update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
model-index:
|
5 |
+
- name: wavlm-large-timit-punctuation
|
6 |
+
results: []
|
7 |
+
---
|
8 |
+
|
9 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
10 |
+
should probably proofread and complete it, then remove this comment. -->
|
11 |
+
|
12 |
+
# wavlm-large-timit-punctuation
|
13 |
+
|
14 |
+
This model is a fine-tuned version of [microsoft/wavlm-large](https://huggingface.co/microsoft/wavlm-large) on the None dataset.
|
15 |
+
It achieves the following results on the evaluation set:
|
16 |
+
- Loss: 0.3360
|
17 |
+
- Wer: 0.2580
|
18 |
+
|
19 |
+
## Model description
|
20 |
+
|
21 |
+
More information needed
|
22 |
+
|
23 |
+
## Intended uses & limitations
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Training and evaluation data
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training procedure
|
32 |
+
|
33 |
+
### Training hyperparameters
|
34 |
+
|
35 |
+
The following hyperparameters were used during training:
|
36 |
+
- learning_rate: 0.0001
|
37 |
+
- train_batch_size: 8
|
38 |
+
- eval_batch_size: 8
|
39 |
+
- seed: 42
|
40 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
41 |
+
- lr_scheduler_type: linear
|
42 |
+
- lr_scheduler_warmup_steps: 1000
|
43 |
+
- num_epochs: 30
|
44 |
+
- mixed_precision_training: Native AMP
|
45 |
+
|
46 |
+
### Training results
|
47 |
+
|
48 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
49 |
+
|:-------------:|:-----:|:-----:|:---------------:|:------:|
|
50 |
+
| 5.2206 | 1.0 | 500 | 3.1111 | 1.0 |
|
51 |
+
| 2.4555 | 2.01 | 1000 | 1.0331 | 0.7992 |
|
52 |
+
| 0.9277 | 3.01 | 1500 | 0.5219 | 0.4888 |
|
53 |
+
| 0.5215 | 4.02 | 2000 | 0.3833 | 0.3981 |
|
54 |
+
| 0.3557 | 5.02 | 2500 | 0.3330 | 0.3570 |
|
55 |
+
| 0.2715 | 6.02 | 3000 | 0.3084 | 0.3255 |
|
56 |
+
| 0.2139 | 7.03 | 3500 | 0.2969 | 0.3129 |
|
57 |
+
| 0.1858 | 8.03 | 4000 | 0.2884 | 0.3029 |
|
58 |
+
| 0.1563 | 9.04 | 4500 | 0.2860 | 0.2960 |
|
59 |
+
| 0.149 | 10.04 | 5000 | 0.2972 | 0.2918 |
|
60 |
+
| 0.1343 | 11.04 | 5500 | 0.3161 | 0.2927 |
|
61 |
+
| 0.11 | 12.05 | 6000 | 0.3061 | 0.2788 |
|
62 |
+
| 0.0982 | 13.05 | 6500 | 0.2983 | 0.2802 |
|
63 |
+
| 0.0967 | 14.06 | 7000 | 0.3280 | 0.2768 |
|
64 |
+
| 0.0873 | 15.06 | 7500 | 0.3185 | 0.2721 |
|
65 |
+
| 0.0809 | 16.06 | 8000 | 0.3121 | 0.2694 |
|
66 |
+
| 0.0787 | 17.07 | 8500 | 0.3177 | 0.2643 |
|
67 |
+
| 0.0709 | 18.07 | 9000 | 0.3189 | 0.2657 |
|
68 |
+
| 0.0712 | 19.08 | 9500 | 0.3213 | 0.2628 |
|
69 |
+
| 0.0621 | 20.08 | 10000 | 0.3206 | 0.2600 |
|
70 |
+
| 0.0601 | 21.08 | 10500 | 0.3191 | 0.2600 |
|
71 |
+
| 0.0605 | 22.09 | 11000 | 0.3241 | 0.2591 |
|
72 |
+
| 0.058 | 23.09 | 11500 | 0.3230 | 0.2584 |
|
73 |
+
| 0.0503 | 24.1 | 12000 | 0.3346 | 0.2602 |
|
74 |
+
| 0.0498 | 25.1 | 12500 | 0.3359 | 0.2593 |
|
75 |
+
| 0.0506 | 26.1 | 13000 | 0.3339 | 0.2592 |
|
76 |
+
| 0.0468 | 27.11 | 13500 | 0.3357 | 0.2563 |
|
77 |
+
| 0.0422 | 28.11 | 14000 | 0.3368 | 0.2568 |
|
78 |
+
| 0.0512 | 29.12 | 14500 | 0.3360 | 0.2580 |
|
79 |
+
|
80 |
+
|
81 |
+
### Framework versions
|
82 |
+
|
83 |
+
- Transformers 4.19.2
|
84 |
+
- Pytorch 1.8.2+cu111
|
85 |
+
- Datasets 1.17.0
|
86 |
+
- Tokenizers 0.11.6
|