File size: 2,177 Bytes
f21c222 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
---
library_name: transformers
language:
- en
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_trainer
datasets:
- wwwtwwwt/fineaudio-ArtCreativity
metrics:
- wer
model-index:
- name: Whisper Tiny En - ArtCreativity - Photography Tips
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: fineaudio-ArtCreativity-Photography Tips
type: wwwtwwwt/fineaudio-ArtCreativity
args: 'config: en, split: test'
metrics:
- name: Wer
type: wer
value: 34.15042216256177
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Tiny En - ArtCreativity - Photography Tips
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the fineaudio-ArtCreativity-Photography Tips dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7095
- Wer: 34.1504
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 4000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:------:|:----:|:---------------:|:-------:|
| 0.7104 | 0.7199 | 1000 | 0.7320 | 36.1841 |
| 0.4721 | 1.4399 | 2000 | 0.7127 | 35.3579 |
| 0.3614 | 2.1598 | 3000 | 0.7118 | 34.7159 |
| 0.3472 | 2.8798 | 4000 | 0.7095 | 34.1504 |
### Framework versions
- Transformers 4.46.3
- Pytorch 2.4.0
- Datasets 3.1.0
- Tokenizers 0.20.0
|