End of training
Browse files- README.md +84 -0
- config.json +63 -0
- model.safetensors +3 -0
- runs/Apr12_18-36-28_b0fca03b936f/events.out.tfevents.1712946989.b0fca03b936f.34.4 +3 -0
- training_args.bin +3 -0
README.md
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
base_model: law-ai/InLegalBERT
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
+
- precision
|
9 |
+
- recall
|
10 |
+
model-index:
|
11 |
+
- name: InLegalBERT
|
12 |
+
results: []
|
13 |
+
---
|
14 |
+
|
15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
+
should probably proofread and complete it, then remove this comment. -->
|
17 |
+
|
18 |
+
# InLegalBERT
|
19 |
+
|
20 |
+
This model is a fine-tuned version of [law-ai/InLegalBERT](https://huggingface.co/law-ai/InLegalBERT) on an unknown dataset.
|
21 |
+
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 1.5527
|
23 |
+
- Accuracy: 0.7591
|
24 |
+
- Precision: 0.7598
|
25 |
+
- Recall: 0.7591
|
26 |
+
- Precision Macro: 0.6792
|
27 |
+
- Recall Macro: 0.6780
|
28 |
+
- Macro Fpr: 0.0228
|
29 |
+
- Weighted Fpr: 0.0222
|
30 |
+
- Weighted Specificity: 0.9703
|
31 |
+
- Macro Specificity: 0.9820
|
32 |
+
- Weighted Sensitivity: 0.7591
|
33 |
+
- Macro Sensitivity: 0.6780
|
34 |
+
- F1 Micro: 0.7591
|
35 |
+
- F1 Macro: 0.6756
|
36 |
+
- F1 Weighted: 0.7583
|
37 |
+
|
38 |
+
## Model description
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Intended uses & limitations
|
43 |
+
|
44 |
+
More information needed
|
45 |
+
|
46 |
+
## Training and evaluation data
|
47 |
+
|
48 |
+
More information needed
|
49 |
+
|
50 |
+
## Training procedure
|
51 |
+
|
52 |
+
### Training hyperparameters
|
53 |
+
|
54 |
+
The following hyperparameters were used during training:
|
55 |
+
- learning_rate: 5e-05
|
56 |
+
- train_batch_size: 8
|
57 |
+
- eval_batch_size: 8
|
58 |
+
- seed: 42
|
59 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
60 |
+
- lr_scheduler_type: linear
|
61 |
+
- num_epochs: 10
|
62 |
+
|
63 |
+
### Training results
|
64 |
+
|
65 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | Precision Macro | Recall Macro | Macro Fpr | Weighted Fpr | Weighted Specificity | Macro Specificity | Weighted Sensitivity | Macro Sensitivity | F1 Micro | F1 Macro | F1 Weighted |
|
66 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:---------------:|:------------:|:---------:|:------------:|:--------------------:|:-----------------:|:--------------------:|:-----------------:|:--------:|:--------:|:-----------:|
|
67 |
+
| 1.9079 | 1.0 | 643 | 1.2971 | 0.5732 | 0.5257 | 0.5732 | 0.3206 | 0.3555 | 0.0535 | 0.0505 | 0.9314 | 0.9670 | 0.5732 | 0.3555 | 0.5732 | 0.3189 | 0.5343 |
|
68 |
+
| 1.2081 | 2.0 | 1286 | 0.9146 | 0.7103 | 0.7163 | 0.7103 | 0.6091 | 0.5215 | 0.0287 | 0.0283 | 0.9651 | 0.9784 | 0.7103 | 0.5215 | 0.7103 | 0.5206 | 0.7070 |
|
69 |
+
| 0.9303 | 3.0 | 1929 | 0.8692 | 0.7405 | 0.7472 | 0.7405 | 0.6654 | 0.5940 | 0.0248 | 0.0244 | 0.9679 | 0.9806 | 0.7405 | 0.5940 | 0.7405 | 0.5993 | 0.7362 |
|
70 |
+
| 0.4996 | 4.0 | 2572 | 1.1656 | 0.7033 | 0.7270 | 0.7033 | 0.6366 | 0.6241 | 0.0297 | 0.0292 | 0.9651 | 0.9779 | 0.7033 | 0.6241 | 0.7033 | 0.6125 | 0.6959 |
|
71 |
+
| 0.3592 | 5.0 | 3215 | 1.0837 | 0.7459 | 0.7535 | 0.7459 | 0.6627 | 0.6131 | 0.0241 | 0.0238 | 0.9668 | 0.9808 | 0.7459 | 0.6131 | 0.7459 | 0.6261 | 0.7447 |
|
72 |
+
| 0.2809 | 6.0 | 3858 | 1.2175 | 0.7545 | 0.7607 | 0.7545 | 0.6758 | 0.6585 | 0.0232 | 0.0227 | 0.9695 | 0.9816 | 0.7545 | 0.6585 | 0.7545 | 0.6599 | 0.7531 |
|
73 |
+
| 0.1664 | 7.0 | 4501 | 1.3113 | 0.7637 | 0.7645 | 0.7637 | 0.6855 | 0.6886 | 0.0221 | 0.0216 | 0.9717 | 0.9824 | 0.7637 | 0.6886 | 0.7637 | 0.6841 | 0.7631 |
|
74 |
+
| 0.0733 | 8.0 | 5144 | 1.4751 | 0.7552 | 0.7610 | 0.7552 | 0.6835 | 0.6990 | 0.0231 | 0.0226 | 0.9697 | 0.9817 | 0.7552 | 0.6990 | 0.7552 | 0.6871 | 0.7566 |
|
75 |
+
| 0.0716 | 9.0 | 5787 | 1.5509 | 0.7637 | 0.7605 | 0.7637 | 0.7018 | 0.7035 | 0.0224 | 0.0216 | 0.9690 | 0.9822 | 0.7637 | 0.7035 | 0.7637 | 0.7006 | 0.7609 |
|
76 |
+
| 0.0286 | 10.0 | 6430 | 1.5527 | 0.7591 | 0.7598 | 0.7591 | 0.6792 | 0.6780 | 0.0228 | 0.0222 | 0.9703 | 0.9820 | 0.7591 | 0.6780 | 0.7591 | 0.6756 | 0.7583 |
|
77 |
+
|
78 |
+
|
79 |
+
### Framework versions
|
80 |
+
|
81 |
+
- Transformers 4.38.2
|
82 |
+
- Pytorch 2.1.2
|
83 |
+
- Datasets 2.1.0
|
84 |
+
- Tokenizers 0.15.2
|
config.json
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "law-ai/InLegalBERT",
|
3 |
+
"architectures": [
|
4 |
+
"BertForSequenceClassification"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"eos_token_ids": 0,
|
10 |
+
"hidden_act": "gelu",
|
11 |
+
"hidden_dropout_prob": 0.1,
|
12 |
+
"hidden_size": 768,
|
13 |
+
"id2label": {
|
14 |
+
"0": "Issue",
|
15 |
+
"1": "Court Discourse",
|
16 |
+
"2": "Conclusion",
|
17 |
+
"3": "Precedent Analysis",
|
18 |
+
"4": "Section Analysis",
|
19 |
+
"5": "Argument by Petitioner",
|
20 |
+
"6": "Fact",
|
21 |
+
"7": "Argument by Respondent",
|
22 |
+
"8": "Ratio",
|
23 |
+
"9": "Appellant",
|
24 |
+
"10": "Respondent",
|
25 |
+
"11": "Argument by Appellant",
|
26 |
+
"12": "Petitioner",
|
27 |
+
"13": "Judge",
|
28 |
+
"14": "Argument by Defendant"
|
29 |
+
},
|
30 |
+
"initializer_range": 0.02,
|
31 |
+
"intermediate_size": 3072,
|
32 |
+
"label2id": {
|
33 |
+
"Appellant": 9,
|
34 |
+
"Argument by Appellant": 11,
|
35 |
+
"Argument by Defendant": 14,
|
36 |
+
"Argument by Petitioner": 5,
|
37 |
+
"Argument by Respondent": 7,
|
38 |
+
"Conclusion": 2,
|
39 |
+
"Court Discourse": 1,
|
40 |
+
"Fact": 6,
|
41 |
+
"Issue": 0,
|
42 |
+
"Judge": 13,
|
43 |
+
"Petitioner": 12,
|
44 |
+
"Precedent Analysis": 3,
|
45 |
+
"Ratio": 8,
|
46 |
+
"Respondent": 10,
|
47 |
+
"Section Analysis": 4
|
48 |
+
},
|
49 |
+
"layer_norm_eps": 1e-12,
|
50 |
+
"max_position_embeddings": 512,
|
51 |
+
"model_type": "bert",
|
52 |
+
"num_attention_heads": 12,
|
53 |
+
"num_hidden_layers": 12,
|
54 |
+
"output_past": true,
|
55 |
+
"pad_token_id": 0,
|
56 |
+
"position_embedding_type": "absolute",
|
57 |
+
"problem_type": "single_label_classification",
|
58 |
+
"torch_dtype": "float32",
|
59 |
+
"transformers_version": "4.38.2",
|
60 |
+
"type_vocab_size": 2,
|
61 |
+
"use_cache": true,
|
62 |
+
"vocab_size": 30522
|
63 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cf0702f1f3c348c6c68da46c641b5f15e5e498b6f9fedb94e0819ffa1a7eb756
|
3 |
+
size 437998636
|
runs/Apr12_18-36-28_b0fca03b936f/events.out.tfevents.1712946989.b0fca03b936f.34.4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:aea16c75d53657bd9bba32f7d60d1eea0234607156cffca0ef6746bc3488864e
|
3 |
+
size 18858
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0a071d9c371d3616fa3e21355f2762085a2b2c59299db4dd587d4f26783e3f98
|
3 |
+
size 4920
|