import gradio as gr from dataclasses import dataclass import sqlite3 import random from utils.git_utils.tsv_io import TSVFile import json from PIL import Image import io import base64 import pandas as pd import datetime import os db_path = "tmp/annotations.db" # `columns` should be the same as `create_table.sql` columns = [ "caption", "conf", "area", "image_area", "clip_score", "image_id", "region_cnt", "region_id", "is_acceptable", "created_at", ] conn = sqlite3.connect(db_path) reviews = conn.execute("SELECT * FROM annotations").fetchall() reviews = pd.DataFrame(reviews, columns=columns) reviews.to_csv("tmp/annotations.csv", index=False) """ # How to get the table names? import sqlite3 conn = sqlite3.connect('your_database_name.db') cursor = conn.cursor() cursor.execute("SELECT name FROM sqlite_master WHERE type='table';") # Fetch all rows from the result set and extract the table names tables_info = cursor.fetchall() table_names = [info[0] for info in tables_info] print(table_names) conn.close() # How to get the column names? import sqlite3 conn = sqlite3.connect('your_database_name.db') cursor = conn.cursor() table_name = 'your_table_name' cursor.execute(f'PRAGMA table_info({table_name});') # Fetch all rows from the result set and extract the column names columns_info = cursor.fetchall() column_names = [info[1] for info in columns_info] print(column_names) conn.close() """