--- library_name: transformers language: - en license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_trainer datasets: - wwwtwwwt/fineaudio-Education metrics: - wer model-index: - name: Whisper Tiny En - Education - Documentaries results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: fineaudio-Education-Documentaries type: wwwtwwwt/fineaudio-Education args: 'config: en, split: test' metrics: - name: Wer type: wer value: 46.42567741170425 --- # Whisper Tiny En - Education - Documentaries This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the fineaudio-Education-Documentaries dataset. It achieves the following results on the evaluation set: - Loss: 1.3001 - Wer: 46.4257 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.7458 | 0.8230 | 1000 | 1.2498 | 57.5528 | | 0.5124 | 1.6461 | 2000 | 1.2578 | 51.5426 | | 0.4397 | 2.4691 | 3000 | 1.2881 | 48.5207 | | 0.3162 | 3.2922 | 4000 | 1.3001 | 46.4257 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.4.0 - Datasets 3.1.0 - Tokenizers 0.20.0