buffer-embedding-002 / embedding_model.py
xiaotinghe's picture
Upload model
c69924f
import torch
import torch.nn.functional as F
from torch import nn
from transformers import BloomForCausalLM, PreTrainedModel
class DualModel(PreTrainedModel):
_auto_class = "AutoModel"
def __init__(self, config):
super(DualModel, self).__init__(config)
self.model = BloomForCausalLM(config)#.from_pretrained('Langboat/bloom-800m-zh')
self.classifier = nn.Linear(1536, 1536)
self.hidden = nn.Sequential(nn.Linear(1536, 1536),
nn.Tanh())
def forward(self,
input_ids,
token_type_ids=None,
position_ids_ids=None,
attention_mask=None,
labels=None
):
attention_mask = torch.ne(input_ids, 3) # size: batch_size, max_len
y = self.model(input_ids, attention_mask=attention_mask, output_hidden_states=True)
embedding = (y.hidden_states[-1]*attention_mask.unsqueeze(-1)).sum(1)/attention_mask.sum(1).unsqueeze(-1)
embedding = self.classifier(self.hidden(embedding))
return F.normalize(embedding, p=2, dim=-1)