--- library_name: transformers license: apache-2.0 base_model: moussaKam/AraBART tags: - generated_from_trainer metrics: - rouge model-index: - name: my_summrize1_model results: [] --- # my_summrize1_model This model is a fine-tuned version of [moussaKam/AraBART](https://huggingface.co/moussaKam/AraBART) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4576 - Rouge1: 0.0134 - Rouge2: 0.005 - Rougel: 0.0129 - Rougelsum: 0.0133 - Gen Len: 20.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | No log | 1.0 | 50 | 0.5512 | 0.008 | 0.0067 | 0.008 | 0.008 | 18.98 | | No log | 2.0 | 100 | 0.4914 | 0.0147 | 0.0117 | 0.0158 | 0.0147 | 20.0 | | No log | 3.0 | 150 | 0.4659 | 0.0211 | 0.0117 | 0.021 | 0.0209 | 20.0 | | No log | 4.0 | 200 | 0.4576 | 0.0134 | 0.005 | 0.0129 | 0.0133 | 20.0 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.0 - Datasets 3.0.1 - Tokenizers 0.20.0