worsty commited on
Commit
7a3dd10
·
1 Parent(s): f521fb2

Initial commit

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: AntBulletEnv-v0
17
  metrics:
18
  - type: mean_reward
19
- value: 1207.18 +/- 689.42
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: AntBulletEnv-v0
17
  metrics:
18
  - type: mean_reward
19
+ value: 1776.61 +/- 253.02
20
  name: mean_reward
21
  verified: false
22
  ---
a2c-AntBulletEnv-v0.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:366157476559f86a5f2adedbe0da0f8ebc21f5c4ec696cad85060b5d95055253
3
- size 129248
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9330910a1dbf2d4c482758f7b837baee1ffbcbb4553add26bba9e440e22ee7f7
3
+ size 129247
a2c-AntBulletEnv-v0/data CHANGED
@@ -4,20 +4,20 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9e17af3520>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9e17af35b0>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9e17af3640>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9e17af36d0>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7f9e17af3760>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7f9e17af37f0>",
13
- "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f9e17af3880>",
14
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9e17af3910>",
15
- "_predict": "<function ActorCriticPolicy._predict at 0x7f9e17af39a0>",
16
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9e17af3a30>",
17
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9e17af3ac0>",
18
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9e17af3b50>",
19
  "__abstractmethods__": "frozenset()",
20
- "_abc_impl": "<_abc._abc_data object at 0x7f9e17af8980>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {
@@ -37,16 +37,16 @@
37
  "_num_timesteps_at_start": 0,
38
  "seed": null,
39
  "action_noise": null,
40
- "start_time": 1682865637887908645,
41
- "learning_rate": 0.00096,
42
  "tensorboard_log": null,
43
  "lr_schedule": {
44
  ":type:": "<class 'function'>",
45
- ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
46
  },
47
  "_last_obs": {
48
  ":type:": "<class 'numpy.ndarray'>",
49
- ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAANFUWbk81tY/FiVuv3XAUD+gMh6/zxofPxrPor+0MLQ+af4+PynppD9U4Sq/R/87vgJ0Az+Ovj8/ms0DP4UR+z0XUZQ/bsZovixXZD5h8xLAgzBQvwspdT3teI8/pfNnPrhMlL+StBY/Sm0AwLvMdj9sbXQ/VWt7vzx5Mz7E9pE/t4nav5CYbD8msxo++N2iv87aVD8sPXS+tyfLP8d9HD87oLG/hI5JwFp2CL75EzzA+VSov9bWv77CGTc/seKUvP8UT7+Cp/e9AiQmvhn/qz8/9Vw/T27ZvyQm/z6JxYS/BqvNP6uFNT5fYRU/C6K3P//0mz8y61s/AdSmPzRcF8BAeVA/uuGsvoahCL9RcDs/zHGVP6A1Az5/VR8/FOmqvopXVD9iUCO/tGPjPng5NT+Mkk6/nfKPPA78DkCTAeg9uEyUv5K0Fj8kJv8+u8x2P6QgvDw+9bi/7LTPvtT35z89AZK/Yk3Uv9MCLT8ekd0+aN5SP5vzKb1C8PQ+pH8YP1KjpL/f+x0/G0xSv9ypj8D0aBO/jgoKP5UUPj5GIDVA3Ts1v5gQ9z4ASC6/WLyWPT/1XD9Pbtm/JCb/PonFhL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
50
  },
51
  "_last_episode_starts": {
52
  ":type:": "<class 'numpy.ndarray'>",
@@ -54,7 +54,7 @@
54
  },
55
  "_last_original_obs": {
56
  ":type:": "<class 'numpy.ndarray'>",
57
- ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADLCmk1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAs3yVvQAAAACH9wDAAAAAAPOrez0AAAAAsD3bPwAAAAACeGY8AAAAALkL8T8AAAAA3NzkPQAAAAAwUQDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/KOLtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgEDf/j0AAAAA2pvgvwAAAAC1Jjg9AAAAAPnf9j8AAAAA0mLTvQAAAADKzvc/AAAAAFRGU7oAAAAABNTkvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACpU97UAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICe33c9AAAAAAoN+78AAAAAQzL2PQAAAABsFvA/AAAAAEj2B74AAAAAyuvfPwAAAADU5c47AAAAAGv76L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACxyYW1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAvOrwugAAAACIXuq/AAAAAEINsT0AAAAAOU/bPwAAAADBab28AAAAAP8MAUAAAAAAjzLZPQAAAAAw/PK/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
58
  },
59
  "_episode_num": 0,
60
  "use_sde": true,
@@ -63,7 +63,7 @@
63
  "_stats_window_size": 100,
64
  "ep_info_buffer": {
65
  ":type:": "<class 'collections.deque'>",
66
- ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJH6S/O+qR6MAWyUTegDjAF0lEdAqoGiWw/xD3V9lChoBkdAcDc3m3fAK2gHTegDaAhHQKqDuK2rn1Z1fZQoaAZHQJRdH1BdD6ZoB03oA2gIR0CqhHYgJTl1dX2UKGgGR0CTcWPq9oN/aAdN6ANoCEdAqosVXo1UEXV9lChoBkdAlMm11B+nZWgHTegDaAhHQKqN4mWt2cJ1fZQoaAZHQJRBK20AtFtoB03oA2gIR0Cqj/8HWz4UdX2UKGgGR0CVy23V09yMaAdN6ANoCEdAqpC/j6vaDnV9lChoBkdAlkpb0WdmQWgHTegDaAhHQKqYkdaMaS91fZQoaAZHQJQzShZha1VoB03oA2gIR0CqnMS9mHxjdX2UKGgGR0CXD8oTwlSkaAdN6ANoCEdAqp/PMhX8wnV9lChoBkdAlnBfe54GEGgHTegDaAhHQKqgh2dupCN1fZQoaAZHQJS9vDIikftoB03oA2gIR0Cqp0iSzPa+dX2UKGgGR0CWykxQizLPaAdN6ANoCEdAqqoHvBrN4nV9lChoBkdAlxD2jwhGIGgHTegDaAhHQKqsEAS39aV1fZQoaAZHQJeLx5cC5mRoB03oA2gIR0CqrM4OtnwodX2UKGgGR0CYla3N9ph4aAdN6ANoCEdAqrOk2BJ7LXV9lChoBkdAlU34rvsqrmgHTegDaAhHQKq35655JK91fZQoaAZHQIememR/3FloB03oA2gIR0Cquw/L9uP4dX2UKGgGR0CXTVsQNCqqaAdN6ANoCEdAqrw/xOLzgHV9lChoBkdAlYDD3M6ikGgHTegDaAhHQKrDyjAzpHJ1fZQoaAZHQJCIlNTLns9oB03oA2gIR0CqxppW/8EWdX2UKGgGR0CV4BUrkKeDaAdN6ANoCEdAqsiexQizLXV9lChoBkdAltlf60pmVmgHTegDaAhHQKrJVFUADJV1fZQoaAZHQJW4sPy08eVoB03oA2gIR0Cq0GCaqjrSdX2UKGgGR0CT+HMtK7I1aAdN6ANoCEdAqtOVpAUtZnV9lChoBkdAiKRnKW9lE2gHTegDaAhHQKrWh/FzdUN1fZQoaAZHQJW1FN0vGqBoB03oA2gIR0Cq16ITXarWdX2UKGgGR0CXVHaMrEtNaAdN6ANoCEdAquBK2fChvnV9lChoBkdAldYkrPMSsmgHTegDaAhHQKrjHNB4Uvh1fZQoaAZHQJM4/M9r435oB03oA2gIR0Cq5S4G+sYEdX2UKGgGR0CWzu3EyckMaAdN6ANoCEdAquXoVARkE3V9lChoBkdAlRazyBkI5mgHTegDaAhHQKrs3V/c32p1fZQoaAZHQJiFHebd8AtoB03oA2gIR0Cq76Q7cO9WdX2UKGgGR0CTy+nDziCKaAdN6ANoCEdAqvIlznzQNXV9lChoBkdAl7feXzDn/2gHTegDaAhHQKrzN7Hhjvx1fZQoaAZHQHzy6CpWFOBoB03oA2gIR0Cq/PCHZbpvdX2UKGgGR0CV0SbgCOm0aAdN6ANoCEdAqv/Fc6eXiXV9lChoBkdAlAbXWSU1RGgHTegDaAhHQKsB07nxJ/Z1fZQoaAZHQJNGaHEdeY5oB03oA2gIR0CrAo/dhy80dX2UKGgGR0CW6/WbPQfIaAdN6ANoCEdAqwmc4zabnXV9lChoBkdAiX5LB9Cu2mgHTegDaAhHQKsMe/6frbB1fZQoaAZHQJZ9iBPKuCBoB03oA2gIR0CrDotZFG5MdX2UKGgGR0CUEkTtsvZiaAdN6ANoCEdAqw9ECHRCyHV9lChoBkdAgxgtNJvo/2gHTegDaAhHQKsZwuyNXHR1fZQoaAZHQJRt8Lux8lZoB03oA2gIR0CrHKYtpVS5dX2UKGgGR0CRkdwQlKK6aAdN6ANoCEdAqx60zfrKNnV9lChoBkdAkw4ckhRqGmgHTegDaAhHQKsfbt0mtyR1fZQoaAZHQIllqFbmlqJoB03oA2gIR0CrJn/nfVI7dX2UKGgGR0CTNv2oegctaAdN6ANoCEdAqylMMVk+YHV9lChoBkdAjzBCaiKziWgHTegDaAhHQKsrXjjrAxl1fZQoaAZHQJDEQh9srNJoB03oA2gIR0CrLBuVPepGdX2UKGgGR0CSvNOsT37DaAdN6ANoCEdAqzWfGyX2NHV9lChoBkdAlEl686FM7GgHTegDaAhHQKs5i4H5aeR1fZQoaAZHQJSi1AKOT7loB03oA2gIR0CrO5VOKwY+dX2UKGgGR0CJlqLYwqRVaAdN6ANoCEdAqzxNzySV4XV9lChoBkdAlrTDSCvovGgHTegDaAhHQKtDEszVMEl1fZQoaAZHQJVwvboKUmloB03oA2gIR0CrRe1ndweedX2UKGgGR0CWKorxRVIaaAdN6ANoCEdAq0f6HKwIMXV9lChoBkdAlhPuLrHEM2gHTegDaAhHQKtItI/7iyZ1fZQoaAZHQJHCkrXlKbtoB03oA2gIR0CrUPQ5WBBidX2UKGgGR0CRbWAQxvehaAdN6ANoCEdAq1WMqpcX33V9lChoBkdAlAgoPK+zt2gHTegDaAhHQKtYSAqd6LR1fZQoaAZHQJa8+dFvybxoB03oA2gIR0CrWQPmYBvKdX2UKGgGR0CaLkplSS/1aAdN6ANoCEdAq1/lBjWkJ3V9lChoBkdAfEvrvLHMlmgHTegDaAhHQKtisXiR4hV1fZQoaAZHQJQ3cyP+4spoB03oA2gIR0CrZLlo11nvdX2UKGgGR0CMuKpnYg7paAdN6ANoCEdAq2VyjrRjSXV9lChoBkdAlATr+PzWgGgHTegDaAhHQKtsv2zOX3R1fZQoaAZHQJScwtpVS4xoB03oA2gIR0CrcNKm0mdBdX2UKGgGR0CUZrEUj9n9aAdN6ANoCEdAq3Pvf8/D+HV9lChoBkdAlgZJKjBVMmgHTegDaAhHQKt1C6e5Fw11fZQoaAZHQJVjBguyu6poB03oA2gIR0Cre/r4vexfdX2UKGgGR0CKDlyMDOkdaAdN6ANoCEdAq37pEnb7CXV9lChoBkdAjTPddeIEbGgHTegDaAhHQKuA9vBJqZd1fZQoaAZHQJTe41zhgmZoB03oA2gIR0CrgblvhqCZdX2UKGgGR0CYFdcdYGMXaAdN6ANoCEdAq4iINoakynV9lChoBkdAlWFTNIK+jGgHTegDaAhHQKuL/KpT/AF1fZQoaAZHQIgqigCfYjBoB03oA2gIR0CrjvO6mO2idX2UKGgGR0CPoP11W8yvaAdN6ANoCEdAq5AcNBnjAHV9lChoBkdAjjjev6j322gHTegDaAhHQKuYYaya/h51fZQoaAZHQIZMG3vx6OZoB03oA2gIR0CrmyuymhugdX2UKGgGR0CJAaup0fYBaAdN6ANoCEdAq503DiwSrnV9lChoBkdAkbI34O+ZgGgHTegDaAhHQKud+xqwhW51fZQoaAZHQICV3DtPYWdoB03oA2gIR0CrpR9xhlUZdX2UKGgGR0CKmn1DBuXNaAdN6ANoCEdAq6fpUkv9L3V9lChoBkdAiA0R0lqrR2gHTegDaAhHQKuqqhi9Zid1fZQoaAZHQIh9Xt2LYPJoB03oA2gIR0Crq6vBzmwJdX2UKGgGR0CVWJ72L5ymaAdN6ANoCEdAq7Tzi2lVLnV9lChoBkdAhs8yNfgJkWgHTegDaAhHQKu3ufms/6h1fZQoaAZHQJUyN12aDwpoB03oA2gIR0Crub+OXE61dX2UKGgGR0CURkh4MWoFaAdN6ANoCEdAq7p7dLxqf3V9lChoBkdAl5QqsuFpPGgHTegDaAhHQKvBX4Oc2BJ1fZQoaAZHQIhJdMwlByFoB03oA2gIR0CrxBZ4fOlgdX2UKGgGR0CQfY0ihWYGaAdN6ANoCEdAq8YRRsMy8HV9lChoBkdAik25amoBJmgHTegDaAhHQKvGykbgjyF1fZQoaAZHQIXIaScLBsRoB03oA2gIR0Cr0Nw/X5FgdX2UKGgGR0CZkZ7CSA6NaAdN6ANoCEdAq9O0yi22HHV9lChoBkdAkbYy7PIGQmgHTegDaAhHQKvVt4etCAt1fZQoaAZHQI8pne1rqMZoB03oA2gIR0Cr1nLns9jgdX2UKGgGR0CZU5+I/JNkaAdN6ANoCEdAq90mIyj59HVlLg=="
67
  },
68
  "ep_success_buffer": {
69
  ":type:": "<class 'collections.deque'>",
@@ -71,7 +71,7 @@
71
  },
72
  "_n_updates": 62500,
73
  "n_steps": 8,
74
- "gamma": 0.99,
75
  "gae_lambda": 0.9,
76
  "ent_coef": 0.0,
77
  "vf_coef": 0.4,
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fef45b98550>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fef45b985e0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fef45b98670>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fef45b98700>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fef45b98790>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fef45b98820>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fef45b988b0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fef45b98940>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fef45b989d0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fef45b98a60>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fef45b98af0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fef45b98b80>",
19
  "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7fef45b895c0>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {
 
37
  "_num_timesteps_at_start": 0,
38
  "seed": null,
39
  "action_noise": null,
40
+ "start_time": 1682892492472328936,
41
+ "learning_rate": 0.0007,
42
  "tensorboard_log": null,
43
  "lr_schedule": {
44
  ":type:": "<class 'function'>",
45
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
46
  },
47
  "_last_obs": {
48
  ":type:": "<class 'numpy.ndarray'>",
49
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAEgHiz/b5Fa/HPCcvSYCPz+yWIO/YI6vv4/AOb2ErNW/6FxZvWR5AMAamsU/MhfIvwjXR7+Z7ZI/wr6LPgmF774f5xQ/lR0KQIZUhj18QpS/Pou4P26iWkCgT6c/wEuCQBEb2b/O9ak+MwUPwFEQtb/3hF4/OZPiPhMHKz+GBek/Di47vtO/uL6rXqW+e84fv3/FOz6lK7e/FIrKPoGxoz/vkmq+95c4v7u9gj4/R40+mJ+kP+C0zL8M3XG/JrcGvmHlZr80n8o99j3BP6/HPL8RG9m/zvWpPkId5T6W+TQ/PmBsPrk7uz/e8sw+C2L/vWlfWL7Er4O/z0WEPohcjb9IV7Y8dAeEP7m8OD92uBvAgeKrv1mylD8xTcU884j3vmrhGT9gQwlARQUWPxMuvb/5amm/xh/hPp1HMb+UBBNAERvZv871qT5CHeU+URC1vzuOcT+k3Pu+P7OLPlRugj8CpwW/7cqnPwk3EL4Y2Pm+ZEZkP3RHmLy5/gc/vS65PXIpVL/011DAJq6LvfEsZL+UCA8/GCn0v43hGr/mILQ+zdxZvwC2bj5G0Gy+CKUhv1ruFj9QzEDAQh3lPlEQtb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
50
  },
51
  "_last_episode_starts": {
52
  ":type:": "<class 'numpy.ndarray'>",
 
54
  },
55
  "_last_original_obs": {
56
  ":type:": "<class 'numpy.ndarray'>",
57
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAA+QHe1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAKijAPQAAAADxYuC/AAAAAHfaL70AAAAAGd/1PwAAAABodwY+AAAAADm66D8AAAAAazYBPQAAAABZmN+/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAnPIdNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgNCC/LwAAAAAqMn7vwAAAACr9VE9AAAAANzj6D8AAAAAclqevQAAAABS8Pk/AAAAACWJzr0AAAAAO2b2vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDYF7cAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIC+V/o9AAAAALJp6r8AAAAADxbwvQAAAAAgO/c/AAAAAJeLbb0AAAAAL7DmPwAAAADEs8U9AAAAAI9L3b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACzQpE2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAEoALvQAAAABDouu/AAAAAI66ZT0AAAAAWxvnPwAAAAD6uA+9AAAAAFs1AUAAAAAArisOvgAAAADusua/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
58
  },
59
  "_episode_num": 0,
60
  "use_sde": true,
 
63
  "_stats_window_size": 100,
64
  "ep_info_buffer": {
65
  ":type:": "<class 'collections.deque'>",
66
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJ/iE2LpA2SMAWyUTegDjAF0lEdAq0gacqe9SXV9lChoBkdAoUiQhY/3WWgHTegDaAhHQKtK2IpH7P91fZQoaAZHQKFzf95Qgs9oB03oA2gIR0CrTTL876pHdX2UKGgGR0ChbhtBfKISaAdN6ANoCEdAq01ade6ZpnV9lChoBkdAoLNpcmjTKGgHTegDaAhHQKtUF/6wdKd1fZQoaAZHQKJW4yk9ECxoB03oA2gIR0CrVqV2zOX3dX2UKGgGR0Cg8ACjtXxOaAdN6ANoCEdAq1j7HOryUnV9lChoBkdAoTK1YB/7SGgHTegDaAhHQKtZIinpB5Z1fZQoaAZHQJ+6XKISDh9oB03oA2gIR0CrYTMImgJ1dX2UKGgGR0CgvNQzUI9laAdN6ANoCEdAq2UkOy3TeHV9lChoBkdAoSHR6lchT2gHTegDaAhHQKtoCXUH6dl1fZQoaAZHQKEkapQ1rIpoB03oA2gIR0CraDEgW8AadX2UKGgGR0CfnsV81Gb1aAdN6ANoCEdAq27fD1oQF3V9lChoBkdAoANSp97Wu2gHTegDaAhHQKtxZCbc45t1fZQoaAZHQKBzpf0mMOxoB03oA2gIR0Crc7KMm4RVdX2UKGgGR0Chjanww0wbaAdN6ANoCEdAq3PYrOJLunV9lChoBkdAoBkQKlYU4GgHTegDaAhHQKt6gaIeo1l1fZQoaAZHQKAwv2VVxS5oB03oA2gIR0CrfhkWRA8kdX2UKGgGR0CggSEJBw+/aAdN6ANoCEdAq4Gx3JPqLXV9lChoBkdAoW7t/hESd2gHTegDaAhHQKuB7cxCY1J1fZQoaAZHQKHgy7L+xW1oB03oA2gIR0CriautfXwtdX2UKGgGR0Chu4+c6NlzaAdN6ANoCEdAq4wndVNpNHV9lChoBkdAoGTNS88La2gHTegDaAhHQKuOgneBQN11fZQoaAZHQKEombzbvgFoB03oA2gIR0CrjqqYqoZRdX2UKGgGR0CgS8sYVIqcaAdN6ANoCEdAq5VpwCKaX3V9lChoBkdAoChqGetjkWgHTegDaAhHQKuX5n9Nvfl1fZQoaAZHQJmwhFBppN9oB03oA2gIR0CrmuAAhje9dX2UKGgGR0Cc02vq1PWQaAdN6ANoCEdAq5sZWYF7lnV9lChoBkdAoD3c0P6KtWgHTegDaAhHQKukb1K5Cnh1fZQoaAZHQKCR2bfgrH5oB03oA2gIR0CrpvhZpztDdX2UKGgGR0Ce4aCPZIxyaAdN6ANoCEdAq6lTf779AHV9lChoBkdAoCFthkRSP2gHTegDaAhHQKupepAlfJF1fZQoaAZHQKBlFujRD1JoB03oA2gIR0CrsEWU8mrsdX2UKGgGR0CUomIKc/dJaAdN6ANoCEdAq7Lr2criEXV9lChoBkdAoJRezSkTH2gHTegDaAhHQKu1P3SKFZh1fZQoaAZHQKDMPQbdadNoB03oA2gIR0CrtWmKZUkwdX2UKGgGR0CeF+j7yhBaaAdN6ANoCEdAq7773RG+bnV9lChoBkdAmhKdmQKa5WgHTegDaAhHQKvCb2vjfel1fZQoaAZHQJju7AuZkTZoB03oA2gIR0CrxNPvBrN4dX2UKGgGR0CSRabvw3HaaAdN6ANoCEdAq8T7lkpZwHV9lChoBkdAl3jgBHTZx2gHTegDaAhHQKvMAeZG8VZ1fZQoaAZHQJfzBrbg0j1oB03oA2gIR0CrzpjSofjkdX2UKGgGR0CV+dY9Pk7waAdN6ANoCEdAq9D+hXbM5nV9lChoBkdAkt3F7tzCDWgHTegDaAhHQKvRLB5X2dx1fZQoaAZHQJlTZWEK3NNoB03oA2gIR0Cr2SQ22oegdX2UKGgGR0CbK6azNUwSaAdN6ANoCEdAq90hdOZb6nV9lChoBkdAmv7gRChN/WgHTegDaAhHQKvgSSOinHh1fZQoaAZHQJZgXkT6BRRoB03oA2gIR0Cr4HAJTl1bdX2UKGgGR0Cee/9Vmz0IaAdN6ANoCEdAq+cu9nK4hHV9lChoBkdAns0qasp5NWgHTegDaAhHQKvpuzeoDPp1fZQoaAZHQJr/5ahYeT5oB03oA2gIR0Cr7BJAt4A0dX2UKGgGR0Cbjtbx3FDOaAdN6ANoCEdAq+w7GLk0anV9lChoBkdAn6WE8mrsB2gHTegDaAhHQKvy6WQfZEl1fZQoaAZHQJ0eM8Md92JoB03oA2gIR0Cr9lqynk1edX2UKGgGR0CapTvZRKpUaAdN6ANoCEdAq/n5hfBvaXV9lChoBkdAn0RYvzvqkmgHTegDaAhHQKv6NzT4L1F1fZQoaAZHQJ7aNGOMl1NoB03oA2gIR0CsAi28IzFddX2UKGgGR0CgQ6jNhVlxaAdN6ANoCEdArASuU4aP0nV9lChoBkdAnE73yqdYn2gHTegDaAhHQKwHDLQHAyp1fZQoaAZHQJmUJiy6cy5oB03oA2gIR0CsBzNMXaakdX2UKGgGR0CgUEJSJj2BaAdN6ANoCEdArA3ibtqpLnV9lChoBkdAn4vGWIGhVWgHTegDaAhHQKwQaCNCJGh1fZQoaAZHQKCyHZgXuVpoB03oA2gIR0CsEzOYQarFdX2UKGgGR0CfnzGKQ7tBaAdN6ANoCEdArBNuhPCVKXV9lChoBkdAn55qYqoZRGgHTegDaAhHQKwdAqSX+l11fZQoaAZHQJ5gxZJTVDtoB03oA2gIR0CsH4JcHGCJdX2UKGgGR0CgZUCdat9yaAdN6ANoCEdArCHSD28IzHV9lChoBkdAnCio8dPtUmgHTegDaAhHQKwh+D0163R1fZQoaAZHQJ+UQNsnAqNoB03oA2gIR0CsKLrkCFK1dX2UKGgGR0CdNv76pHZsaAdN6ANoCEdArCs4K+i8F3V9lChoBkdAoFSxK+SKWWgHTegDaAhHQKwtj4TK1Xx1fZQoaAZHQKCms+mm+CdoB03oA2gIR0CsLbYZl4C7dX2UKGgGR0CeQtfTTfBOaAdN6ANoCEdArDa9fPX05HV9lChoBkdAnenODJ2dNGgHTegDaAhHQKw6aRMewLV1fZQoaAZHQKCxh8VHnU5oB03oA2gIR0CsPMG6PKdQdX2UKGgGR0Cfo8Hxz7uVaAdN6ANoCEdArDztu76HkHV9lChoBkdAmgXBpHqeLGgHTegDaAhHQKxDn+BpYcN1fZQoaAZHQJ48fqu8sc1oB03oA2gIR0CsRi88La24dX2UKGgGR0CbCSQCCBf8aAdN6ANoCEdArEiDZOBUaXV9lChoBkdAn/NZ6hQFcWgHTegDaAhHQKxIqsGxD9h1fZQoaAZHQJ6oiWnjyWloB03oA2gIR0CsUDqnvUjLdX2UKGgGR0CNgTA+pwS8aAdN6ANoCEdArFRZXKbKBHV9lChoBkdAhuDTvRZ2ZGgHTegDaAhHQKxY/JQLux91fZQoaAZHQIdlYuyu6mRoB03oA2gIR0CsWUgCwKSgdX2UKGgGR0CgohshgVoIaAdN6ANoCEdArGK4msvIwXV9lChoBkdAiL5CcwxnF2gHTegDaAhHQKxlTdiUgSx1fZQoaAZHQKJHe3KB/ZxoB03oA2gIR0CsZ6QokRjCdX2UKGgGR0CgbUGVzIV/aAdN6ANoCEdArGfL7Q9idHV9lChoBkdAna20aya/h2gHTegDaAhHQKxuniGWUr11fZQoaAZHQJCeQjC53C9oB03oA2gIR0Csca9a2WpqdX2UKGgGR0CZzvAYHgP3aAdN6ANoCEdArHVALG7z1HV9lChoBkdAmPI2us90R2gHTegDaAhHQKx1frkbPyF1fZQoaAZHQJXuqekHlfZoB03oA2gIR0CsfhZccENfdX2UKGgGR0CQKt+fh/AkaAdN6ANoCEdArICwjY7JXHV9lChoBkdAlZqyGFi8WmgHTegDaAhHQKyDAs4DLbJ1fZQoaAZHQIbxVt8/lhhoB03oA2gIR0CsgynQhOgydX2UKGgGR0CZcNIToMa1aAdN6ANoCEdArInX1FpfyHV9lChoBkdAmfGuEdvKl2gHTegDaAhHQKyMXsl9jPR1fZQoaAZHQJytH+wTufFoB03oA2gIR0CsjvFBppN9dX2UKGgGR0CZUkLy+YdAaAdN6ANoCEdArI8p//echHVlLg=="
67
  },
68
  "ep_success_buffer": {
69
  ":type:": "<class 'collections.deque'>",
 
71
  },
72
  "_n_updates": 62500,
73
  "n_steps": 8,
74
+ "gamma": 0.98,
75
  "gae_lambda": 0.9,
76
  "ent_coef": 0.0,
77
  "vf_coef": 0.4,
a2c-AntBulletEnv-v0/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:f86e964f40b0fc1fe785168be8cc489da0a5a5c3c9bc8a3ccecd0b8fee34f362
3
  size 56190
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ca9506f24c2188a486ac8bfa27f97d2caea5b54968a689d3bd4173529b6b9cc5
3
  size 56190
a2c-AntBulletEnv-v0/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:ceacdd39d9984a401f39e0c959473993dbff5dab6a26535bdb0a978aed3108ea
3
  size 56894
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:89baa5939c021360f84818e5e60b4a5d333a4e138cd2159012f425c10ba4e2e2
3
  size 56894
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9e17af3520>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9e17af35b0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9e17af3640>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9e17af36d0>", "_build": "<function ActorCriticPolicy._build at 0x7f9e17af3760>", "forward": "<function ActorCriticPolicy.forward at 0x7f9e17af37f0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f9e17af3880>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9e17af3910>", "_predict": "<function ActorCriticPolicy._predict at 0x7f9e17af39a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9e17af3a30>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9e17af3ac0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9e17af3b50>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f9e17af8980>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1682865637887908645, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAANFUWbk81tY/FiVuv3XAUD+gMh6/zxofPxrPor+0MLQ+af4+PynppD9U4Sq/R/87vgJ0Az+Ovj8/ms0DP4UR+z0XUZQ/bsZovixXZD5h8xLAgzBQvwspdT3teI8/pfNnPrhMlL+StBY/Sm0AwLvMdj9sbXQ/VWt7vzx5Mz7E9pE/t4nav5CYbD8msxo++N2iv87aVD8sPXS+tyfLP8d9HD87oLG/hI5JwFp2CL75EzzA+VSov9bWv77CGTc/seKUvP8UT7+Cp/e9AiQmvhn/qz8/9Vw/T27ZvyQm/z6JxYS/BqvNP6uFNT5fYRU/C6K3P//0mz8y61s/AdSmPzRcF8BAeVA/uuGsvoahCL9RcDs/zHGVP6A1Az5/VR8/FOmqvopXVD9iUCO/tGPjPng5NT+Mkk6/nfKPPA78DkCTAeg9uEyUv5K0Fj8kJv8+u8x2P6QgvDw+9bi/7LTPvtT35z89AZK/Yk3Uv9MCLT8ekd0+aN5SP5vzKb1C8PQ+pH8YP1KjpL/f+x0/G0xSv9ypj8D0aBO/jgoKP5UUPj5GIDVA3Ts1v5gQ9z4ASC6/WLyWPT/1XD9Pbtm/JCb/PonFhL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADLCmk1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAs3yVvQAAAACH9wDAAAAAAPOrez0AAAAAsD3bPwAAAAACeGY8AAAAALkL8T8AAAAA3NzkPQAAAAAwUQDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/KOLtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgEDf/j0AAAAA2pvgvwAAAAC1Jjg9AAAAAPnf9j8AAAAA0mLTvQAAAADKzvc/AAAAAFRGU7oAAAAABNTkvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACpU97UAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICe33c9AAAAAAoN+78AAAAAQzL2PQAAAABsFvA/AAAAAEj2B74AAAAAyuvfPwAAAADU5c47AAAAAGv76L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACxyYW1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAvOrwugAAAACIXuq/AAAAAEINsT0AAAAAOU/bPwAAAADBab28AAAAAP8MAUAAAAAAjzLZPQAAAAAw/PK/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJH6S/O+qR6MAWyUTegDjAF0lEdAqoGiWw/xD3V9lChoBkdAcDc3m3fAK2gHTegDaAhHQKqDuK2rn1Z1fZQoaAZHQJRdH1BdD6ZoB03oA2gIR0CqhHYgJTl1dX2UKGgGR0CTcWPq9oN/aAdN6ANoCEdAqosVXo1UEXV9lChoBkdAlMm11B+nZWgHTegDaAhHQKqN4mWt2cJ1fZQoaAZHQJRBK20AtFtoB03oA2gIR0Cqj/8HWz4UdX2UKGgGR0CVy23V09yMaAdN6ANoCEdAqpC/j6vaDnV9lChoBkdAlkpb0WdmQWgHTegDaAhHQKqYkdaMaS91fZQoaAZHQJQzShZha1VoB03oA2gIR0CqnMS9mHxjdX2UKGgGR0CXD8oTwlSkaAdN6ANoCEdAqp/PMhX8wnV9lChoBkdAlnBfe54GEGgHTegDaAhHQKqgh2dupCN1fZQoaAZHQJS9vDIikftoB03oA2gIR0Cqp0iSzPa+dX2UKGgGR0CWykxQizLPaAdN6ANoCEdAqqoHvBrN4nV9lChoBkdAlxD2jwhGIGgHTegDaAhHQKqsEAS39aV1fZQoaAZHQJeLx5cC5mRoB03oA2gIR0CqrM4OtnwodX2UKGgGR0CYla3N9ph4aAdN6ANoCEdAqrOk2BJ7LXV9lChoBkdAlU34rvsqrmgHTegDaAhHQKq35655JK91fZQoaAZHQIememR/3FloB03oA2gIR0Cquw/L9uP4dX2UKGgGR0CXTVsQNCqqaAdN6ANoCEdAqrw/xOLzgHV9lChoBkdAlYDD3M6ikGgHTegDaAhHQKrDyjAzpHJ1fZQoaAZHQJCIlNTLns9oB03oA2gIR0CqxppW/8EWdX2UKGgGR0CV4BUrkKeDaAdN6ANoCEdAqsiexQizLXV9lChoBkdAltlf60pmVmgHTegDaAhHQKrJVFUADJV1fZQoaAZHQJW4sPy08eVoB03oA2gIR0Cq0GCaqjrSdX2UKGgGR0CT+HMtK7I1aAdN6ANoCEdAqtOVpAUtZnV9lChoBkdAiKRnKW9lE2gHTegDaAhHQKrWh/FzdUN1fZQoaAZHQJW1FN0vGqBoB03oA2gIR0Cq16ITXarWdX2UKGgGR0CXVHaMrEtNaAdN6ANoCEdAquBK2fChvnV9lChoBkdAldYkrPMSsmgHTegDaAhHQKrjHNB4Uvh1fZQoaAZHQJM4/M9r435oB03oA2gIR0Cq5S4G+sYEdX2UKGgGR0CWzu3EyckMaAdN6ANoCEdAquXoVARkE3V9lChoBkdAlRazyBkI5mgHTegDaAhHQKrs3V/c32p1fZQoaAZHQJiFHebd8AtoB03oA2gIR0Cq76Q7cO9WdX2UKGgGR0CTy+nDziCKaAdN6ANoCEdAqvIlznzQNXV9lChoBkdAl7feXzDn/2gHTegDaAhHQKrzN7Hhjvx1fZQoaAZHQHzy6CpWFOBoB03oA2gIR0Cq/PCHZbpvdX2UKGgGR0CV0SbgCOm0aAdN6ANoCEdAqv/Fc6eXiXV9lChoBkdAlAbXWSU1RGgHTegDaAhHQKsB07nxJ/Z1fZQoaAZHQJNGaHEdeY5oB03oA2gIR0CrAo/dhy80dX2UKGgGR0CW6/WbPQfIaAdN6ANoCEdAqwmc4zabnXV9lChoBkdAiX5LB9Cu2mgHTegDaAhHQKsMe/6frbB1fZQoaAZHQJZ9iBPKuCBoB03oA2gIR0CrDotZFG5MdX2UKGgGR0CUEkTtsvZiaAdN6ANoCEdAqw9ECHRCyHV9lChoBkdAgxgtNJvo/2gHTegDaAhHQKsZwuyNXHR1fZQoaAZHQJRt8Lux8lZoB03oA2gIR0CrHKYtpVS5dX2UKGgGR0CRkdwQlKK6aAdN6ANoCEdAqx60zfrKNnV9lChoBkdAkw4ckhRqGmgHTegDaAhHQKsfbt0mtyR1fZQoaAZHQIllqFbmlqJoB03oA2gIR0CrJn/nfVI7dX2UKGgGR0CTNv2oegctaAdN6ANoCEdAqylMMVk+YHV9lChoBkdAjzBCaiKziWgHTegDaAhHQKsrXjjrAxl1fZQoaAZHQJDEQh9srNJoB03oA2gIR0CrLBuVPepGdX2UKGgGR0CSvNOsT37DaAdN6ANoCEdAqzWfGyX2NHV9lChoBkdAlEl686FM7GgHTegDaAhHQKs5i4H5aeR1fZQoaAZHQJSi1AKOT7loB03oA2gIR0CrO5VOKwY+dX2UKGgGR0CJlqLYwqRVaAdN6ANoCEdAqzxNzySV4XV9lChoBkdAlrTDSCvovGgHTegDaAhHQKtDEszVMEl1fZQoaAZHQJVwvboKUmloB03oA2gIR0CrRe1ndweedX2UKGgGR0CWKorxRVIaaAdN6ANoCEdAq0f6HKwIMXV9lChoBkdAlhPuLrHEM2gHTegDaAhHQKtItI/7iyZ1fZQoaAZHQJHCkrXlKbtoB03oA2gIR0CrUPQ5WBBidX2UKGgGR0CRbWAQxvehaAdN6ANoCEdAq1WMqpcX33V9lChoBkdAlAgoPK+zt2gHTegDaAhHQKtYSAqd6LR1fZQoaAZHQJa8+dFvybxoB03oA2gIR0CrWQPmYBvKdX2UKGgGR0CaLkplSS/1aAdN6ANoCEdAq1/lBjWkJ3V9lChoBkdAfEvrvLHMlmgHTegDaAhHQKtisXiR4hV1fZQoaAZHQJQ3cyP+4spoB03oA2gIR0CrZLlo11nvdX2UKGgGR0CMuKpnYg7paAdN6ANoCEdAq2VyjrRjSXV9lChoBkdAlATr+PzWgGgHTegDaAhHQKtsv2zOX3R1fZQoaAZHQJScwtpVS4xoB03oA2gIR0CrcNKm0mdBdX2UKGgGR0CUZrEUj9n9aAdN6ANoCEdAq3Pvf8/D+HV9lChoBkdAlgZJKjBVMmgHTegDaAhHQKt1C6e5Fw11fZQoaAZHQJVjBguyu6poB03oA2gIR0Cre/r4vexfdX2UKGgGR0CKDlyMDOkdaAdN6ANoCEdAq37pEnb7CXV9lChoBkdAjTPddeIEbGgHTegDaAhHQKuA9vBJqZd1fZQoaAZHQJTe41zhgmZoB03oA2gIR0CrgblvhqCZdX2UKGgGR0CYFdcdYGMXaAdN6ANoCEdAq4iINoakynV9lChoBkdAlWFTNIK+jGgHTegDaAhHQKuL/KpT/AF1fZQoaAZHQIgqigCfYjBoB03oA2gIR0CrjvO6mO2idX2UKGgGR0CPoP11W8yvaAdN6ANoCEdAq5AcNBnjAHV9lChoBkdAjjjev6j322gHTegDaAhHQKuYYaya/h51fZQoaAZHQIZMG3vx6OZoB03oA2gIR0CrmyuymhugdX2UKGgGR0CJAaup0fYBaAdN6ANoCEdAq503DiwSrnV9lChoBkdAkbI34O+ZgGgHTegDaAhHQKud+xqwhW51fZQoaAZHQICV3DtPYWdoB03oA2gIR0CrpR9xhlUZdX2UKGgGR0CKmn1DBuXNaAdN6ANoCEdAq6fpUkv9L3V9lChoBkdAiA0R0lqrR2gHTegDaAhHQKuqqhi9Zid1fZQoaAZHQIh9Xt2LYPJoB03oA2gIR0Crq6vBzmwJdX2UKGgGR0CVWJ72L5ymaAdN6ANoCEdAq7Tzi2lVLnV9lChoBkdAhs8yNfgJkWgHTegDaAhHQKu3ufms/6h1fZQoaAZHQJUyN12aDwpoB03oA2gIR0Crub+OXE61dX2UKGgGR0CURkh4MWoFaAdN6ANoCEdAq7p7dLxqf3V9lChoBkdAl5QqsuFpPGgHTegDaAhHQKvBX4Oc2BJ1fZQoaAZHQIhJdMwlByFoB03oA2gIR0CrxBZ4fOlgdX2UKGgGR0CQfY0ihWYGaAdN6ANoCEdAq8YRRsMy8HV9lChoBkdAik25amoBJmgHTegDaAhHQKvGykbgjyF1fZQoaAZHQIXIaScLBsRoB03oA2gIR0Cr0Nw/X5FgdX2UKGgGR0CZkZ7CSA6NaAdN6ANoCEdAq9O0yi22HHV9lChoBkdAkbYy7PIGQmgHTegDaAhHQKvVt4etCAt1fZQoaAZHQI8pne1rqMZoB03oA2gIR0Cr1nLns9jgdX2UKGgGR0CZU5+I/JNkaAdN6ANoCEdAq90mIyj59HVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fef45b98550>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fef45b985e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fef45b98670>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fef45b98700>", "_build": "<function ActorCriticPolicy._build at 0x7fef45b98790>", "forward": "<function ActorCriticPolicy.forward at 0x7fef45b98820>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fef45b988b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fef45b98940>", "_predict": "<function ActorCriticPolicy._predict at 0x7fef45b989d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fef45b98a60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fef45b98af0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fef45b98b80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fef45b895c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1682892492472328936, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAEgHiz/b5Fa/HPCcvSYCPz+yWIO/YI6vv4/AOb2ErNW/6FxZvWR5AMAamsU/MhfIvwjXR7+Z7ZI/wr6LPgmF774f5xQ/lR0KQIZUhj18QpS/Pou4P26iWkCgT6c/wEuCQBEb2b/O9ak+MwUPwFEQtb/3hF4/OZPiPhMHKz+GBek/Di47vtO/uL6rXqW+e84fv3/FOz6lK7e/FIrKPoGxoz/vkmq+95c4v7u9gj4/R40+mJ+kP+C0zL8M3XG/JrcGvmHlZr80n8o99j3BP6/HPL8RG9m/zvWpPkId5T6W+TQ/PmBsPrk7uz/e8sw+C2L/vWlfWL7Er4O/z0WEPohcjb9IV7Y8dAeEP7m8OD92uBvAgeKrv1mylD8xTcU884j3vmrhGT9gQwlARQUWPxMuvb/5amm/xh/hPp1HMb+UBBNAERvZv871qT5CHeU+URC1vzuOcT+k3Pu+P7OLPlRugj8CpwW/7cqnPwk3EL4Y2Pm+ZEZkP3RHmLy5/gc/vS65PXIpVL/011DAJq6LvfEsZL+UCA8/GCn0v43hGr/mILQ+zdxZvwC2bj5G0Gy+CKUhv1ruFj9QzEDAQh3lPlEQtb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAA+QHe1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAKijAPQAAAADxYuC/AAAAAHfaL70AAAAAGd/1PwAAAABodwY+AAAAADm66D8AAAAAazYBPQAAAABZmN+/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAnPIdNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgNCC/LwAAAAAqMn7vwAAAACr9VE9AAAAANzj6D8AAAAAclqevQAAAABS8Pk/AAAAACWJzr0AAAAAO2b2vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIDYF7cAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIC+V/o9AAAAALJp6r8AAAAADxbwvQAAAAAgO/c/AAAAAJeLbb0AAAAAL7DmPwAAAADEs8U9AAAAAI9L3b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACzQpE2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAEoALvQAAAABDouu/AAAAAI66ZT0AAAAAWxvnPwAAAAD6uA+9AAAAAFs1AUAAAAAArisOvgAAAADusua/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJ/iE2LpA2SMAWyUTegDjAF0lEdAq0gacqe9SXV9lChoBkdAoUiQhY/3WWgHTegDaAhHQKtK2IpH7P91fZQoaAZHQKFzf95Qgs9oB03oA2gIR0CrTTL876pHdX2UKGgGR0ChbhtBfKISaAdN6ANoCEdAq01ade6ZpnV9lChoBkdAoLNpcmjTKGgHTegDaAhHQKtUF/6wdKd1fZQoaAZHQKJW4yk9ECxoB03oA2gIR0CrVqV2zOX3dX2UKGgGR0Cg8ACjtXxOaAdN6ANoCEdAq1j7HOryUnV9lChoBkdAoTK1YB/7SGgHTegDaAhHQKtZIinpB5Z1fZQoaAZHQJ+6XKISDh9oB03oA2gIR0CrYTMImgJ1dX2UKGgGR0CgvNQzUI9laAdN6ANoCEdAq2UkOy3TeHV9lChoBkdAoSHR6lchT2gHTegDaAhHQKtoCXUH6dl1fZQoaAZHQKEkapQ1rIpoB03oA2gIR0CraDEgW8AadX2UKGgGR0CfnsV81Gb1aAdN6ANoCEdAq27fD1oQF3V9lChoBkdAoANSp97Wu2gHTegDaAhHQKtxZCbc45t1fZQoaAZHQKBzpf0mMOxoB03oA2gIR0Crc7KMm4RVdX2UKGgGR0Chjanww0wbaAdN6ANoCEdAq3PYrOJLunV9lChoBkdAoBkQKlYU4GgHTegDaAhHQKt6gaIeo1l1fZQoaAZHQKAwv2VVxS5oB03oA2gIR0CrfhkWRA8kdX2UKGgGR0CggSEJBw+/aAdN6ANoCEdAq4Gx3JPqLXV9lChoBkdAoW7t/hESd2gHTegDaAhHQKuB7cxCY1J1fZQoaAZHQKHgy7L+xW1oB03oA2gIR0CriautfXwtdX2UKGgGR0Chu4+c6NlzaAdN6ANoCEdAq4wndVNpNHV9lChoBkdAoGTNS88La2gHTegDaAhHQKuOgneBQN11fZQoaAZHQKEombzbvgFoB03oA2gIR0CrjqqYqoZRdX2UKGgGR0CgS8sYVIqcaAdN6ANoCEdAq5VpwCKaX3V9lChoBkdAoChqGetjkWgHTegDaAhHQKuX5n9Nvfl1fZQoaAZHQJmwhFBppN9oB03oA2gIR0CrmuAAhje9dX2UKGgGR0Cc02vq1PWQaAdN6ANoCEdAq5sZWYF7lnV9lChoBkdAoD3c0P6KtWgHTegDaAhHQKukb1K5Cnh1fZQoaAZHQKCR2bfgrH5oB03oA2gIR0CrpvhZpztDdX2UKGgGR0Ce4aCPZIxyaAdN6ANoCEdAq6lTf779AHV9lChoBkdAoCFthkRSP2gHTegDaAhHQKupepAlfJF1fZQoaAZHQKBlFujRD1JoB03oA2gIR0CrsEWU8mrsdX2UKGgGR0CUomIKc/dJaAdN6ANoCEdAq7Lr2criEXV9lChoBkdAoJRezSkTH2gHTegDaAhHQKu1P3SKFZh1fZQoaAZHQKDMPQbdadNoB03oA2gIR0CrtWmKZUkwdX2UKGgGR0CeF+j7yhBaaAdN6ANoCEdAq7773RG+bnV9lChoBkdAmhKdmQKa5WgHTegDaAhHQKvCb2vjfel1fZQoaAZHQJju7AuZkTZoB03oA2gIR0CrxNPvBrN4dX2UKGgGR0CSRabvw3HaaAdN6ANoCEdAq8T7lkpZwHV9lChoBkdAl3jgBHTZx2gHTegDaAhHQKvMAeZG8VZ1fZQoaAZHQJfzBrbg0j1oB03oA2gIR0CrzpjSofjkdX2UKGgGR0CV+dY9Pk7waAdN6ANoCEdAq9D+hXbM5nV9lChoBkdAkt3F7tzCDWgHTegDaAhHQKvRLB5X2dx1fZQoaAZHQJlTZWEK3NNoB03oA2gIR0Cr2SQ22oegdX2UKGgGR0CbK6azNUwSaAdN6ANoCEdAq90hdOZb6nV9lChoBkdAmv7gRChN/WgHTegDaAhHQKvgSSOinHh1fZQoaAZHQJZgXkT6BRRoB03oA2gIR0Cr4HAJTl1bdX2UKGgGR0Cee/9Vmz0IaAdN6ANoCEdAq+cu9nK4hHV9lChoBkdAns0qasp5NWgHTegDaAhHQKvpuzeoDPp1fZQoaAZHQJr/5ahYeT5oB03oA2gIR0Cr7BJAt4A0dX2UKGgGR0Cbjtbx3FDOaAdN6ANoCEdAq+w7GLk0anV9lChoBkdAn6WE8mrsB2gHTegDaAhHQKvy6WQfZEl1fZQoaAZHQJ0eM8Md92JoB03oA2gIR0Cr9lqynk1edX2UKGgGR0CapTvZRKpUaAdN6ANoCEdAq/n5hfBvaXV9lChoBkdAn0RYvzvqkmgHTegDaAhHQKv6NzT4L1F1fZQoaAZHQJ7aNGOMl1NoB03oA2gIR0CsAi28IzFddX2UKGgGR0CgQ6jNhVlxaAdN6ANoCEdArASuU4aP0nV9lChoBkdAnE73yqdYn2gHTegDaAhHQKwHDLQHAyp1fZQoaAZHQJmUJiy6cy5oB03oA2gIR0CsBzNMXaakdX2UKGgGR0CgUEJSJj2BaAdN6ANoCEdArA3ibtqpLnV9lChoBkdAn4vGWIGhVWgHTegDaAhHQKwQaCNCJGh1fZQoaAZHQKCyHZgXuVpoB03oA2gIR0CsEzOYQarFdX2UKGgGR0CfnzGKQ7tBaAdN6ANoCEdArBNuhPCVKXV9lChoBkdAn55qYqoZRGgHTegDaAhHQKwdAqSX+l11fZQoaAZHQJ5gxZJTVDtoB03oA2gIR0CsH4JcHGCJdX2UKGgGR0CgZUCdat9yaAdN6ANoCEdArCHSD28IzHV9lChoBkdAnCio8dPtUmgHTegDaAhHQKwh+D0163R1fZQoaAZHQJ+UQNsnAqNoB03oA2gIR0CsKLrkCFK1dX2UKGgGR0CdNv76pHZsaAdN6ANoCEdArCs4K+i8F3V9lChoBkdAoFSxK+SKWWgHTegDaAhHQKwtj4TK1Xx1fZQoaAZHQKCms+mm+CdoB03oA2gIR0CsLbYZl4C7dX2UKGgGR0CeQtfTTfBOaAdN6ANoCEdArDa9fPX05HV9lChoBkdAnenODJ2dNGgHTegDaAhHQKw6aRMewLV1fZQoaAZHQKCxh8VHnU5oB03oA2gIR0CsPMG6PKdQdX2UKGgGR0Cfo8Hxz7uVaAdN6ANoCEdArDztu76HkHV9lChoBkdAmgXBpHqeLGgHTegDaAhHQKxDn+BpYcN1fZQoaAZHQJ48fqu8sc1oB03oA2gIR0CsRi88La24dX2UKGgGR0CbCSQCCBf8aAdN6ANoCEdArEiDZOBUaXV9lChoBkdAn/NZ6hQFcWgHTegDaAhHQKxIqsGxD9h1fZQoaAZHQJ6oiWnjyWloB03oA2gIR0CsUDqnvUjLdX2UKGgGR0CNgTA+pwS8aAdN6ANoCEdArFRZXKbKBHV9lChoBkdAhuDTvRZ2ZGgHTegDaAhHQKxY/JQLux91fZQoaAZHQIdlYuyu6mRoB03oA2gIR0CsWUgCwKSgdX2UKGgGR0CgohshgVoIaAdN6ANoCEdArGK4msvIwXV9lChoBkdAiL5CcwxnF2gHTegDaAhHQKxlTdiUgSx1fZQoaAZHQKJHe3KB/ZxoB03oA2gIR0CsZ6QokRjCdX2UKGgGR0CgbUGVzIV/aAdN6ANoCEdArGfL7Q9idHV9lChoBkdAna20aya/h2gHTegDaAhHQKxuniGWUr11fZQoaAZHQJCeQjC53C9oB03oA2gIR0Csca9a2WpqdX2UKGgGR0CZzvAYHgP3aAdN6ANoCEdArHVALG7z1HV9lChoBkdAmPI2us90R2gHTegDaAhHQKx1frkbPyF1fZQoaAZHQJXuqekHlfZoB03oA2gIR0CsfhZccENfdX2UKGgGR0CQKt+fh/AkaAdN6ANoCEdArICwjY7JXHV9lChoBkdAlZqyGFi8WmgHTegDaAhHQKyDAs4DLbJ1fZQoaAZHQIbxVt8/lhhoB03oA2gIR0CsgynQhOgydX2UKGgGR0CZcNIToMa1aAdN6ANoCEdArInX1FpfyHV9lChoBkdAmfGuEdvKl2gHTegDaAhHQKyMXsl9jPR1fZQoaAZHQJytH+wTufFoB03oA2gIR0CsjvFBppN9dX2UKGgGR0CZUkLy+YdAaAdN6ANoCEdArI8p//echHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.98, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:2fa9bd5644c4412176de59e3f3af82a9057f86fbb467984605c734187a31d3c9
3
- size 1121473
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:68a5a2ce728e2d7a58c132d14dbaf580bd56556da56776d9c7109b43f2cbd872
3
+ size 1169928
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 1207.1765729924257, "std_reward": 689.4155169340883, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-30T15:44:34.547901"}
 
1
+ {"mean_reward": 1776.6134485533694, "std_reward": 253.02444362734866, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-30T23:20:49.734819"}
vec_normalize.pkl CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:51fd16bd84ef6c83d7dae92e1c689c7d4058dd5e30acc87396d5e87318558c36
3
  size 2176
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1f8da6c0dea5b746be50f1d695d57e7fba6a1330cead6d8205f8cd4ac95ec51c
3
  size 2176