|
from transformers.utils import logging |
|
from transformers.configuration_utils import PretrainedConfig |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
INTERNLM_PRETRAINED_CONFIG_ARCHIVE_MAP = {} |
|
|
|
|
|
class BufferEmbeddingConfig(PretrainedConfig): |
|
model_type = "buffer_embedding" |
|
_auto_class = "AutoConfig" |
|
keys_to_ignore_at_inference = ["past_key_values"] |
|
attribute_map = { |
|
"num_hidden_layers": "n_layer", |
|
"num_attention_heads": "n_head", |
|
} |
|
def __init__( |
|
self, |
|
vocab_size=250880, |
|
hidden_size=64, |
|
n_layer=2, |
|
n_head=8, |
|
layer_norm_epsilon=1e-5, |
|
initializer_range=0.02, |
|
use_cache=True, |
|
bos_token_id=1, |
|
eos_token_id=2, |
|
apply_residual_connection_post_layernorm=False, |
|
hidden_dropout=0.0, |
|
attention_dropout=0.0, |
|
pretraining_tp=1, |
|
slow_but_exact=False, |
|
**kwargs, |
|
): |
|
self.vocab_size = vocab_size |
|
|
|
n_embed = kwargs.pop("n_embed", None) |
|
self.hidden_size = hidden_size if n_embed is None else n_embed |
|
self.n_layer = n_layer |
|
self.n_head = n_head |
|
self.layer_norm_epsilon = layer_norm_epsilon |
|
self.initializer_range = initializer_range |
|
self.use_cache = use_cache |
|
self.pretraining_tp = pretraining_tp |
|
self.apply_residual_connection_post_layernorm = apply_residual_connection_post_layernorm |
|
self.hidden_dropout = hidden_dropout |
|
self.attention_dropout = attention_dropout |
|
|
|
self.bos_token_id = bos_token_id |
|
self.eos_token_id = eos_token_id |
|
self.slow_but_exact = slow_but_exact |
|
|
|
super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) |
|
|
|
|