--- license: apache-2.0 tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-base-cased-finetuned-conll2003 results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 args: conll2003 metrics: - name: Precision type: precision value: 0.9409771754636234 - name: Recall type: recall value: 0.946886775524852 - name: F1 type: f1 value: 0.9439227260531259 - name: Accuracy type: accuracy value: 0.9859745687878966 --- # bert-base-cased-finetuned-conll2003 This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0643 - Precision: 0.9410 - Recall: 0.9469 - F1: 0.9439 - Accuracy: 0.9860 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2349 | 0.57 | 500 | 0.0885 | 0.8957 | 0.8980 | 0.8968 | 0.9747 | | 0.0822 | 1.14 | 1000 | 0.0774 | 0.9184 | 0.9219 | 0.9202 | 0.9802 | | 0.0476 | 1.71 | 1500 | 0.0683 | 0.9345 | 0.9325 | 0.9335 | 0.9833 | | 0.0368 | 2.28 | 2000 | 0.0653 | 0.9333 | 0.9430 | 0.9381 | 0.9847 | | 0.028 | 2.85 | 2500 | 0.0670 | 0.9279 | 0.9342 | 0.9311 | 0.9835 | | 0.0171 | 3.42 | 3000 | 0.0643 | 0.9410 | 0.9469 | 0.9439 | 0.9860 | | 0.0149 | 3.99 | 3500 | 0.0667 | 0.9369 | 0.9477 | 0.9422 | 0.9856 | | 0.0088 | 4.56 | 4000 | 0.0698 | 0.9360 | 0.9473 | 0.9416 | 0.9855 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1