgWR0Cfn/g5R0lrdX2UKGgGaAloD0MIoS+9/bmjYkCUhpRSlGgVTegDaBZHQJ+h++tbLU11fZQoaAZoCWgPQwh6jsh3KXdvQJSGlFKUaBVNBwJoFkdAn6dAkona4HV9lChoBmgJaA9DCG4yqgxji29AlIaUUpRoFU3YA2gWR0Cfqv+BpYcOdX2UKGgGaAloD0MIwf9WsuNBckCUhpRSlGgVTVgDaBZHQJ+twUIsyzp1fZQoaAZoCWgPQwhXdsHgGjpmQJSGlFKUaBVN6ANoFkdAn7Hz9fkWAXV9lChoBmgJaA9DCN/42jNLa2dAlIaUUpRoFU3oA2gWR0CftICA+Y+jdWUu"
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 248,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
ppo-Lunar-lander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3c8d31701a0e22746d40e7dd44b375298f65d9239c19b9e20fffae2afd1d3ca2
3
+ size 87929
ppo-Lunar-lander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2b51b9807ffa20d7a98b3d26be007cdff355c3cff662819e4e6ce8a00adc36b5
3
+ size 43393
ppo-Lunar-lander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-Lunar-lander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.0+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (258 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 245.6974805233267, "std_reward": 21.784382617462253, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-15T01:47:54.980244"}