wyklq commited on
Commit
e5a3f13
·
1 Parent(s): 9104d72

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +311 -0
README.md CHANGED
@@ -1,3 +1,314 @@
1
  ---
 
 
 
 
 
 
 
 
2
  license: apache-2.0
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ datasets:
3
+ - tiiuae/falcon-refinedweb
4
+ language:
5
+ - en
6
+ - de
7
+ - es
8
+ - fr
9
+ inference: false
10
  license: apache-2.0
11
  ---
12
+
13
+ # 🚀 Falcon-40B-4Bit GPTQ
14
+
15
+ This is a 4 bit GPTQ quantized model with auto-gptq with following python code:
16
+
17
+ ```python
18
+ from transformers import AutoTokenizer, TextGenerationPipeline
19
+ from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
20
+ import logging,torch
21
+
22
+ logging.basicConfig(
23
+ format="%(asctime)s %(levelname)s [%(name)s] %(message)s", level=logging.INFO, datefmt="%Y-%m-%d %H:%M:%S"
24
+ )
25
+
26
+ pretrained_model_dir = "../falcon-40b"
27
+ quantized_model_dir = "../falcon-40b-gptq"
28
+
29
+ tokenizer = AutoTokenizer.from_pretrained(pretrained_model_dir, use_fast=True)
30
+ examples = [
31
+ tokenizer(
32
+ "auto-gptq is an easy-to-use model quantization library with user-friendly apis, based on GPTQ algorithm."
33
+ )
34
+ ]
35
+
36
+ quantize_config = BaseQuantizeConfig(
37
+ bits=4, # quantize model to 4-bit
38
+ group_size=128, # it is recommended to set the value to 128
39
+ desc_act=True, # set to False can significantly speed up inference but the perplexity may slightly bad
40
+ )
41
+
42
+ # load un-quantized model, by default, the model will always be loaded into CPU memory
43
+ model = AutoGPTQForCausalLM.from_pretrained(pretrained_model_dir, quantize_config, trust_remote_code=True, torch_dtype=torch.float16)
44
+
45
+ # quantize model, the examples should be list of dict whose keys can only be "input_ids" and "attention_mask"
46
+ model.quantize(examples)
47
+
48
+ # save quantized model using safetensors
49
+ model.save_quantized(quantized_model_dir, use_safetensors=True)
50
+ ```
51
+
52
+
53
+
54
+
55
+ # 🚀 Falcon-40B
56
+
57
+ **Falcon-40B is a 40B parameters causal decoder-only model built by [TII](https://www.tii.ae) and trained on 1,000B tokens of [RefinedWeb](https://huggingface.co/datasets/tiiuae/falcon-refinedweb) enhanced with curated corpora. It is made available under the Apache 2.0 license.**
58
+
59
+ *Paper coming soon 😊.*
60
+
61
+
62
+
63
+ # Call for Proposals : Falcon 40B - World's Top Ranked AI Model Empowers Exceptional Use Cases with Training Compute Power in Call for Proposals
64
+
65
+ We get it. AI is everywhere! Is it taking over?
66
+
67
+ Before we debate the scant likelihood of a cyborg assassin from the future terminating humanity, let’s get to know the newbie that has soared to top-spot on the leaderboard – Falcon 40B.
68
+
69
+ Falcon 40B is the UAE’s and the Middle East’s first home-grown, open-source large language model (LLM) with 40 billion parameters trained on one trillion tokens. The brainchild of the Technology Innovation Institute (TII), Falcon 40B has generated a tremendous amount of global interest and intrigue, but what really sweetens the deal is its transparent, open-source feature.
70
+
71
+ TII is now calling for proposals from users worldwide to submit their most creative ideas for Falcon 40B’s deployment – allowing them to share their knowledge, enhance the software, and potentially transform their ideas into reality! Take that, ChatGPT!
72
+ Worth checking out? Give it a go and see for yourself!
73
+
74
+ Submit your proposal today! https://falconllm.tii.ae/call-for-proposal.php
75
+
76
+
77
+ 🤗 To get started with Falcon (inference, finetuning, quantization, etc.), we recommend reading [this great blogpost fron HF](https://huggingface.co/blog/falcon)!
78
+
79
+ ## Why use Falcon-40B?
80
+
81
+ * **It is the best open-source model currently available.** Falcon-40B outperforms [LLaMA](https://github.com/facebookresearch/llama), [StableLM](https://github.com/Stability-AI/StableLM), [RedPajama](https://huggingface.co/togethercomputer/RedPajama-INCITE-Base-7B-v0.1), [MPT](https://huggingface.co/mosaicml/mpt-7b), etc. See the [OpenLLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).
82
+ * **It features an architecture optimized for inference**, with FlashAttention ([Dao et al., 2022](https://arxiv.org/abs/2205.14135)) and multiquery ([Shazeer et al., 2019](https://arxiv.org/abs/1911.02150)).
83
+ * **It is made available under a permissive Apache 2.0 license allowing for commercial use**, without any royalties or restrictions.
84
+ *
85
+ ⚠️ **This is a raw, pretrained model, which should be further finetuned for most usecases.** If you are looking for a version better suited to taking generic instructions in a chat format, we recommend taking a look at [Falcon-40B-Instruct](https://huggingface.co/tiiuae/falcon-40b-instruct).
86
+
87
+ 💸 **Looking for a smaller, less expensive model?** [Falcon-7B](https://huggingface.co/tiiuae/falcon-7b) is Falcon-40B's little brother!
88
+
89
+ ```python
90
+ from transformers import AutoTokenizer, AutoModelForCausalLM
91
+ import transformers
92
+ import torch
93
+
94
+ model = "tiiuae/falcon-40b"
95
+
96
+ tokenizer = AutoTokenizer.from_pretrained(model)
97
+ pipeline = transformers.pipeline(
98
+ "text-generation",
99
+ model=model,
100
+ tokenizer=tokenizer,
101
+ torch_dtype=torch.bfloat16,
102
+ trust_remote_code=True,
103
+ device_map="auto",
104
+ )
105
+ sequences = pipeline(
106
+ "Girafatron is obsessed with giraffes, the most glorious animal on the face of this Earth. Giraftron believes all other animals are irrelevant when compared to the glorious majesty of the giraffe.\nDaniel: Hello, Girafatron!\nGirafatron:",
107
+ max_length=200,
108
+ do_sample=True,
109
+ top_k=10,
110
+ num_return_sequences=1,
111
+ eos_token_id=tokenizer.eos_token_id,
112
+ )
113
+ for seq in sequences:
114
+ print(f"Result: {seq['generated_text']}")
115
+
116
+ ```
117
+
118
+ 💥 **Falcon LLMs require PyTorch 2.0 for use with `transformers`!**
119
+
120
+ For fast inference with Falcon, check-out [Text Generation Inference](https://github.com/huggingface/text-generation-inference)! Read more in this [blogpost]((https://huggingface.co/blog/falcon).
121
+
122
+ You will need **at least 85-100GB of memory** to swiftly run inference with Falcon-40B.
123
+
124
+ # Model Card for Falcon-40B
125
+
126
+ ## Model Details
127
+
128
+ ### Model Description
129
+
130
+ - **Developed by:** [https://www.tii.ae](https://www.tii.ae);
131
+ - **Model type:** Causal decoder-only;
132
+ - **Language(s) (NLP):** English, German, Spanish, French (and limited capabilities in Italian, Portuguese, Polish, Dutch, Romanian, Czech, Swedish);
133
+ - **License:** Apache 2.0 license.
134
+
135
+ ### Model Source
136
+
137
+ - **Paper:** *coming soon*.
138
+
139
+ ## Uses
140
+
141
+ ### Direct Use
142
+
143
+ Research on large language models; as a foundation for further specialization and finetuning for specific usecases (e.g., summarization, text generation, chatbot, etc.)
144
+
145
+ ### Out-of-Scope Use
146
+
147
+ Production use without adequate assessment of risks and mitigation; any use cases which may be considered irresponsible or harmful.
148
+
149
+ ## Bias, Risks, and Limitations
150
+
151
+ Falcon-40B is trained mostly on English, German, Spanish, French, with limited capabilities also in in Italian, Portuguese, Polish, Dutch, Romanian, Czech, Swedish. It will not generalize appropriately to other languages. Furthermore, as it is trained on a large-scale corpora representative of the web, it will carry the stereotypes and biases commonly encountered online.
152
+
153
+ ### Recommendations
154
+
155
+ We recommend users of Falcon-40B to consider finetuning it for the specific set of tasks of interest, and for guardrails and appropriate precautions to be taken for any production use.
156
+
157
+ ## How to Get Started with the Model
158
+
159
+
160
+ ```python
161
+ from transformers import AutoTokenizer, AutoModelForCausalLM
162
+ import transformers
163
+ import torch
164
+
165
+ model = "tiiuae/falcon-40b"
166
+
167
+ tokenizer = AutoTokenizer.from_pretrained(model)
168
+ pipeline = transformers.pipeline(
169
+ "text-generation",
170
+ model=model,
171
+ tokenizer=tokenizer,
172
+ torch_dtype=torch.bfloat16,
173
+ trust_remote_code=True,
174
+ device_map="auto",
175
+ )
176
+ sequences = pipeline(
177
+ "Girafatron is obsessed with giraffes, the most glorious animal on the face of this Earth. Giraftron believes all other animals are irrelevant when compared to the glorious majesty of the giraffe.\nDaniel: Hello, Girafatron!\nGirafatron:",
178
+ max_length=200,
179
+ do_sample=True,
180
+ top_k=10,
181
+ num_return_sequences=1,
182
+ eos_token_id=tokenizer.eos_token_id,
183
+ )
184
+ for seq in sequences:
185
+ print(f"Result: {seq['generated_text']}")
186
+
187
+ ```
188
+
189
+ ## Training Details
190
+
191
+ ### Training Data
192
+
193
+ Falcon-40B was trained on 1,000B tokens of [RefinedWeb](https://huggingface.co/datasets/tiiuae/falcon-refinedweb), a high-quality filtered and deduplicated web dataset which we enhanced with curated corpora. Significant components from our curated copora were inspired by The Pile ([Gao et al., 2020](https://arxiv.org/abs/2101.00027)).
194
+
195
+ | **Data source** | **Fraction** | **Tokens** | **Sources** |
196
+ |--------------------|--------------|------------|-----------------------------------|
197
+ | [RefinedWeb-English](https://huggingface.co/datasets/tiiuae/falcon-refinedweb) | 75% | 750B | massive web crawl |
198
+ | RefinedWeb-Europe | 7% | 70B | European massive web crawl |
199
+ | Books | 6% | 60B | |
200
+ | Conversations | 5% | 50B | Reddit, StackOverflow, HackerNews |
201
+ | Code | 5% | 50B | |
202
+ | Technical | 2% | 20B | arXiv, PubMed, USPTO, etc. |
203
+
204
+ RefinedWeb-Europe is made of the following languages:
205
+
206
+ | **Language** | **Fraction of multilingual data** | **Tokens** |
207
+ |--------------|-----------------------------------|------------|
208
+ | German | 26% | 18B |
209
+ | Spanish | 24% | 17B |
210
+ | French | 23% | 16B |
211
+ | _Italian_ | 7% | 5B |
212
+ | _Portuguese_ | 4% | 3B |
213
+ | _Polish_ | 4% | 3B |
214
+ | _Dutch_ | 4% | 3B |
215
+ | _Romanian_ | 3% | 2B |
216
+ | _Czech_ | 3% | 2B |
217
+ | _Swedish_ | 2% | 1B |
218
+
219
+
220
+ The data was tokenized with the Falcon-[7B](https://huggingface.co/tiiuae/falcon-7b)/[40B](https://huggingface.co/tiiuae/falcon-40b) tokenizer.
221
+
222
+ ### Training Procedure
223
+
224
+ Falcon-40B was trained on 384 A100 40GB GPUs, using a 3D parallelism strategy (TP=8, PP=4, DP=12) combined with ZeRO.
225
+
226
+ #### Training Hyperparameters
227
+
228
+ | **Hyperparameter** | **Value** | **Comment** |
229
+ |--------------------|------------|-------------------------------------------|
230
+ | Precision | `bfloat16` | |
231
+ | Optimizer | AdamW | |
232
+ | Learning rate | 1.85e-4 | 4B tokens warm-up, cosine decay to 1.85e-5 |
233
+ | Weight decay | 1e-1 | |
234
+ | Z-loss | 1e-4 | |
235
+ | Batch size | 1152 | 100B tokens ramp-up |
236
+
237
+
238
+ #### Speeds, Sizes, Times
239
+
240
+ Training started in December 2022 and took two months.
241
+
242
+
243
+ ## Evaluation
244
+
245
+ *Paper coming soon.*
246
+
247
+ See the [OpenLLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) for early results.
248
+
249
+
250
+ ## Technical Specifications
251
+
252
+ ### Model Architecture and Objective
253
+
254
+ Falcon-40B is a causal decoder-only model trained on a causal language modeling task (i.e., predict the next token).
255
+
256
+ The architecture is broadly adapted from the GPT-3 paper ([Brown et al., 2020](https://arxiv.org/abs/2005.14165)), with the following differences:
257
+
258
+ * **Positionnal embeddings:** rotary ([Su et al., 2021](https://arxiv.org/abs/2104.09864));
259
+ * **Attention:** multiquery ([Shazeer et al., 2019](https://arxiv.org/abs/1911.02150)) and FlashAttention ([Dao et al., 2022](https://arxiv.org/abs/2205.14135));
260
+ * **Decoder-block:** parallel attention/MLP with a two layer norms.
261
+
262
+ For multiquery, we are using an internal variant which uses independent key and values per tensor parallel degree.
263
+
264
+ | **Hyperparameter** | **Value** | **Comment** |
265
+ |--------------------|-----------|----------------------------------------|
266
+ | Layers | 60 | |
267
+ | `d_model` | 8192 | |
268
+ | `head_dim` | 64 | Reduced to optimise for FlashAttention |
269
+ | Vocabulary | 65024 | |
270
+ | Sequence length | 2048 | |
271
+
272
+ ### Compute Infrastructure
273
+
274
+ #### Hardware
275
+
276
+ Falcon-40B was trained on AWS SageMaker, on 384 A100 40GB GPUs in P4d instances.
277
+
278
+ #### Software
279
+
280
+ Falcon-40B was trained a custom distributed training codebase, Gigatron. It uses a 3D parallelism approach combined with ZeRO and high-performance Triton kernels (FlashAttention, etc.)
281
+
282
+
283
+ ## Citation
284
+
285
+ *Paper coming soon* 😊. In the meanwhile, you can use the following information to cite:
286
+ ```
287
+ @article{falcon40b,
288
+ title={{Falcon-40B}: an open large language model with state-of-the-art performance},
289
+ author={Almazrouei, Ebtesam and Alobeidli, Hamza and Alshamsi, Abdulaziz and Cappelli, Alessandro and Cojocaru, Ruxandra and Debbah, Merouane and Goffinet, Etienne and Heslow, Daniel and Launay, Julien and Malartic, Quentin and Noune, Badreddine and Pannier, Baptiste and Penedo, Guilherme},
290
+ year={2023}
291
+ }
292
+ ```
293
+
294
+ To learn more about the pretraining dataset, see the 📓 [RefinedWeb paper](https://arxiv.org/abs/2306.01116).
295
+
296
+ ```
297
+ @article{refinedweb,
298
+ title={The {R}efined{W}eb dataset for {F}alcon {LLM}: outperforming curated corpora with web data, and web data only},
299
+ author={Guilherme Penedo and Quentin Malartic and Daniel Hesslow and Ruxandra Cojocaru and Alessandro Cappelli and Hamza Alobeidli and Baptiste Pannier and Ebtesam Almazrouei and Julien Launay},
300
+ journal={arXiv preprint arXiv:2306.01116},
301
+ eprint={2306.01116},
302
+ eprinttype = {arXiv},
303
+ url={https://arxiv.org/abs/2306.01116},
304
+ year={2023}
305
+ }
306
+ ```
307
+
308
+
309
+ ## License
310
+
311
+ Falcon-40B is made available under the Apache 2.0 license.
312
+
313
+ ## Contact
314
+ falconllm@tii.ae