File size: 1,929 Bytes
ac576a4 f9f0a5c ac576a4 f9f0a5c ac576a4 f9f0a5c ac576a4 f9f0a5c ac576a4 f9f0a5c ac576a4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- para_pat
metrics:
- bleu
model-index:
- name: opus-mt-ru-uk-finetuned-ru-to-uk
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: para_pat
type: para_pat
config: ru-uk
split: train
args: ru-uk
metrics:
- name: Bleu
type: bleu
value: 70.1044
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# opus-mt-ru-uk-finetuned-ru-to-uk
This model is a fine-tuned version of [Helsinki-NLP/opus-mt-ru-uk](https://huggingface.co/Helsinki-NLP/opus-mt-ru-uk) on the para_pat dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5266
- Bleu: 70.1044
- Gen Len: 122.6206
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:--------:|
| 0.9218 | 1.0 | 2150 | 0.6965 | 64.5544 | 123.2615 |
| 0.7195 | 2.0 | 4300 | 0.5750 | 68.3283 | 122.4044 |
| 0.6363 | 3.0 | 6450 | 0.5380 | 69.7152 | 122.6875 |
| 0.6086 | 4.0 | 8600 | 0.5266 | 70.1044 | 122.6206 |
### Framework versions
- Transformers 4.30.2
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3
|