--- library_name: transformers language: - en license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_trainer datasets: - wwwtwwwt/fineaudio-ScienceTechnology metrics: - wer model-index: - name: Whisper Tiny En - ScienceTechnology - AI Concepts results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: fineaudio-ScienceTechnology-AI Concepts type: wwwtwwwt/fineaudio-ScienceTechnology args: 'config: en, split: test' metrics: - name: Wer type: wer value: 32.08077778075368 --- # Whisper Tiny En - ScienceTechnology - AI Concepts This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the fineaudio-ScienceTechnology-AI Concepts dataset. It achieves the following results on the evaluation set: - Loss: 0.5842 - Wer: 32.0808 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.522 | 1.2690 | 1000 | 0.6057 | 37.2097 | | 0.3557 | 2.5381 | 2000 | 0.5705 | 31.0737 | | 0.2384 | 3.8071 | 3000 | 0.5771 | 31.5585 | | 0.2008 | 5.0761 | 4000 | 0.5842 | 32.0808 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.4.0 - Datasets 3.1.0 - Tokenizers 0.20.0