python -m debugpy --wait-for-client --listen 0.0.0.0:5678 \ -m src.train \ train_data='[m3d_2d]' eval_data='[m3d_2d]' \ +model=base_sca_multitask_v2 \ # model.cache_dir=.model.cache/ \ training.do_train=True \ training.do_eval=True \ training.fp16=True \ training.num_masks_per_sample=16 \ training.per_device_train_batch_size=1 \ training.dataloader_num_workers=4 \ training.max_steps=99 \ training.logging_first_step=True \ training.logging_steps=5 \ training.evaluate_before_train=True \ training.max_eval_samples=3 \ training.eval_steps=50 \ training.save_steps=50 \ wandb.log=True \ wandb.project='IU_xray' \ training.dataloader_num_workers=4 \ wandb.name='ft' \ model.num_caption_tokens=8 \ model.additional_num_hidden_layers=12 \ model.num_task_tokens=6 \ training.lr_scheduler_type=cosine \ +data_transforms=lsj-0_1-2_0 \ model.lm_head_model_name_or_path=gpt2 \ model.sam_model_name_or_path=facebook/sam-vit-base