--- library_name: transformers language: - en license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_trainer datasets: - wwwtwwwt/fineaudio-ArtCreativity metrics: - wer model-index: - name: Whisper Tiny En - ArtCreativity - Photography Tips results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: fineaudio-ArtCreativity-Photography Tips type: wwwtwwwt/fineaudio-ArtCreativity args: 'config: en, split: test' metrics: - name: Wer type: wer value: 34.15042216256177 --- # Whisper Tiny En - ArtCreativity - Photography Tips This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the fineaudio-ArtCreativity-Photography Tips dataset. It achieves the following results on the evaluation set: - Loss: 0.7095 - Wer: 34.1504 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.7104 | 0.7199 | 1000 | 0.7320 | 36.1841 | | 0.4721 | 1.4399 | 2000 | 0.7127 | 35.3579 | | 0.3614 | 2.1598 | 3000 | 0.7118 | 34.7159 | | 0.3472 | 2.8798 | 4000 | 0.7095 | 34.1504 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.4.0 - Datasets 3.1.0 - Tokenizers 0.20.0