--- license: mit tags: - generated_from_trainer metrics: - accuracy base_model: cointegrated/rubert-tiny model-index: - name: test_trainer results: [] --- # test_trainer This model is a fine-tuned version of [cointegrated/rubert-tiny](https://huggingface.co/cointegrated/rubert-tiny) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7461 - Accuracy: 0.8310 ## How to use: ```python # themes = ['баги', 'открытие', 'баланс', 'рейтинг', 'ревизия', 'другое'] from transformers import AutoTokenizer, AutoModel import torch model_name = 'wyluilipe/wb-themes-classification' tokenizer = AutoTokenizer.from_pretrained(model_name) model = BertForSequenceClassification.from_pretrained(model_name, num_labels=i+1) text = "программа не работает" encoded_input = tokenizer(text, return_tensors='pt') with torch.no_grad(): output = model(**encoded_input) probabilities = torch.nn.functional.softmax(output.logits, dim=-1) predicted_class = torch.argmax(probabilities).item() ``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 60 | 0.7383 | 0.8404 | | No log | 2.0 | 120 | 0.8743 | 0.7840 | | No log | 3.0 | 180 | 0.7312 | 0.8169 | | No log | 4.0 | 240 | 0.6733 | 0.8404 | | No log | 5.0 | 300 | 0.7612 | 0.7981 | | No log | 6.0 | 360 | 0.7671 | 0.8122 | | No log | 7.0 | 420 | 0.7306 | 0.8263 | | No log | 8.0 | 480 | 0.7523 | 0.8263 | | 0.1118 | 9.0 | 540 | 0.7645 | 0.8263 | | 0.1118 | 10.0 | 600 | 0.7461 | 0.8310 | ### Framework versions - Transformers 4.37.1 - Pytorch 2.1.2 - Datasets 2.16.1 - Tokenizers 0.15.1