--- tags: - generated_from_trainer metrics: - accuracy - recall - precision - f1 model-index: - name: NL_BERT_michelin_finetuned results: [] --- # NL_BERT_michelin_finetuned This model is a fine-tuned version of [GroNLP/bert-base-dutch-cased](https://huggingface.co/GroNLP/bert-base-dutch-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2675 - Accuracy: 0.968 - Recall: 0.1562 - Precision: 0.5 - F1: 0.2381 - Mse: 0.032 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Recall | Precision | F1 | Mse | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|:-----:| | 0.1078 | 1.0 | 125 | 0.2461 | 0.969 | 0.0312 | 1.0 | 0.0606 | 0.031 | | 0.0258 | 2.0 | 250 | 0.2353 | 0.969 | 0.2188 | 0.5385 | 0.3111 | 0.031 | | 0.0011 | 3.0 | 375 | 0.2675 | 0.968 | 0.1562 | 0.5 | 0.2381 | 0.032 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.1.0 - Tokenizers 0.12.1