xl-zhao commited on
Commit
428ca02
·
verified ·
1 Parent(s): 1a6f361

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +106 -0
README.md ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ datasets:
4
+ - xl-zhao/PromptCoT-DS-Dataset
5
+ language:
6
+ - en
7
+ base_model:
8
+ - deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
9
+ ---
10
+ # **PromptCoT: Synthesizing Olympiad-Level Problems for Mathematical Reasoning in Large Language Models**
11
+
12
+ [![ArXiv](https://img.shields.io/badge/arXiv-2503.02324-red)](http://arxiv.org/abs/2503.02324)
13
+ [![GitHub](https://img.shields.io/badge/GitHub-PromptCoT-blue)](https://github.com/zhaoxlpku/PromptCoT)
14
+
15
+ ---
16
+
17
+ ## 🚀 **Overview**
18
+ The **PromptCoT-DS** series models are distilled mathematical reasoning models trained using **more challenging problem sets generated by the PromptCoT pipeline**. These models are derived from **DeepSeek-R1-Distill-Qwen** and benefit from an enhanced training dataset designed to improve mathematical reasoning capabilities.
19
+
20
+ ✔ **PromptCoT-DS-1.5B** → Distilled from **DeepSeek-R1-Distill-Qwen-7B** (1.5B parameters)
21
+ ✔ **PromptCoT-DS-7B** → Distilled from **DeepSeek-R1-Distill-Qwen-7B** (7B parameters)
22
+
23
+ For more details, refer to our **paper on ArXiv**: [🔗 PromptCoT: Synthesizing Olympiad-Level Problems for Mathematical Reasoning in Large Language Models](http://arxiv.org/abs/2503.02324).
24
+
25
+ ---
26
+
27
+
28
+ ## 🔥 **Quick Start: Using the Model**
29
+
30
+ ### **1️⃣ Install Dependencies**
31
+ ```bash
32
+ pip install transformers vllm torch accelerate
33
+ ```
34
+
35
+ ### **2️⃣ Load the Model with Hugging Face Transformers**
36
+ You can use **PromptCoT-DS** models to solve **mathematical problems** using Hugging Face’s `generate` API:
37
+
38
+ ```python
39
+ from transformers import AutoModelForCausalLM, AutoTokenizer
40
+
41
+ model_name = "xl-zhao/PromptCoT-DS-1.5B"
42
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
43
+ model = AutoModelForCausalLM.from_pretrained(model_name).to("cuda")
44
+
45
+ problem_statement = (
46
+ "A robe takes 2 bolts of blue fiber and half that much white fiber. How many bolts in total does it take?"
47
+ )
48
+
49
+ prompt = (
50
+ "<|begin▁of▁sentence|>Please reason step by step, and put your final answer within \\boxed{{}}."
51
+ "<|User|>" + problem_statement + "<|Assistant|>"
52
+ )
53
+
54
+ inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
55
+
56
+ with torch.no_grad():
57
+ output = model.generate(**inputs, max_length=32768, temperature=0.6)
58
+
59
+ generated_solution = tokenizer.decode(output[0], skip_special_tokens=True)
60
+ print(generated_solution)
61
+ ```
62
+
63
+ ---
64
+
65
+ ## ⚡ **Using vLLM for Fast Inference**
66
+ For optimized inference, use `vLLM`:
67
+ ```python
68
+ from vllm import LLM, SamplingParams
69
+
70
+ model_name = "xl-zhao/PromptCoT-DS-1.5B"
71
+ llm = LLM(model=model_name, tensor_parallel_size=1)
72
+
73
+ problem_statement = (
74
+ "A robe takes 2 bolts of blue fiber and half that much white fiber. How many bolts in total does it take?"
75
+ )
76
+
77
+ prompt = (
78
+ "<|begin▁of▁sentence|>Please reason step by step, and put your final answer within \\boxed{{}}."
79
+ "<|User|>" + problem_statement + "<|Assistant|>"
80
+ )
81
+
82
+ sampling_params = SamplingParams(temperature=0.6, max_tokens=32768)
83
+ outputs = llm.generate([prompt], sampling_params)
84
+
85
+ print(outputs[0].outputs[0].text)
86
+ ```
87
+
88
+ ---
89
+
90
+ ## 🔗 **Full Usage & Advanced Options**
91
+ For advanced usage, including batch inference and evaluation on mathematical benchmarks, refer to the **full repository on GitHub**:
92
+ 🔹 [GitHub: PromptCoT](https://github.com/zhaoxlpku/PromptCoT)
93
+
94
+ ---
95
+
96
+ ## 📜 **Citation**
97
+ If you use **PromptCoT**, please consider citing:
98
+ ```
99
+ @article{zhao2025promptcot,
100
+ author = {Zhao, Xueliang and Wu, Wei and Guan, Jian and Kong, Lingpeng},
101
+ title = {PromptCoT: Synthesizing Olympiad-Level Problems for Mathematical Reasoning in Large Language Models},
102
+ year = {2025},
103
+ journal = {arXiv preprint arXiv:2503.02324},
104
+ url = {http://arxiv.org/abs/2503.02324}
105
+ }
106
+ ```