|
import ast
|
|
import onnx
|
|
import onnxruntime as ort
|
|
import cv2
|
|
from huggingface_hub import hf_hub_download
|
|
import numpy as np
|
|
|
|
|
|
model = hf_hub_download(
|
|
repo_id="wybxc/DocLayout-YOLO-DocStructBench-onnx",
|
|
filename="doclayout_yolo_docstructbench_imgsz1024.onnx",
|
|
)
|
|
model = onnx.load(model)
|
|
metadata = {prop.key: prop.value for prop in model.metadata_props}
|
|
|
|
names = ast.literal_eval(metadata["names"])
|
|
stride = ast.literal_eval(metadata["stride"])
|
|
|
|
|
|
session = ort.InferenceSession(model.SerializeToString())
|
|
|
|
|
|
def resize_and_pad_image(image, new_shape, stride=32):
|
|
"""
|
|
Resize and pad the image to the specified size, ensuring dimensions are multiples of stride.
|
|
|
|
Parameters:
|
|
- image: Input image
|
|
- new_shape: Target size (integer or (height, width) tuple)
|
|
- stride: Padding alignment stride, default 32
|
|
|
|
Returns:
|
|
- Processed image
|
|
"""
|
|
if isinstance(new_shape, int):
|
|
new_shape = (new_shape, new_shape)
|
|
|
|
h, w = image.shape[:2]
|
|
new_h, new_w = new_shape
|
|
|
|
|
|
r = min(new_h / h, new_w / w)
|
|
resized_h, resized_w = int(round(h * r)), int(round(w * r))
|
|
|
|
|
|
image = cv2.resize(image, (resized_w, resized_h), interpolation=cv2.INTER_LINEAR)
|
|
|
|
|
|
pad_w = (new_w - resized_w) % stride
|
|
pad_h = (new_h - resized_h) % stride
|
|
top, bottom = pad_h // 2, pad_h - pad_h // 2
|
|
left, right = pad_w // 2, pad_w - pad_w // 2
|
|
|
|
|
|
image = cv2.copyMakeBorder(
|
|
image, top, bottom, left, right, cv2.BORDER_CONSTANT, value=(114, 114, 114)
|
|
)
|
|
|
|
return image
|
|
|
|
|
|
def scale_boxes(img1_shape, boxes, img0_shape):
|
|
"""
|
|
Rescales bounding boxes (in the format of xyxy by default) from the shape of the image they were originally
|
|
specified in (img1_shape) to the shape of a different image (img0_shape).
|
|
|
|
Args:
|
|
img1_shape (tuple): The shape of the image that the bounding boxes are for, in the format of (height, width).
|
|
boxes (torch.Tensor): the bounding boxes of the objects in the image, in the format of (x1, y1, x2, y2)
|
|
img0_shape (tuple): the shape of the target image, in the format of (height, width).
|
|
|
|
Returns:
|
|
boxes (torch.Tensor): The scaled bounding boxes, in the format of (x1, y1, x2, y2)
|
|
"""
|
|
|
|
|
|
gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1])
|
|
|
|
|
|
pad_x = round((img1_shape[1] - img0_shape[1] * gain) / 2 - 0.1)
|
|
pad_y = round((img1_shape[0] - img0_shape[0] * gain) / 2 - 0.1)
|
|
|
|
|
|
boxes[..., :4] = (boxes[..., :4] - [pad_x, pad_y, pad_x, pad_y]) / gain
|
|
return boxes
|
|
|
|
|
|
class YoloResult:
|
|
def __init__(self, boxes, names):
|
|
self.boxes = [YoloBox(data=d) for d in boxes]
|
|
self.boxes = sorted(self.boxes, key=lambda x: x.conf, reverse=True)
|
|
self.names = names
|
|
|
|
|
|
class YoloBox:
|
|
def __init__(self, data):
|
|
self.xyxy = data[:4]
|
|
self.conf = data[-2]
|
|
self.cls = data[-1]
|
|
|
|
|
|
def inference(image):
|
|
"""
|
|
Run inference on the input image.
|
|
|
|
Parameters:
|
|
- image: Input image, HWC format and RGB order
|
|
|
|
Returns:
|
|
- YoloResult object containing the predicted boxes and class names
|
|
"""
|
|
|
|
|
|
orig_h, orig_w = image.shape[:2]
|
|
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
|
|
pix = resize_and_pad_image(image, new_shape=int(image.shape[0] / stride) * stride)
|
|
pix = np.transpose(pix, (2, 0, 1))
|
|
pix = np.expand_dims(pix, axis=0)
|
|
pix = pix.astype(np.float32) / 255.0
|
|
new_h, new_w = pix.shape[2:]
|
|
|
|
|
|
preds = session.run(None, {"images": pix})[0]
|
|
|
|
|
|
preds = preds[preds[..., 4] > 0.25]
|
|
preds[..., :4] = scale_boxes((new_h, new_w), preds[..., :4], (orig_h, orig_w))
|
|
return YoloResult(boxes=preds, names=names)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
import sys
|
|
import matplotlib
|
|
import matplotlib.pyplot as plt
|
|
import matplotlib.colors as colors
|
|
|
|
image = sys.argv[1]
|
|
image = cv2.imread(image)
|
|
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
|
|
|
layout = inference(image)
|
|
|
|
bitmap = np.ones(image.shape[:2], dtype=np.uint8)
|
|
h, w = bitmap.shape
|
|
vcls = ["abandon", "figure", "table", "isolate_formula", "formula_caption"]
|
|
for i, d in enumerate(layout.boxes):
|
|
x0, y0, x1, y1 = d.xyxy.squeeze()
|
|
x0, y0, x1, y1 = (
|
|
np.clip(int(x0 - 1), 0, w - 1),
|
|
np.clip(int(h - y1 - 1), 0, h - 1),
|
|
np.clip(int(x1 + 1), 0, w - 1),
|
|
np.clip(int(h - y0 + 1), 0, h - 1),
|
|
)
|
|
if layout.names[int(d.cls)] in vcls:
|
|
bitmap[y0:y1, x0:x1] = 0
|
|
else:
|
|
bitmap[y0:y1, x0:x1] = i + 2
|
|
bitmap = bitmap[::-1, :]
|
|
|
|
|
|
colormap = matplotlib.colormaps["Pastel1"]
|
|
norm = colors.Normalize(vmin=bitmap.min(), vmax=bitmap.max())
|
|
colored_bitmap = colormap(norm(bitmap))
|
|
colored_bitmap = (colored_bitmap[:, :, :3] * 255).astype(np.uint8)
|
|
|
|
|
|
image_with_bitmap = cv2.multiply(image, colored_bitmap, scale=1 / 255)
|
|
|
|
|
|
fig, ax = plt.subplots(1, 3, figsize=(15, 6))
|
|
ax[0].imshow(image)
|
|
ax[1].imshow(bitmap, cmap="Pastel1")
|
|
ax[2].imshow(image_with_bitmap)
|
|
plt.show()
|
|
|