File size: 2,428 Bytes
e94d61e 11930a4 e94d61e 11930a4 e94d61e 11930a4 e94d61e 11930a4 e94d61e 11930a4 e94d61e dc6df58 e94d61e 11930a4 e94d61e 11930a4 e94d61e dc6df58 e94d61e f1570bc e94d61e 257c7d5 e94d61e dc6df58 e94d61e dc6df58 e94d61e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 |
---
language:
- eu
license: apache-2.0
tags:
- whisper-event
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_13_0
metrics:
- wer
model-index:
- name: Whisper Small Basque
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: mozilla-foundation/common_voice_13_0 eu
type: mozilla-foundation/common_voice_13_0
config: eu
split: test
args: eu
metrics:
- name: Wer
type: wer
value: 13.179958686054519
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Small Basque
This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the mozilla-foundation/common_voice_13_0 eu dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2201
- Wer: 13.1800
## Model description
More information needed
## Intended uses & limitations
If you need to use this model with [whisper.cpp](https://github.com/ggerganov/whisper.cpp), you can download the ggml file: [ggml-medium-eu.bin](https://huggingface.co/xezpeleta/whisper-medium-eu/blob/main/ggml-medium.eu.bin)
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 7000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.4203 | 0.14 | 1000 | 0.4128 | 28.2656 |
| 0.2693 | 0.29 | 2000 | 0.3240 | 22.0523 |
| 0.2228 | 0.43 | 3000 | 0.2737 | 18.1437 |
| 0.1002 | 1.1 | 4000 | 0.2554 | 16.3534 |
| 0.0863 | 1.24 | 5000 | 0.2351 | 14.7880 |
| 0.0636 | 1.39 | 6000 | 0.2251 | 13.5971 |
| 0.0271 | 2.06 | 7000 | 0.2201 | 13.1800 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.1+cu117
- Datasets 2.8.1.dev0
- Tokenizers 0.13.2
|