File size: 4,689 Bytes
59c7c4d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
---
tags:
- trl
- dpo
- generated_from_trainer
model-index:
- name: dpo-selective-longerrun
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# dpo-selective-longerrun

This model was trained from scratch on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4916
- Rewards/chosen: -0.6959
- Rewards/rejected: -2.0431
- Rewards/accuracies: 0.7579
- Rewards/margins: 1.3472
- Logps/rejected: -312.5994
- Logps/chosen: -310.2374
- Logits/rejected: -2.3498
- Logits/chosen: -2.3901

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 1500

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
| 0.6163        | 0.1   | 100  | 0.6145          | 0.0147         | -0.2611          | 0.7024             | 0.2758          | -276.9589      | -296.0254    | -2.3069         | -2.3542       |
| 0.5608        | 0.21  | 200  | 0.5507          | -0.0898        | -0.8075          | 0.7401             | 0.7176          | -287.8870      | -298.1169    | -2.3806         | -2.4286       |
| 0.4934        | 0.31  | 300  | 0.5225          | -0.1646        | -1.0392          | 0.7579             | 0.8746          | -292.5221      | -299.6117    | -2.3416         | -2.3850       |
| 0.4812        | 0.42  | 400  | 0.5148          | -0.2130        | -1.1798          | 0.7599             | 0.9668          | -295.3333      | -300.5795    | -2.3285         | -2.3697       |
| 0.5217        | 0.52  | 500  | 0.5094          | -0.1747        | -1.1571          | 0.7599             | 0.9824          | -294.8788      | -299.8136    | -2.3074         | -2.3432       |
| 0.5069        | 0.63  | 600  | 0.5037          | -0.0404        | -1.0494          | 0.7659             | 1.0090          | -292.7251      | -297.1272    | -2.2444         | -2.2854       |
| 0.4582        | 0.73  | 700  | 0.5003          | -0.6338        | -1.7232          | 0.7599             | 1.0894          | -306.2008      | -308.9958    | -2.2469         | -2.2897       |
| 0.457         | 0.84  | 800  | 0.4907          | -0.4901        | -1.6054          | 0.7639             | 1.1153          | -303.8464      | -306.1228    | -2.2928         | -2.3342       |
| 0.4723        | 0.94  | 900  | 0.4933          | -0.4418        | -1.5567          | 0.7659             | 1.1149          | -302.8719      | -305.1562    | -2.3355         | -2.3762       |
| 0.3094        | 1.05  | 1000 | 0.4922          | -0.8030        | -2.0474          | 0.7639             | 1.2444          | -312.6856      | -312.3804    | -2.3698         | -2.4094       |
| 0.2725        | 1.15  | 1100 | 0.4921          | -0.5635        | -1.8640          | 0.7460             | 1.3005          | -309.0183      | -307.5903    | -2.3382         | -2.3785       |
| 0.2932        | 1.26  | 1200 | 0.4924          | -0.6522        | -2.0030          | 0.7579             | 1.3509          | -311.7977      | -309.3632    | -2.3511         | -2.3915       |
| 0.275         | 1.36  | 1300 | 0.4916          | -0.6366        | -1.9750          | 0.7599             | 1.3383          | -311.2369      | -309.0526    | -2.3531         | -2.3934       |
| 0.2768        | 1.47  | 1400 | 0.4922          | -0.7011        | -2.0464          | 0.7579             | 1.3453          | -312.6646      | -310.3419    | -2.3505         | -2.3908       |
| 0.2863        | 1.57  | 1500 | 0.4916          | -0.6959        | -2.0431          | 0.7579             | 1.3472          | -312.5994      | -310.2374    | -2.3498         | -2.3901       |


### Framework versions

- Transformers 4.36.2
- Pytorch 2.1.2
- Datasets 2.14.6
- Tokenizers 0.15.0