|
[model_arguments] |
|
v2 = false |
|
v_parameterization = false |
|
pretrained_model_name_or_path = "/content/pretrained_model/AnyLoRA.safetensors" |
|
vae = "/content/vae/anime.vae.pt" |
|
|
|
[additional_network_arguments] |
|
no_metadata = false |
|
unet_lr = 0.0005 |
|
text_encoder_lr = 0.0001 |
|
network_module = "networks.lora" |
|
network_dim = 16 |
|
network_alpha = 8 |
|
network_train_unet_only = false |
|
network_train_text_encoder_only = false |
|
|
|
[optimizer_arguments] |
|
optimizer_type = "AdamW8bit" |
|
learning_rate = 0.0005 |
|
max_grad_norm = 1.0 |
|
lr_scheduler = "cosine_with_restarts" |
|
lr_warmup_steps = 0 |
|
lr_scheduler_num_cycles = 3 |
|
|
|
[dataset_arguments] |
|
debug_dataset = false |
|
|
|
[training_arguments] |
|
output_dir = "/content/LoRA/output" |
|
output_name = "Maya" |
|
save_precision = "fp16" |
|
save_every_n_epochs = 3 |
|
train_batch_size = 2 |
|
max_token_length = 225 |
|
mem_eff_attn = false |
|
xformers = true |
|
max_train_epochs = 10 |
|
max_data_loader_n_workers = 8 |
|
persistent_data_loader_workers = true |
|
gradient_checkpointing = false |
|
gradient_accumulation_steps = 1 |
|
mixed_precision = "fp16" |
|
clip_skip = 2 |
|
logging_dir = "/content/LoRA/logs" |
|
log_prefix = "Maya" |
|
lowram = true |
|
|
|
[sample_prompt_arguments] |
|
sample_every_n_epochs = 999999 |
|
sample_sampler = "ddim" |
|
|
|
[saving_arguments] |
|
save_model_as = "safetensors" |
|
|