wvangils commited on
Commit
9d88afe
1 Parent(s): 2b77919

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +67 -0
README.md ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - generated_from_trainer
4
+ metrics:
5
+ - accuracy
6
+ - recall
7
+ - precision
8
+ - f1
9
+ model-index:
10
+ - name: NL_BERT_michelin_finetuned
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # NL_BERT_michelin_finetuned
18
+
19
+ This model is a fine-tuned version of [GroNLP/bert-base-dutch-cased](https://huggingface.co/GroNLP/bert-base-dutch-cased) on an unknown dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 0.2675
22
+ - Accuracy: 0.968
23
+ - Recall: 0.1562
24
+ - Precision: 0.5
25
+ - F1: 0.2381
26
+ - Mse: 0.032
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 5e-05
46
+ - train_batch_size: 8
47
+ - eval_batch_size: 8
48
+ - seed: 42
49
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
+ - lr_scheduler_type: linear
51
+ - num_epochs: 3
52
+
53
+ ### Training results
54
+
55
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Recall | Precision | F1 | Mse |
56
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|:-----:|
57
+ | 0.1078 | 1.0 | 125 | 0.2461 | 0.969 | 0.0312 | 1.0 | 0.0606 | 0.031 |
58
+ | 0.0258 | 2.0 | 250 | 0.2353 | 0.969 | 0.2188 | 0.5385 | 0.3111 | 0.031 |
59
+ | 0.0011 | 3.0 | 375 | 0.2675 | 0.968 | 0.1562 | 0.5 | 0.2381 | 0.032 |
60
+
61
+
62
+ ### Framework versions
63
+
64
+ - Transformers 4.18.0
65
+ - Pytorch 1.11.0+cu113
66
+ - Datasets 2.1.0
67
+ - Tokenizers 0.12.1